
result caching (sometimes called memoization in the
computer science literature). By caching the results of all
recursive calls, the second and subsequent evaluations of any
subproblem become constant-time operations, reducing the
overall running time considerably. The ability to add rules to
a function as the function executes makes result caching very
easy to implement in Mathematica.

In this article we will solve problems having the overlap-
ping subproblems property. The first of these, the computa-
tion of Fibonacci numbers, is a “toy” problem that we use to
illustrate the concepts. The second problem we will consider
is that of finding the optimal multiplication order for a chain
of matrix multiplications, a problem having considerable
practical significance. These two examples are excerpted
from the author’s forthcoming book, Power Programming
with Mathematica, which will be published by McGraw-Hill.
The third problem is that of solving a queueing network
using the multiple-class mean value analysis technique
[Reiser and Lavenberg 1980], which has been considered
previously in this journal by Arnold Allen and Gary Hynes
[Allen and Hynes 1991]. We will find that our solution is
both easier to understand and more efficient than the solu-
tion presented by Allen and Hynes.

Fibonacci Numbers

Consider the following recursive function that generates the
well-known Fibonacci numbers:

In[1]:= fib[n_] := fib[n-1] + fib[n-2]

fib[0] = fib[1] = 1;

In[2]:= Array[fib, 8]

Out[2]= {1, 2, 3, 5, 8, 13, 21, 34}

Unfortunately, the time required to calculate fib[n]
explodes exponentially as n increases.

In[3]:= t = Table[Timing[fib[n]][[1,1]], {n, 1, 16}];

Power Programming

Dynamic Programming

This is the first in a series of columns on advanced programming techniques and algorithms. This
issue’s column discusses dynamic programming, a powerful algorithmic scheme for solving
discrete optimization problems. We illustrate the concepts with the generation of Fibonacci
numbers, and then present two nontrivial examples, optimal matrix-chain multiplication and
multiple-class mean value analysis of queueing networks. This last example applies the technique
to a queueing-theory problem that was solved in a very different way by A.O. Allen and
G. Hynes in volume 1, issue 3 of this journal.

42 THE MATHEMATICA JOURNAL © 1995 Miller Freeman Publications

Certain problems have recursive solutions that are very nat-
ural but also are very inefficient. The reason for this ineffi-
ciency is that many identical recursive calls are made during
any given computation. This property, called overlapping
subproblems, is characteristic of many important problems.
The most well-known examples are discrete optimization
problems such as the 0–1 knapsack problem, optimal matrix-
chain multiplication, finding the longest common subse-
quence of two sequences, and the Floyd-Warshall algorithm
for finding shortest paths in a graph [Cormen et al. 1990].
Other, non-optimization examples include convolution and
multiple-class mean value analysis of queueing networks, the
latter being the topic of the second part of this article. (A
good source for a discussion of both of these topics is
[Jain 1991].)

Problems having the overlapping subproblems property
are almost always solved using dynamic programming, a
catch-all term for any algorithm in which the definition of a
function is extended as the computation proceeds [Cormen
et al. 1990]. This is generally accomplished by constructing a
solution “bottom up” (e.g., progressing from simpler to
more complex cases), the goal being to solve each subprob-
lem before it is needed by any other subproblem.

The main disadvantage of dynamic programming is that it
is often nontrivial to write code that evaluates the subprob-
lems in the most efficient order. However, there is an elegant
dynamic programming technique that does not require the
programmer to establish the evaluation order: recursion with

David B. Wagner

David B. Wagner is the president and founder of Principia Consulting, a training
and consulting firm specializing in Mathematica and other technical software
packages. He earned his Ph.D. in computer science at the University of Washing-
ton, after which he became an Assistant Professor of Computer Science at the Uni-
versity of Colorado, Boulder. During his academic career he published various
papers on concurrency control in distributed database systems, object-oriented
parallel programming, parallel simulation, and queueing theory. He now divides
his energies between finishing his book on Mathematica programming and teach-
ing Mathematica workshops.

Portions of this article are adapted from the forthcoming book Power Program-
ming, to be published by McGraw-Hill. © 1996 by David B. Wagner. All rights
reserved.

In[4]:= ListPlot[t, PlotJoined -> True,

PlotLabel -> “Timings for fib[n]”,

Frame -> True, FrameLabel -> {“n”, “Seconds”},

FrameTicks -> {Range[0, 16, 2], Automatic}]

A look at the execution trace of fib reveals the source of
the inefficiency:

In[5]:= Trace[fib[4], fib[_]]

Out[5]= {fib[4], {fib[3], {fib[2], {fib[1]}, {fib[0]}},

{fib[1]}}, {fib[2], {fib[1]}, {fib[0]}}}

(The second argument to Trace causes it to print only those
intermediate expressions that match the pattern fib[_]). In
this small example, fib[3] is evaluated once, fib[2] is evalu-
ated twice (once during the call to fib[4] and once during the
call to fib[3]), fib[1] is called three times, and fib[0] is called
twice. In fact, the number of times fib[1] is called during the
evaluation of fib[n] is equal to fib[n-1].

In[6]:= Table[Count[Flatten[Trace[fib[i], fib[_]]],

HoldForm[fib[1]]],

{i, 1, 12}]

Out[6]= {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144}

This is a classic example of the overlapping subproblems
problem.

One way to solve this problem efficiently, which is quite
straightforward in this simple case, is to perform the compu-
tation “bottom up,” that is, use results for smaller arguments
to calculate results for larger arguments in a monotonically
increasing fashion:

In[7]:= bufib[n_] := Nest[{#[[2]], Plus @@ #}&, {0, 1}, n][[2]]

In[8]:= Table[bufib[n], {n, 0, 11}]

Out[8]= {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144}

A more general and (in the author’s opinion) more ele-
gant solution, which is the topic of the present article, is to
cache the results of earlier computations. In Mathematica,
result caching is accomplished by a modest change to the
definition of a function:

In[9]:= Clear[fib]

In[10]:= fib[n_] := fib[n] = fib[n-1] + fib[n-2]

fib[0] = fib[1] = 1;

0 2 4 6 8 10 12 14 16

n

0

0.2

0.4

0.6

0.8

Se
co

nd
s

Timings for fib[n]

Comparing this definition of fib to the first one given, we see
that the only difference is the prepending of fib[n]= to the
right-hand side of the definition. Before we explain how this
modification works, we give an example of its consequences.
Here is the rule set for fib before any evaluations are done.

In[11]:= ?fib

Global`fib

fib[0] = 1

fib[1] = 1

fib[n_] := fib[n] = fib[n - 1] + fib[n - 2]

After evaluating fib[3]…

In[12]:= fib[3]

Out[12]= 3

…there are more rules for fib than before!

In[13]:= ?fib

Global`fib

fib[0] = 1

fib[1] = 1

fib[2] = 2

fib[3] = 3

fib[n_] := fib[n] = fib[n - 1] + fib[n - 2]

What is going on here? When fib[n_] is matched with a
particular value for the pattern variable n, say n0, the kernel
evaluates the right-hand side of the definition. But the right-
hand side is itself a call to Set, which results in the assign-
ment of a value to the expression fib[n0]. From this time
forward, whenever the value of fib[n0] is required, no recur-
sive call is made.

The new fib function is significantly faster.

In[14]:= Timing[fib[16]]

Out[14]= {0.0333333 Second, 1597}

Using the old definition of fib, the following computation
would take approximately 108 years:

In[15]:= Timing[fib[100]]

Out[15]= {0.133333 Second, 573147844013817084101}

Furthermore, because the value of fib[100] has been cached,
the next call takes no time at all!

In[16]:= Timing[fib[100]]

Out[16]= {0. Second, 573147844013817084101}

Of course, result caching is a trade-off of memory for time
– there are now 102 rules defined for the symbol fib. If you
evaluate a cached function for extremely large values of its
arguments, you may run out of memory. And since the basis
of the technique is recursion, it is not difficult to exceed
$RecursionLimit on large enough input values.

VOLUME 5, ISSUE 4 43

A more subtle difficulty, which is likely to be encountered
when solving optimization problems, is that the cached val-
ues created for one set of inputs are probably not correct for
a different set of inputs (the other problems we consider are
examples of this). Thus, the Mathematica programmer must
provide an easy way for the user to re-initialize the cached
functions. Finally, it must be pointed out that during the
course of debugging, care must be taken always to Clear the
cached functions and re-initialize them whenever any
changes are made to them.

Matrix-Chain Multiplication

The matrix-chain multiplication problem can be stated as
follows: Given a chain (a sequence) of matrices whose dot
product we wish to compute, parenthesize the chain to force
the dot products to occur in an order that minimizes the
number of scalar multiplications performed. Our presenta-
tion of this problem is modeled after [Cormen et al. 1990,
sec. 16.1], and we quote results freely from that source.
Readers interested in the details should consult this refer-
ence.

The total number of scalar multiplications necessary to
carry out a matrix-chain product can vary dramatically
based on the parenthesization of the chain. Here’s an exam-
ple that shows how important the choice of parenthesiza-
tion can be. Suppose we wish to compute the matrix-chain
product of the following matrices:

In[17]:= b1 = Table[Random[], {300}, {10}];

b2 = Table[Random[], {10}, {300}];

b3 = Table[Random[], {300}, {10}];

There are two mathematically equivalent ways to com-
pute b1.b2.b3: as (b1.b2).b3 and as b1.(b2.b3). In terms of com-
putational effort, however, they are anything but equivalent.
Note that the number of scalar multiplications required to
compute the dot product of a p ¥ q matrix with a q ¥ r
matrix is pqr If the matrix product in this example were
computed as (b1.b2).b3, the total number of multiplications
would be:

In[18]:= 300*10*300 + 300*300*10

Out[18]= 1800000

But if the product were computed as b1.(b2.b3), the number
of scalar multiplications would be reduced by a factor of 30:

In[19]:= 10*300*10 + 300*10*10

Out[19]= 60000

The built-in function Dot is not smart enough to evaluate
this product in the optimal order. Here is how long it takes
Dot to compute the example product:

In[20]:= b1 . b2 . b3; // Timing

Out[20]= {2.55 Second, Null}

Note the dramatic speed-up if we force multiplication in the
optimal order. (We use explicit calls to Dot, rather than paren-
theses, to effect the optimal multiplication order because the
parser converts b1.(b2.b3) into Dot[b1, b2, b3].)

In[21]:= Dot[b1, Dot[b2, b3]]; // Timing

Out[21]= {0.15 Second, Null}

This example motivates the need for an algorithm to deter-
mine the optimal matrix-chain multiplication order.

Suppose that the matrix chain to be multiplied is A1L An,
where Ai has dimensions pi ¥ pi+1. The problem we will solve
is to find the cost of multiplying the matrix chain using an
optimal parenthesization, and to produce a nested list of the
indices 1,…,n that indicates an optimal parenthesization,
given the list of matrix dimensions p = {p1, . .., pn+1}. In the
example above, the list of dimensions is {300, 10, 300, 10},
the cost of an optimal evaluation is 60000, and an optimal
parenthesization (the only one, in this case) is {1, {2, 3}}.

A brute-force approach to this problem, computing the
cost of every possible parenthesization of the matrix chain,
would take time that is exponential in n, the length of the
chain (more precisely, it is at least as bad as 4nˇn3ˇ2). This
approach is computationally infeasible for all but the small-
est values of n.

As a starting point in the search for a better solution, we
note that the matrix-chain multiplication problem satisfies
the optimal substructure property. Optimal substructure
means that the optimal solution to the problem is built from
the optimal solutions of smaller problems having the same
structure as the original. For example, to find the optimal
multiplication order for the matrix chain A1A2A3A4A5 we
must consider four alternative ways to split the original prob-
lem: A1(A2A3A4A5), (A1A2)(A3A4A5), (A1A2A3)(A4A5), and
(A1A2A3A4)A5. (There are only n - 1 such splits in a chain of
length n since matrix multiplication is noncommutative.) The
optimal solution given a particular split must consist of opti-
mal solutions to each of the two subproblems. Therefore,
the subproblems have the same structure as the original one,
but on a smaller scale.

This observation suggests a recursive formulation of the
solution. If we denote by m(i, j) the cost of optimally multi-
plying the matrix chain Ai L Aj, then a recursive definition
for m(i, j) is:

This equation says that for any choice of where to “split” the
chain (given by the index k), the total cost is equal to the cost
of the optimal multiplication of all matrices to the left of the
split (m(i, k)), plus the cost of the optimal multiplication of
all matrices to the right (m(k + 1, j)), plus the cost of multi-
plying together these two intermediate results (pi pk+1 pj+1).
The optimal cost, then, is the minimum cost over all of the
j i possible choice for k.

It is clear as well that the matrix-chain multiplication
problem suffers from overlapping subproblems. For example,
each of the subproblems A1A2A3A4 and A2A3A4A5 requires

m i j
i j

m i k m k j p p p i j
i k j

i k j
(,) min (,) (,) ()=

=
+ + +[] <

Ï
ÌÔ

ÓÔ £ <
+ +

0
1 1 1

if
if 1

44 THE MATHEMATICA JOURNAL © 1995 Miller Freeman Publications

the solution to the subproblem A2A3A4. Likewise, A2A3A4A5
requires the solution to A3A4A5, which is already being com-
puted as part of (A1A2)(A3A4A5). The entire problem can be
viewed as a pyramid-shaped directed graph in which the
complete chain is at the apex and the individual pairings are
at the base (Figure 1). The number of paths from the apex to
any intermediate node in the graph is the number of times
the solution to that subproblem will be required. [Cormen
et al. 1990] shows that the naïve recursive approach has a
computational time complexity that is at least 2n.

The dynamic programming approach to solving this prob-
lem is to compute the bottom row of the pyramid, m(i, i + 1)
for i = 1, …, n - 1; then compute the second row from the
bottom, m(i, i + 2) for i = 1,… , n - 2; and so on, until
finally the apex m(1, n) has been computed. The computa-
tional time complexity of this approach is only proportional
to n3.

In contrast to the bottom-up approach to dynamic pro-
gramming, here is a “top-down” result-caching implementa-
tion of the recurrence equation for m(i, j). Note that the
form of the solution is a direct translation into a Mathemat-
ica expression of the recursive definition given in equation 1.

In[22]:= m[i_, j_] /; i < j := m[i, j] =

Min[Table[

m[i, k] + m[k+1, j] + p[[i]] p[[k+1]] p[[j+1]],

{k, i, j-1}]]

m[__] = 0

(The m[__] case is used whenever an expression such as m[i,i]
is evaluated.)

The result-caching implementation computes subproblems
as shown in Figure 2 (the reader should attempt to verify
this). For example, when the subproblem A2A3A4 needs the
solution to the subproblem A3A4, no work is done because
the latter subproblem has been solved already by A3A4A5.

Below, we solve an example problem from [Cormen
et al. 1990]. Here are the dimensions of the matrices in the
chain.

In[23]:= p = {30, 35, 15, 5, 10, 20, 25};

A call to m[1,6] returns the minimum number of scalar
multiplications required for this chain.

In[24]:= m[1,6]

Out[24]= 15125

Here are all the intermediate results.

In[25]:= TableForm[

Array[m, {5, 6}],

TableHeadings -> Automatic,

TableAlignments -> {Center, Right}]

Out[25]//TableForm=

1 2 3 4 5 6

1 0 15750 7875 9375 11875 15125

2 0 0 2625 4375 7125 10500

3 0 0 0 750 2500 5375

4 0 0 0 0 1000 3500

5 0 0 0 0 0 5000

The given algorithm tells us the cost of the optimal multi-
plication order, but not what that order actually is. To con-
struct the full solution, the m function needs to leave a “trail
of bread crumbs” as it works. The modified version of m
shown below stores the table of alternative costs in a local
variable called choices. Then the index of the minimum cost
(the optimal split) is stored in a global variable s[i, j].
Although purists may recoil at this use of side-effects, it is
defensible in this case for two reasons. First, the most obvi-
ous alternatives (having m return a list consisting of {cost,
position}, or passing s as a by-reference parameter to m) make
the code more complicated and less efficient. Second, when
this code is encapsulated in a package, s will be hidden inside
a private context, so these side-effects will not be visible to
the user.

In[26]:= Clear[m]

In[27]:= m[i_, j_] /; i < j := m[i, j] =

Module[{choices, best},

choices =

Table[m[i, k] + m[k+1, j] +

p[[i]] p[[k+1]] p[[j+1]],

{k, i, j-1}];

best = Min[choices];

s[i, j] = Position[choices, best][[1,1]] + i - 1;

best]

m[__] := 0

In[28]:= m[1,6]

Out[28]= 15125

VOLUME 5, ISSUE 4 45

 A 1 A 2 A 3 A 4 A 5

 A 1 A 2 A 3 A 4 A 2 A 3 A 4 A 5

 A 1 A 2 A 3 A 2 A 3 A 4 A 3 A 4 A 5

 A 1 A 2 A 2 A 3 A 3 A 4 A 4 A 5

 A 1 A 2 A 3 A 4 A 5

 A 1 A 2 A 3 A 4 A 2 A 3 A 4 A 5

 A 1 A 2 A 3 A 2 A 3 A 4 A 3 A 4 A 5

 A 1 A 2 A 2 A 3 A 3 A 4 A 4 A 5

FIGURE 1. Computational structure of the matrix-chain multiplication problem. FIGURE 2. Result-cached computation of the matrix-chain multiplication problem.

Here is the entire s table. (The rule for s[__] has been added
for convenience.)

In[29]:= s[__] := 0

In[30]:= TableForm[

Array[s, {5, 6}],

TableHeadings -> Automatic,

TableAlignments -> {Center, Right}]

Out[30]//TableForm=

1 2 3 4 5 6

1 0 1 1 3 3 3

2 0 0 2 3 3 3

3 0 0 0 3 3 3

4 0 0 0 0 4 5

5 0 0 0 0 0 5

The s table shows that the optimal split for the main problem
is between the 3rd and 4th matrix (s[1,6]=3). The optimal
split for the subproblem A1A2A3 is between matrices 1 and 2
(s[1,3]=1), and the optimal split for the subproblem A4A5A6
is between matrices 5 and 6 (s[4,6]=5). We can use this infor-
mation to generate a nested list of indices indicating the opti-
mal parenthesization:

In[31]:= {1, 6} //. {i_Integer, j_Integer} /; i < j :>

{{i, s[i,j]}, {s[i,j] + 1, j}}

Out[31]= {{{1, 1}, {{2, 2}, {3, 3}}}, {{{4, 4}, {5, 5}}, {6, 6}}}

In[32]:= multorder = % /. {i_, i_} -> i

Out[32]= {{1, {2, 3}}, {{4, 5}, 6}}

Now that we have this list, how do we use it? First, sup-
pose we have a list of matrices of the given sizes:

In[33]:= A = Table[Random[], {i, 6}, {p[[i]]}, {p[[i+1]]}];

We need to turn the parenthesized list of indices, multorder,
into an expression of the following form:

Dot[Dot[A[[1]], Dot[A[[2]], A[[3]]]],

Dot[Dot[A[[4]], A[[5]]], A[[6]]]]

Note that we could not simply have had m compute the
matrix product as it went along, because that would have
wasted a lot of memory and time as non-optimal multiplica-
tions (such as A[[1]].A[[2]]) were computed along the way.

This transformation ought to be easy, but it turns out to be
slightly tricky. The obvious thing to do first is to change all
of the heads in multorder from List into Dot. Unfortunately,
that destroys the nested structure (which we worked so hard
to concoct in the first place!) because Dot is Flat:

In[34]:= multorder /. List -> Dot // FullForm

Out[34]= Dot[1, 2, 3, 4, 5, 6]

We can get around this problem by applying Hold to the
expression before making the substitution. The construct
Hold @@ {multorder} allows multorder to evaluate before the
Hold head is wrapped around it. (The author prefers this con-
struct to the equivalent Hold[Evaluate[multorder]].)

In[35]:= Hold @@ {multorder} /. List -> Dot // FullForm

Out[35]= Hold[Dot[Dot[1, Dot[2, 3]], Dot[Dot[4, 5], 6]]]

Next we turn each index i into A[[i]] using a straightfor-
ward delayed-rule substitution:

In[36]:= % /. i_Integer :> A[[i]];

Now simply apply ReleaseHold to the “parenthesized” chain
to evaluate all of the Dot operators. Since Dot evaluates its
arguments, more deeply-nested dot products will be evalu-
ated before less deeply-nested ones, thus preserving the
“parenthesization.” Here is the time required for the opti-
mally-parenthesized matrix-chain product.

In[37]:= foo = ReleaseHold[%]; // Timing

Out[37]= {0.05 Second, Null}

For this example, it is only slightly faster than passing the
entire chain to Dot.

In[38]:= Timing[bar = Dot @@ A;]

Out[38]= {0.0833333 Second, Null}

In[39]:= foo == bar

Out[39]= True

A very clever alternative to the ReleaseHold[f[Hold[expr]]]
paradigm was suggested by Allan Hayes. The construct
Block[{head}, f[expr]] effectively gives the kernel a case of
temporary amnesia, preventing it from applying any rules
associated with head until after f[expr] has been constructed
and returned from the Block. In the present context, here is
how it could be used:

In[40]:= Block[{Dot},

multorder /. {List -> Dot, i_Integer :> A[[i]]}];

In[41]:= % == bar

Out[41]= True

Within the Block, Dot behaves like a symbol with no values.
When Block returns, all of the Dot operations inside the
returned expression evaluate.

Note that no evaluations except those having head head
are affected by Block[{head }, ...], which makes the use of
this technique exceptionally straightforward. In fact, we
could have created and evaluated the parenthesized chain
directly from the table of s-values, without going through
the nested-list intermediate form:

46 THE MATHEMATICA JOURNAL © 1995 Miller Freeman Publications

In[42]:= Block[{Dot},

Dot[1, 6] //.

Dot[i_Integer, j_Integer] /; i < j :>

Dot[Dot[i, s[i,j]], Dot[s[i,j] + 1, j]] /.

Dot[i_, i_] :> A[[i]]];

In[43]:= % == bar

Out[43]= True

Avoiding the intermediate form could not have been
accomplished using the Hold-ReleaseHold technique because
s[i,j] would not have evaluated inside the Hold.

“Solving a Queueing Model” Revisited

A notorious example of the difficulty of programming the
correct “bottom-up” order to the sub-solutions of a dynamic
programming problem is multiple-class mean value analysis
(MVA) of queueing networks [Reiser and Lavenberg 1980].
In this algorithm, one of the inputs to the problem controls
the dimensionality of the main loop. To appreciate the diffi-
culty involved, see “Solving a queueing model with Mathe-
matica” by Arnold Allen and Gary Hynes [1991]. Here we
shall examine the MVA algorithm, but not the types of mod-
els that MVA is used to solve. The latter are discussed briefly
by Allen and Hynes; for a book-length exposition the inter-
ested reader is encouraged to refer to [Lazowska et al. 1984].

We’ll begin with single-class MVA, as it is much simpler
than multiple-class MVA and can be extended (conceptually,
at least) in a straightforward manner. For each of the algo-
rithms, we first describe the solution given by Allen and
Hynes, and then show how much easier it is to solve the
problem using recursion with result caching.

Consider a queueing network containing a fixed popula-
tion of N indistinguishable customers that circulate among K
servers. Under the appropriate assumptions about service
disciplines and customer routing between the servers [Baskett
et al. 1975], it can be shown that the average waiting time
for a customer at the k-th server is given by

where Dk is the service demand (the expected amount of ser-
vice time required by a customer) at the k-th server and
Ak(N) is the arrival-instant queue-length (the expected num-
ber of customers that an arriving customer finds) at the k-th
server. Ak(N) is a conditional expectation. It was shown inde-
pendently by [Lavenberg and Reiser 1980] and [Sevcik and
Mitrani 1981] that Ak(N) is equal to Lk(N - 1), the uncondi-
tional expected number of customers at the k-th server in a
network having one fewer customers. This remarkable result,
which is called the arrival-instant queue-length theorem,
enables us to rewrite the equation for waiting time as:

Given the waiting times at each server, the throughput of
customers in the network is

W N D L Nk k k() () ()= ◊ - +[]1 1 3

W N D A Nk k k() () ()= ◊ +[]1 2

and the average queue length at the k-th server is given by

(These last two results are consequences of Little’s Law
[Little 1961].)

Thus, given the set of queue lengths for a network with a
particular population, it is possible to use equations 3–5 to
compute waiting times, throughputs, and queue lengths for a
network with an additional customer. Starting from an
empty network (in which the queue lengths are zero), this
procedure can be used to determine performance measures
for a network with any population, given only the per-server
service demands; this entire process is called mean-value
analysis [Reiser and Lavenberg 1980]. MVA is usually imple-
mented “bottom up,” for reasons that will be explained
shortly. The implementation below differs in a few details
but captures the essence of the one developed by Allen and
Hynes (which they called CentralServer for reasons that we
won’t go into here):

In[44]:= CentralServer[nmax_Integer, d_?VectorQ] :=

Module[{n, L = Map[0&, d], W, lambda},

Do[W = d (L+1);

lambda = n / Plus @@ W;

L = lambda W,

{n, nmax}

];

{W, lambda, L}]

Note that d, L, and W are vectors; the fact that the arith-
metic operators are all Listable eliminates the need for the
nested loops that are ubiquitous in MVA implementations in
other programming languages.

A “top down” implementation of single-class MVA is
shown below:

In[45]:= W[n_] := d (1 + L[n-1])

lambda[n_] := n / Plus @@ W[n]

L[0] := Map[0&, d]

L[n_] := lambda[n] W[n]

This implementation has the virtue of mirroring equations
3–5, and it also eliminates the need for any flow-control
code (such as the Do loop). Unfortunately this implementation
has a time complexity that is exponential in n. The reason is
that there are two recursive calls to W[n] for each n: one in the
evaluation of lambda[n], and one in the evaluation of L[n].

Once again the problem of overlapping subproblems has
reared its ugly head, and once again we beat it back down
with result-caching. Although we could cache results for all
of the rules, it turns out that the best performance is obtained
by caching only W[n]. Caching lambda[n] and L[n] is a waste of
time because for any n, each is used only once during the
computation.

L N N W Nk k() () () ()= l 5

l()
()

()N N

W Nk
k

K
=

=Â 1

4

VOLUME 5, ISSUE 4 47

In[46]:= W[n_] := W[n] = d (1 + L[n-1])

Suppose that the service demands are

In[47]:= d = {2., 1., 3., 4};

Then the performance measures with 50 customers in the
network are

In[48]:= $RecursionLimit = 400;

In[49]:= {W[50], lambda[50], L[50]} // Timing

Out[49]= {0.25 Second, {{4., 1.33333, 11.9999, 182.667}, 0.25,

{0.999999, 0.333333, 2.99997, 45.6667}}}

It turns out that the recursive, result-caching algorithm is
nearly as fast as the “bottom up” algorithm:

In[50]:= Timing[CentralServer[50, d]]

Out[50]= {0.2 Second, {{4., 1.33333, 11.9999, 182.667}, 0.25,

{0.999999, 0.333333, 2.99997, 45.6667}}}

However, this is not a fair comparison: If the bottom-up
algorithm is modified to keep track of the intermediate
results, it actually turns out to be slightly slower than the
result-caching algorithm. Though this example may seem
like a “straw man,” it is not. Saving all of the intermediate
results in MVA usually is considered desirable, as it allows
the performance analyst to explore “what if” scenarios about
queueing network performance. For example, by plotting
throughput as a function of population one can identify a
point of diminishing returns:

In[51]:= ListPlot[Array[lambda, 50], PlotJoined -> True]

For this network, it’s clear that allowing more than about 15
customers inside the network at once is not productive.

Multi-Class MVA

MVA can be modified to accommodate queueing networks
in which there are several classes of customers, each having
their own set of service demands. Suppose that there are C
different classes of customers. The parameterization of the
problem now consists of a C ¥ K matrix of service demands
and a vector of population sizes N = (N1,…, NC). The out-
puts are also either vectors (throughputs) or matrices (wait-
ing times and queue lengths). Equations 3–5 become:

10 20 30 40 50

0.235

0.24

0.245

0.25

The notation 1c in equation 6 indicates a unit vector in
dimension c, so the expression N – 1c is the given customer
population minus one customer of class c. Also, the summa-
tion in that equation represents the total number of cus-
tomers (of all classes) that are encountered by a customer of
class c arriving at server k.

To make these equations more concrete, Figure 3 shows
the computational structure of this problem when there are
two customer classes having three and two customers,
respectively. Each subproblem in the graph is labeled
“n1, n2”, where ni is the number of customers of class i. The
solution for population (3, 2) depends upon the solutions
for populations (2, 2) and (3, 1), and so on (because of equa-
tion 6). In the general case of C customer classes, the com-
putation graph is a C-dimensional lattice. It should be obvi-
ous from the structure of the computation that this problem
needs to be solved by a dynamic programming algorithm.

In principle, the computation of the subproblems could
be done in any order that does not violate any dependencies.
In practice, one of two methods is used: Either the lattice is
traversed one dimension at a time (along the diagonals in
the figure) or it is traversed in order of increasing total cus-
tomer population (along the horizontal levels in the figure).
The former method typically is used when writing a pro-
gram for exactly C customer classes; then the flow-control
can be accomplished simply by using C nested loops. (Note,
however, that the resulting code works only for the given
number of customer classes). The latter method typically is
used when the intent is to create a program that works for
any number of customer classes; this is the approach taken
by Allen and Hynes. The “catch” is that it is not easy to
enumerate the populations in the proper order for an arbi-

W D L

c C k K

N

W
c C

L W c

c k c k j k c

j

C

c
c

c k
k

K

c k c c k

, , ,

,

, ,

()

 , ..., , ...,

()
()

,...., ()

() () () ,

N N 1

N
N

N N N

= ◊ + -()
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= =

= =

= =

=

=

Â

Â

1

1 1

1 7

1

1

1

 (6)

for and

 for

 for

l

l ...,..., , ..., ()C k K and = 1 8

48 THE MATHEMATICA JOURNAL © 1995 Miller Freeman Publications

 3,2

 2,2

 1,2

 0,2

 3,1

 2,1

 1,1

 0,1

 3,0

 2,0

 1,0

 0,0

FIGURE 3. Computation graph for 2-class MVA with population N = (3,2).

trary number of customer classes. Allen and Hynes’ solution
hinges upon the following function, which generates all sub-
populations of size n (the first parameter) drawn from the
total population vector max (the second parameter):

In[52]:= Partitions[n_Integer, _] := {} /; n < 0

Partitions[0, max_] := {Map[0&, max]}

Partitions[n_Integer, {max1_, rest___}] :=

If[max1 < 0 || Plus[max1, rest] < n,

{},

Join[

Prepend[#, max1]& /@ Partitions[n-max1, {rest}],

Partitions[n, {max1-1, rest}]]]

In[53]:= Partitions[3, {3, 2, 1}]

Out[53]= {{3, 0, 0}, {2, 1, 0}, {2, 0, 1}, {1, 2, 0},

{1, 1, 1}, {0, 2, 1}}

This function reduces the problem of finding all sub-pop-
ulations to two simpler problems: finding all sub-popula-
tions having no customers of class one, and finding all sub-
populations having at least one customer of class one. (Allen
and Hynes did not explain the insight that led to this non-
obvious approach, but the reasoning is similar to Buzen’s
convolution recurrence for computing the normalization con-
stant of multiple-class queueing networks [Buzen 1973].)
Given the Partitions function, the rest of the code for multi-
class MVA is not much more complicated than for the single-
class case; interested readers should refer to the function
MultiCentralServer in [Allen and Hynes 1991].

Multi-class MVA is an excellent example of the trickiness
of the bottom-up method of dynamic programming, and it is
here that the result-caching technique really shines. Our
strategy will be to use almost the exact same rule definitions
as for the single-class case, except that the argument to each
function will now be a list of integers (the population vector
N). The only tricky part of the algorithm is the recursive
calling of L: W[{n1,n2,...}] must call L[{n1-1,n2,...}],
L[{n1,n2-1,...}], and so on. For convenience, we define the
following utility function that subtracts one from the c-th
element of a list:

In[54]:= minus1[c_, n_] := MapAt[#-1&, n, {c}]

W[n] can then simply call L[minus1[c,n]] for each possible
value of c.

Referring again to equation 6 we see that W[n] needs to
sum L[minus1[c,n]][[j,k]] over the index j (that is, by
columns); and referring to equation 7 we see that lambda[n]
needs to sum W[n][[c, k]] over the index k (by rows). The
following two utility functions are by no means necessary,
but serve to make the code slightly cleaner:

In[55]:= sumc[m_] := Plus @@ m

In[56]:= sumk[m_] := Apply[Plus, m, {1}]

Now we’re ready to write down the main rules:

In[57]:= Clear[W, lambda, L];

In[58]:= W[n_] := W[n] =

Table[d[[c]] (1 + sumc[L[minus1[c, n]]]),

{c, Length[n]}];

In[59]:= lambda[n_] := n/sumk[W[n]];

In[60]:= L[{(0)..}] := Map[0&, d, {-1}];

L[n:{__?NonNegative}] := L[n] = lambda[n] W[n];

L[_] := Map[0&, d, {-1}];

There are now three rules for L rather than two, since there
are now two boundary conditions: all of the sub-populations
can be zero or one of the sub-populations can be negative.
The latter case, which happens along the borders of the lat-
tice, is handled by the final “catch-all” rule for L.

In contrast to the single-class case, we have cached the
results of L as well as W. However, it turns out that caching
the boundary conditions for L is counterproductive, because
any given boundary condition simply isn’t evaluated that
many times, and the code for the boundary conditions isn’t
all that complicated. In fact, a simpler and more effective
enhancement is to pre-evaluate the right-hand side of each
boundary condition. This can be done by initializing d before
initializing L, and changing the SetDelayed used in the defini-
tion of each boundary condition to Set. (This is a sensible
thing to do anyway, since if d is changed all of the rules have
to be re-initialized to eliminate any incorrect cached values.)
For convenience we wrap up all of this in a function called
MVAinit:

In[61]:= Clear[MVAinit]

In[62]:= MVAinit[d_?MatrixQ] :=

(Clear[W, lambda, L];

W[n_] := W[n] =

Table[d[[c]] (1 + sumc[L[minus1[c, n]]]),

{c, Length[n]}];

lambda[n_] := n/sumk[W[n]];

L[{(0)..}] = Map[0&, d, {-1}];

L[n:{__?NonNegative}] := L[n] = lambda[n] W[n];

L[_] = Map[0&, d, {-1}];

)

Here is an example involving three customer classes (with
populations 10, 5, and 2) and two queueing centers. Note
that d is now a matrix.

In[63]:= d = {{1., 3.}, {2., 4.}, {0., 5.}};

In[64]:= Timing[MVAinit[d]; W[{10, 5, 2}]]

Out[64]= {2.95 Second, {{1.51276, 49.4617},

{2.98046, 66.0391}, {0., 82.1711}}}

As before, because the function values have been cached the
evaluation of other performance measures is nearly instanta-
neous:

VOLUME 5, ISSUE 4 49

In[65]:= Timing[L[{5, 5, 0}]]

Out[65]= {0. Second, {{0.293089, 4.70691},

{0.412995, 4.58701}, {0, 0}}}

Less obvious, but just as important, is that the analysis
can be extended to larger populations without having to redo
any work:

In[66]:= Timing[W[{11, 6, 2}]]

Out[66]= {0.916667 Second, {{1.5333, 55.4001},

{3.02507, 73.9499}, {0., 92.0933}}}

(Building up the answer to large problems on top of smaller
ones is also an easy way to avoid the $RecursionLimit barrier.)

Discounting the three trivial utility functions, the result-
caching code for multi-class MVA consists of five “one-
liners” – only one more than for the single-class algorithm.
(The reason for the additional rule was explained earlier.) In
addition, the code is completely general: It works for any
number of customer classes and any number of queueing
centers. The code even works for the single-class case, as
long as one remembers to initialize d as a matrix with one
row rather than as a vector:

In[67]:= $RecursionLimit = 600;

In[68]:= MVAinit[{{2., 1., 3., 4.}}]; W[{50}]

Out[68]= {{4., 1.33333, 11.9999, 182.667}}

Most important, however, is the fact that the code is a
straightforward translation of the equations that define the
problem, and requires no explicit flow-control. This makes
development of a working algorithm much easier than using
the bottom-up approach.

Perhaps surprisingly, the result-caching implementation is
also faster than the algorithm developed by Allen and Hynes.
(Their Queueing.m package can be found on MathSource as
item 0205-636.)

In[69]:= Remove[CentralServer, Partitions];

In[70]:= << Queueing.m

In[71]:= MultiCentralServer[{10, 5, 2}, d] // Timing

Out[71]= {3.9 Second, {{50.9745, 69.0195, 82.1711},

{0.196177, 0.0724432, 0.0243395},

{0.512681, 16.4873}, {0.341063, 1.}}}

Note that the first component of the MultiCentralServer solu-
tion is a list of Wc (the total waiting time for each class)
rather than the matrix Wc,k; we can see that our answer
matches theirs by summing W[{10,5,2}] over the index k:

In[72]:= sumk[W[{10, 5, 2}]]

Out[72]= {50.9745, 69.0195, 82.1711}

Strangely, the speed of the Allen and Hynes algorithm is
sensitive to the order of the customer classes. Here is an
example:

In[73]:= pops = NestList[RotateRight, {20, 1, 1}, 2]

Out[73]= {{20, 1, 1}, {1, 20, 1}, {1, 1, 20}}

In[74]:= Timing[MultiCentralServer[#, d]][[1]]& /@ pops

Out[74]= {1.75 Second, 2.11667 Second, 3.11667 Second}

This variability in execution times is attributable to the
Partitions function. The lion’s share of the execution time is
spent figuring out the order in which to evaluate the sub-
problems!

In[75]:= Timing[Do[Partitions[i, #], {i, 22}]][[1]]& /@ pops

Out[75]= {0.983333 Second, 1.38333 Second, 2.26667 Second}

The result-caching code has no such performance quirks.

In[76]:= Timing[MVAinit[d]; W[#]][[1]]& /@ pops

Out[76]= {1.18333 Second, 1.15 Second, 1.16667 Second}

Summary

Caching the results of function calls is a powerful and
intuitive technique. It makes the solution to many dynamic
programming problems about as simple as translating the
recursive formulation of a problem into Mathematica code.
Furthermore, the programmer does not need to write any
flow-control code, which is a great advantage when the
optimum evaluation order is either not obvious or simply
hard to program. Finally, function result caching is relatively
efficient, thanks to the speediness of Mathematica’s built-in
pattern-matching engine.

The only drawbacks to function result caching are that it
uses memory to store the intermediate results and that it
requires a lot of stack space. The former “bug” is sometimes
a “feature,” as access to intermediate results frequently is
necessary in optimization problems (as we saw in the optimal
matrix-chain multiplication problem). The second drawback
is the more serious one, but generally can be overcome by
“bootstrapping” the solution to large problems from smaller
ones.

In summary, dynamic programming and function result
caching belong in every Mathematica programmer’s toolbox!

Package Implementation Notes

The electronic supplement contains the package OptimalDot.m,
which not only implements the optimal matrix-chain multi-
plication algorithm given in the article, but also overrides
the built-in Dot function to use this algorithm whenever three
or more matrices are passed to Dot. An option called Optimize
(with default value True) has also been added to Dot. Setting
Optimize to False can be used to prevent Dot from calculating
the optimal multiplication order, which is a waste of time for
small matrices or for chains in which all of the matrices are
square. The default value for Optimize can be changed using
SetOptions.

The function m and the variables p and s are encapsulated
within a private context and so are not directly accessible to
the user. A noteworthy trick is that, after the rules for m are

50 THE MATHEMATICA JOURNAL © 1995 Miller Freeman Publications

initialized, they are saved in a private variable using the
assignment

mdv = DownValues[m]

Subsequently, each time the algorithm is run, the rule set for
m is restored to a “virgin” state in one fell swoop using

DownValues[m] = mdv

The values of s do not need to be initialized since they are
simply overwritten during each run.

Finally, the code uses Allan Hayes’ Block technique
(described in the article) to perform the actual dot products.

The electronic supplement also contains the package
MeanValueAnalysis.m, which contains the MVAinit function devel-
oped in the article. The symbol names W, lambda, and L are
declared within the package context, MeanValueAnalysis`, so
that users of the package do not inadvertently wipe out their
own definitions for these symbols when MVAinit is called.

References

Allen, A.O., and G. Hynes. 1991. Solving a queueing model
with Mathematica. The Mathematica Journal 1(3):
108–112.

Baskett, F., K.M. Chandy, R.R. Muntz, and F.G. Palacios.
1975. Open, closed, and mixed networks of queues with
different classes of customers. Journal of the ACM 22(2):
248–260.

Buzen, J.P. 1973. Computational algorithms for closed
queueing networks with exponential servers. Communi-
cations of the ACM 16(9): 527–531.

Cormen, T.H., C.E. Leiserson, and R.L. Rivest. 1990. Intro-
duction to Algorithms. McGraw-Hill, New York, NY.
(Also available from MIT Press, Cambridge, MA.)

Jain, R. 1991. The Art of Computer Systems Performance
Analysis. Wiley, New York, NY.

Lavenberg, S.S., and M. Reiser. 1980. Stationary state prob-
abilities of arrival instants for closed queueing networks.
Journal of Applied Probability (December).

Lazowska, E.D., J. Zahorjan, G.S. Graham, and K.C. Sevcik.
1984. Quantitative System Performance: Queueing Sys-
tem Analysis Using Queueing Network Models. Prentice-
Hall, Englewood Cliffs, NJ.

Little, J.D.C. 1961. A proof for the queueing formula:
L = lW. Operations Research 9(3): 383–387.

Reiser, M., and S.S. Lavenberg. 1980. Mean-value analysis of
closed multichain queueing networks. Journal of the ACM
25(2): 313–322.

Sevcik, K.C., and I. Mitrani. 1981. The distribution of
queueing network states at input and output instants.
Journal of the ACM 28(2): 358–371.

VOLUME 5, ISSUE 4 51

David B. Wagner
Principia Consulting

3841 Orion Court, Boulder, CO 80304-1024
dbwagner@princon.com

The electronic supplement contains the packages
OptimalDot.m and MeanValueAnalysis.m.

