988 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 5, SEPTEMBER 1999

An Overview of Statistical Learning Theory

Vladimir N. Vapnik

Abstract—Statistical learning theory was introduced in the late B. Problem of Risk Minimization

1960’s. Until the 1990’s it was a purely theoretical analysis of the | der to ch the best ilabl imation to th
problem of function estimation from a given collection of data. n order to choose (he best available approximation to the

In the middle of the 1990's new types of learning algorithms SUPErVisor's response, one measuresltiss or discrepancy
(called support vector machines) based on the developed theory L(y, f(z,«)) between the responsg of the supervisor to
were proposed. This made statistical learning theory not only g given inputz and the respons¢ (z,«) provided by the

a tool for the theoretical analysis but also a tool for creating learning machine. Consider the expected value of the loss
practical algorithms for estimating multidimensional functions. . . ) . ’
given by therisk functional

This article presents a very general overview of statistical learning
theory including both theoretical and algorithmic aspects of the
theory. The goal of this overview is to demonstrate how the R(Oé) I/ L(y,f(a:,a)) dP(a:,y). 2
abstract learning theory established conditions for generalization

which are more general than those discussed in classical statis- The goal is to find the functionf(z, ) which mini-

tical paradigms and how the understanding of these conditions mizes the risk functionaR(«) (over the class of functions

inspired new algorithmic approaches to function estimation prob- . . . .. .
lems. A more detailed overview of the theory (without proofs) can /(#,a),a € A) in the situation where the joint probabil-

be found in Vapnik (1995). In Vapnik (1998) one can find detailed ity distribution P(x,y) is unknown and the only available
description of the theory (including proofs). information is contained in the training set (1).

C. Three Main Learning Problems
|. SETTING OF THE LEARNING PROBLEM ) ) ] ]
This formulation of the learning problem is rather general.

I N this section we consider a model of the learning and shqyencompasses many specific problems. Below we consider

that analysis of this model can be conducted in the genefal main ones: the problems of pattern recognition, regression
statistical framework of minimizing expected loss using Obsctimation. and density estimation.

served data. We show that practical problems such as patterje proplem of Pattern Recognitiori:et the supervisor's
recognition, regression estimation, and density estimation Y&put ¢ take on only two valuesy = {0,1} and let
particular case of this general model. f(z,a), € A, be a set ofindicator functions (functions

which take on only two values zero and one). Consider the
A. Function Estimation Model following loss-function:

The model of learning from examples can be described
using three components:

1) a generator of random vectars drawn independently
from a fixed but unknown distributio®’(z);

2) a supervisor that returns an output veciofor every
input vectorz, according to a conditional distribution
functiont P(y|z), also fixed but unknown;

3) a learning machine capable of implementing a set
functions f(z, «), 0 € A.

ST ) . given.

The problem of learning is that of choosing from the given The Problem of Regression Estimatiohet the supervi-
set of functionsf(z,«),a € A, the one which predicts the g answery be a real value, and lef(z, ), € A, be a
supervisor's response in the best possible way. The selection of rea| functions which contains thegression function
is based on a training set éfrandom independent identically
distributed (i.i.d.) observations drawn accordingRt6z, i) = flz, ) :/ y dP(y|z).

P(x)P(y|z)

0 ify=flz,«
sy ={] FUZI00 @
For this loss function, the functional (2) provides the proba-
bility of classification error (i.e., when the answeysgiven
by supervisor and the answers given by indicator function
f(z,«) differ). The problem, therefore, is to find the function
\(/)vthich minimizes the probability of classification errors when
probability measure”(z, y) is unknown, but the data (1) are

It is known that if f(x,«) € Lo then the regression function
(x1,91), - (Te, ye).- (1) is the one which minimizes the functional (2) with the the
following loss-function:
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(4) in the situation where the probability measuréz,y) is E. Empirical Risk Minimization Principle
unknown but the data (1) are given. and the Classical Methods

The Problem of Density EstimatiorFinally, consider the  rpe gRM principle is quite general. The classical methods
problem of density estimation from the set of densitieg, goving a specific learning problem, such as the least
p(x, @), € A. For this problem we consider the followinggqares method in the problem of regression estimation or
loss-function: the maximum likelihood method in the problem of density

estimation are realizations of the ERM principle for the

L(p(z,a)) = —logp(z, a). (5)  specific loss functions considered above.
Indeed, in order to specify the regression problem one
It is known that desired density minimizes the risk functionahtroduces ann + 1-dimensional variablez = (z,y) =
(2) with the loss-function (5). Thus, again, to estimate the!,---,z™ %) and uses loss function (4). Using this loss

density from the data one has to minimize the risk-functionédnction in the functional (8) yelds the functional
under the condition where the corresponding probability mea-
sure P(x) is unknown but i.i.d. data R _ 1 2
'emp(a) et Z Z (Z/z - f(‘Tv CY))
i=1

-Tl EEEIEINY 4 . .. . . . .
oo which one needs to minimize in order to find the regression

estimate (i.e., the least square method).

ar(_arhgwén. | Setti fthe L ing Problerfih | In order to estimate a density function from a given set of
e General Setting of the Learning Problemhe genera functions p(x, o) one uses the loss function (5). Putting this

setting of the I_e_arning problem can b_e described as f°”°"Y855 function into (8) one obtains the maximum likelihood
Let the probability measur&(z) be defined on the spacé method: the functional

Consider the set of function@(z, «),« € A. The goal is: to
minimize the risk functional 1 <&

Rewmp(a) = ~7 Z Inp(z;, @)
R(a) = / Q(z,a) dP(z), a €A (6) i=1

which one needs to minimize in order to find the approxima-
tion to the density.
if probability measureP(~) is unknown but an i.i.d. sample  Since the ERM principle is a general formulation of these
classical estimation problems, any theory concerning the ERM
FAPRREIY-7) (7) principle applies to the classical methods as well.

is given. F. Four Parts of Learning Theory

The learning problems considered above are particular casegearning theory has to address the following four questions.
of this general problem ahinimizing the risk functional (6) on 1) What are the conditions for consistency of the ERM
the basis of empirical datér), wherez describes a paifz, i) principle?
and Q(z, «) is the specific loss function [for example, one To answer this question one has to specify rieees-
of (3), (4), or (5)]. Below we will describe results obtained 51y ang sufficienconditions for convergence in proba-

for the general statement of the problem. To apply it for 2 of the following sequences of the random values.
specific problems one has to substitute the corresponding loss-

functions in the formulas obtained. a) The values of risksi(a) converging to the
minimal possible value of the risR(«g) [where

R(ag), ¢ = 1,2,... are the expected risks for

D. Empirical Risk Minimization Induction Principle functionsQ(, ac) each minimizing the empirical

In order to minimize the risk functional (6), for an unknown risk Remp ()]
probability measurd’(z) the following induction principle is »
usually used. R(o) — oo Rlaw). ©)

The expected risk functionaR(«) is replaced by the

- . . b) The wvalues of obtained empirical risks
empirical risk functional

Remp(aé)ai = 1, 2, fee Converging to the
minimal possible value of the risk(c«g)
1
Remp(a) = Z Z Q(Z,Oé) (8) Remp(a[) —>ZP—>O<> R(OéO) (10)
=1
constructed on the basis of the training set (7) 2Convergence in probability of valueB(«,) means that for any > 0

. . . . . and for anyn > 0 there exists a numbety = (y(e,n) such, that for any
The principle is to approximate the functié¥(z, ) which ;'S ¢ " ith probability at leastl — 5 the inequality

minimizes risk (6) by the functio)(z, «;) which minimizes
empirical risk (8). This principle is called the empirical risk
minimization induction principle (ERM principle). holds true.

R(G’g) — R(O’o) <ée
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Equation (9) shows that solutions found using ERMhis type of convergence is called uniform one-sided conver-

converge to the best possible one. Equation (10) shogsnce.

that values of empirical risk converge to the value of In other words, according to the Key theorem the conditions

the smallest risk. for consistency of the ERM principle are equivalent to the
2) How fast does the sequence of smallest empirical risknditions for existence of uniform one-sided convergence

values converge to the smallest actual riski? other (11).

words what is the rate of generalization of a learning This theorem is called the Key theorem because it asserts

machine that implements the empirical risk minimizatiothat any analysis of the convergence properties of the ERM

principle? principle must be avorst case analysisThe necessary condi-
3) How can one control the rate of convergence (the rate &ibn for consistency (not only the sufficient condition) depends
generalization) of the learning machine? on whether or not the deviation for the worst function over

4) How can one construct algorithms that can control théhe given set of of functions
rate of generalization?
. A(Oéworst) = sup (R(Oé) - Remp(a))
The answers to these questions form the four parts of aEA

learning theory: converges in probability to zero.

1) the theory of consistency of learning processes; From this theorem it follows that the analysis of the ERM
2) the nonasymptotic theory of the rate of convergence gfinciple requires an analysis of the properties of uniform

learning processes; o ~ convergence of the expectations to their probabilities over the
3) the theory of controlling the generalization of Iearnln%iven set of functions.

processes;

4) the theory of constructing learning algorithms. B. The Necessary and Sufficient Conditions

for Uniform Convergence

Il. THE THEORY OF CONSISTENCY OFLEARNING PROCESSES . - " .
To describe the necessary and sufficient condition for uni-

The theory of consistency is an asymptotic theory. It déorm convergence (11), we introduce a concept caltlegl

scribesthe necessary and sufficient conditidosconvergence entropy of the set of functiond(z, a), « € A, on the sample
of the solutions obtained using the proposed method to thesjzev/.

best possible as the number of observations is increased. Thgve introduce this concept in two steps: first for sets of

question arises: _ _ ~indicator functions and then for sets of real-valued functions.
Why do we need a theory of consistency if our goal is to Entropy of the Set of Indicator Functiond:et Q(z,«),
construct algorithms for a small (finite) sample size? «a € A be a set of indicator functions, that is the functions

The answer is: which take on only the values zero or one. Consider a sample
We need a theory of consistency because it provides not

only sufficient but necessary conditions for convergence of ALyt AL (12)

the empirical risk minimization inductive principle. Thereforg ot ;s characterize the diversity of this set of functions

any theory of the empirical risk minimization principle musb(7 a),a € A on the given sample by a quantity
. . e ~ )

satisfy the necessary and sufficient conditions. NA(z1,---,2) that represents the number of different

In this section, we introduce the main capacity concept (@ arations of this sample that can be obtained using functions
so-called Vapnik—Cervonenkis (VC) entropy which defineg,, ihe given set of indicator functions.

the generalization ability of the ERM principle. In the next Let us write this in another form. Consider the set of
sections we show that the nonasymptotic theory of learning i$jimensional binary vectors

based on different types of bounds that evaluate this concept

for a fixed amount of observations. g(a) = (Q(z1, ), -+, Q2 @), ¢ € A

that one obtains when takes various values from. Then
geometrically speakingv(z1,---, z) is the number of dif-
The key theorem of the theory concerning the ERM-baségkent vertices of thé-dimensional cube that can be obtained

learning processesis the following [27]. on the basis of the samplg, - - -, 2, and the set of functions
The Key Theoremiet Q(z, «), « € A be a set of functions Q(z,a),a € A.

that has a bounded loss for probability measkb(e) Let us call the value

A. The Key Theorem of the Learning Theory

AS/ Q(z,a)dP(z) < B VYa€A. H 1,00y 20) =Nz, 20)
o ) o the random entropy The random entropy describes the diver-
Then for the ERM principle to be consistent it is necessary agqy of the set of functions on the given daf(z1, -- -, z)

sufficient that the empirical riske.n, («r) convergeuniformly s ' yandom variable since it was constructed using random
to the actual risk(«) over the set)(z, ), € A asfollows: 4 data. Now we consider the expectation of the random

entropy over the joint distribution functioR(zq, - - -, 2¢)

lim Prob{sup (R(a) — Remp(a)) > 5} =0, Ve (12)
HA() = ElnN®(z1, -, 2).

L—o0 acA
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We call this quantity the entropy of the set of indicatois taken with respect to product-measuR€zq,---,z;) =
functionsQ(z, o), & € A on samples of sizé. It depends on P(z) - --- - P(z).

the set of functiong)(z, ), @ € A, the probability measure  The main results of the theory of uniform convergence of the
P(=), and the number of observatioAsThe entropy describes empirical risk to actual risk for bounded loss function includes
the expected diversity of the given set of indicator functiorthe following theorem [24].

on the sample of sizé. Theorem: For uniform two-sided convergence of the em-
The main result of the theory of consistency for the papirical risks to the actual risks
tern recognition problem (the consistency for indicator loss
function) is the following theorem [24]. lim Prob{sup (|R(a) = Remp()| > 5} =0, Ve. (16)
Theorem: For uniform two-sided convergence of the fre- © 7> €A
guencies to their probabilitiés it is necessary and sufficient that the equality
A
Jm Prob{zgg |B(c) = Remp(er)| > s} =0, Ve (13) Jlim w =0, Ve>0 (17)
it is necessary and sufficient that the equality be valid.
HA®) Slightly modifying the condition (17) one can obtain the
lim ——~% =0, Ve>0 (14) necessary and sufficient condition for one-sided uniform con-
oo vergence (11).
hold. According to the key assertion this implies the necessary and

Slightly modifying the condition (14) one can obtain theufficient conditions for consistency of the ERM principle.
necessary and sufficient condition for one-sided uniform con-

vergence (11). C. Three Milestones in Learning Theory

Entropy of the Set of Real Functiondlow we generalize In thi tion. for simolicit id t of indicat
the concept of entropy for sets of real-valued functions. L?t n this section, for simplicity, we consider a set of Indicator
unctions Q(z, ), € A (i.e., we consider the problem of

A< Q(#,a) < B, € A, be a set of bounded loss functions. tt i Th its obtained f ts of indicat
Using this set of functions and the training set (12) or@\a ern recognition). The results obtained for sets of indicator

can construct the following set dkdimensional real-valued unctions can_be generahzed fpr sets of real-valued functions.
vectors In the previous section we introduced the entropy for sets

of indicator functions

Q(a) = (Q(zlva)v"'vQ(zéva))va €A. (15)

This set of vectors belongs to thedimensional cube with . )
the edgeB — A and has a finite-net in the metricC. Let Now, we consider two new functions that are constructed

HA¢) = Eln N™(zp,-- -, 2).

N = NMe;z,---,2) be the number of elements of the®” the basis of the value¥™(z,, - -, z): the annealed VC-
minimal e-net of the set of vectorg(), a € A. entropy
The logarithm of the (random) valud(e; 2y, - - -, 2) HA () =InEN?z, -+, 20)
A _ A
H¥e 21,0520 =N (esz1, 0, 20) and thegrowth function
is called therandom VC-entropy of the set of functiqns GMO) =1n sup Nz, 2)
A < Q(#,«) < B on the sampley, - - -, 2,. The expectation ETRRT

of the random VC-entropy These functions are determined in such a way that forany

H™e ) = EHM e; 21, 20) the inequalities

is called thevC-entropyof the set of functionst < Q(z, a) < HY0) < Hp,(0) < GM0)

B,a € A on the sample of the sizé. Here expectation are valid. On the basis of these functions, the three main

3The sets of indicator function&(«) defines probability and?emp ()  milestones in statistical learning theory are constructed.

defines frequency. | . . . .
n the previous section, we introduced the equation
4The set of vectorg(a),« € A has minimale-net g(cv1),---, qlan) P ’ q

if: 1. There existN = N7 (g; 21, ---, 2¢) vectorsg(ai),- - -, g(an), such HA(K)
that for any vectog(a™*), o™ € A one can find among thes€ vectors one lim
g(ar) which ise-close to this vector (in a given metric). FolCametric that {—oo £
means - .. . .
describing thenecessary and sufficient conditidar consis-
rla(a™), q(or)) = max [Q(zia") = Qzi, ar)| < e tency of the ERM principle. This equation is the first milestone
T in learning theory: any machine minimizing empirical risk
should satisfy it.
However, this equation says nothing about the rate of
Hi(e) =l N"(e) convergence of obtained riskB(a,) to the minimal one
where N4 (¢) is cardinality of the minimal-net of the set of functions R(O‘O)' I.t is possible that the. ERM principle is consistent but
Q(z,a),a € A. has arbitrary slow asymptotic rate of convergence.

=0

N is minimal number of vectors which possess this property.
SNote that VC-entropy is different from classical metrieaéntropy
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The question is: A. The Structure of the Growth Function
Under what conditions is the asymptotic rate of convergencethaorem: Any growth function either satisfies the equality
fast?

We say that the asymptotic rate of convergence is fast if for G(f) = ¢In2

any £ > £, the exponential bound or is bounded by the inequality

GMO) < h <111% + 1)

where h is an integer for which
G*(h) =hIn2
=0 GMh+1)#(h+1)In2.

In other words the growth function will be either a linear
describes theufficientcondition for fast convergendédt is the function or will be bounded by a logarithmic function. (For
second milestone in statistical learning theory: it guaranteegxample, it cannot be of the for@*(¢) = cv/¥).
fast asymptotic rate of convergence. We say that the VC dimension of the set of indicator

Note that both the equation describing the necessary dndctions Q(z, ), € A is infinite if the Growth function
sufficient condition for consistency and the one that describfes this set of functions is linear.
the sufficient condition for fast convergence of the ERM We say that the VC dimension of the set of indicator
method are valid for @iven probability measure”(z) (both functions@(z, ), « € A is finite and equalg if the growth
VC-entropyH*(#) and VC-annealed entropy2  (¢) are con- function is bounded by a logarithmic function with coefficient
structed using this measure). However our goal is to construct
a learning machine for solving many different problems (i.e., The finiteness of the VC-dimension of the set of indicator
for many different probability measures). functions implemented by the learning machine forms the
The question is: necessary and sufficient condition for consistency of the ERM
Under what conditions is the ERM principle consistent anaiethod independent of probability measure. Finiteness of VC-
rapidly convergingjndependently of the probability measure?limension also implies fast convergence.
The following equation describes thmecessary and suffi-
cient conditionsfor consistency of ERM for any probability B. Equivalent Definition of the VC Dimension
measure

P{R(ay) — R(ag) > e} < o—ct

holds true, where= > 0 is some constant.
The equation

HA

1i1n ann(g)

£—oo

In this section, we give an equivalent definition of the VC

_GMY) dimension of sets of indicator functions and then we generalize
éhjgo 7 0. this definition for sets of real-valued functions.
The VC Dimension of a Set of Indicator FunctionEhe
This condition is also sufficient for fast convergence. VC-dimension of a set of indicator function¥z, o), o € A,
This equation is the third milestone in statistical learnintg the maximum numbeh of vectorszy,---, 7, which can

theory. It describes the conditions under which the learnifg separated in al" possible ways using functions of this

machine implementing ERM principle has an asymptotic higsef (shatteredby this set of functions). If for any: there

rate of convergence independently of the problem to be solvédists a set ofn vectors which can be shattered by the set
These milestones form a foundation for constructing bofB(z, @), « € A, then the VC-dimension is equal to infinity.

distribution independent bounds and rigorous distribution de-The VC Dimension of a Set of Real-Valued Functiobst

pendent bounds for the rate of convergence of learning ma< Q(z,a) < A,a € A, be a set of real-valued functions

chines. bounded by constants and 4 (e can approach-oc and A

can approacho).

Let us consider along with the set of real-valued functions
I1l. B OUNDS ON THE RATE OF CONVERGENCE Q(z,a),a € A, the set of indicator functions

OF THE LEARNING PROCESSES

In order to estimate the quality of the ERM method for Hz 0 ) = 01Q(z,0) = B}, el (18)
a given sample size it is necessary to obtain nonasymptafierea < /3 < A is some constant)(«) is the step function
bounds on the rate of uniform convergence. .
A nonasymptotic bound of the rate of convergence can O(u) = {0’ !f u<0
be obtained using a new capacity concept, called the VC 1, ifuz0.
dimension, which allows us to obtain a constructive bourthe VC dimension of the set of real valued functions
for the growth function. Q(z,a), a0 € A, is defined to be the VC-dimension of the
The concept of VC-dimension is based on a remarkatdet of indicator functions (18).
property of the grovvth-functlorGA(E). “Any indicator function separates a set of vectors into two subsets: the

subset of vectors for which this function takes value zero and the subset of
6The necessity of this condition for fast convergence is open question. vectors for which it takes value one.
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C. Two Important Examples Case 1—The Set of Totally Bounded Functioléithout
Example 1: restriction in generality, we assume that
1) The VC-dimension of the set dinear indicator func- 0< Oz0) < B, ae A (19)
tions
_ - The main result in the theory of bounds for sets of totally
Qz,a) = Z apZp + Qo bounded functions is the following [20]-[22].
p=t Theorem: With probability at leastt — 7, the inequality
in n-dimensional coordinate space = (z1, -, z,) IS
equal toh = n + 1, since using functions of this set one Be 4R eimp ()
can shatter at most + 1 vectors. Heré#{-} is the step R(a) < Remp(e) + 9 Iy 1+ Be (20)

function, which takes value one, if the expression in the
brackets is positive and takes value zero otherwise. po|ds true simultaneously for all functions of the set (19),

2) The VC-dimension of the set d¢ihear functions where
Q(z,a)zz QpZp + Qo h<ln%£+1> —lnn
p=t e=4 (21)
ao,---,ane(—oo,oo) ¢
in n-dimensional coordinate space = (z,---, z,) is For the set of indicator functiond? = 1.

also equal toh = n + 1 because the VC-dimension of This theorem provides bounds for the risks of all func-
corresponding linear indicator functions is equahtp1 tions of the set (18) [including the functio(z, c;) which

(usingao _ /3 instead OfOéo does not Changes the set ominimizes empirical risk (8)] The bounds follow from the
indicator functions). bound on uniform convergence (13) for sets of totally bounded

functions that have finite VC dimension.
Case 2—The Set of Unbounded Functio@onsider the
(w*-xz)—b=0, |w*| =1 set of (nonnegative) unbounded functidhg’ Q(z, o), € A
It is easy to show (by constructing an example) that,
the A-margin separating hyperplane if it classifies vecters without additional information about the set of unbounded

Example 2: We call a hyperplane

as follows: functions and/or probability measures, it is impossible to
1 if (w*-z)—b>A obtain an inequality of type (20). Below we use the following
y= { i (w*-2) —b< —A. information:
(classifications of vectors that fall into the margif—A, A) »
are undefined). @z, @) dP(7) <
Theorem: Let vectorsz € X belong to a sphere of radius o ST (22)
R. Then the set ofA-margin separating hyperplanes has the /Q(z’o‘) dP(z)
VC dimension/ bounded by the inequality
R2 wherep > 1 is some fixed constafit.
I < min qF},n) + 1. The main result for the case of unbounded sets of loss

functions is the following [20]-[22].
These examples show that in general the VC dimensionTheorem: With probability at leastl — n the inequality
of the set of hyperplanes is equal t0+ 1, where n is
dimensionality of input space. However, the VC dimension Remp(c) J1/p—1\*""
of the set of A-margin separating hyperplanes (with a largefi(c) < A= alp)rva)s’ (p) = < ) (23)
value of marginA) can be less than + 1. This fact will play *
an important role for constructing new function estimatiof,ys trye simultaneously for all functions of the set, where

methods. is determined by (22)(a); = max(a,0).

The theorem bounds the risks for all functions of the set
D. Distribution Independent Bounds for the Rate of (including the functionQ(z, a).

Convergence of Learning Processes

2

p—2

Consider sets of functions which possess a finite \V/C-8This inequality describes some general properties of distribution functions

; : o : . of the random variable&, = Q(z. «), generated by th® (). It describes the
dimensionh. We distinguish between two cases: “tails of distributions” (the probability of big values for the random variables

1) the case where the set of loss functigp&, ), € A &) If the inequality (22) withp > 2 holds, then the distributions have so-
is a set oftotally bounded functions called “light tails” (large values do not occurs very often). In this case rapid

. convergence is possible. If, however, (22) holds onlyifat 2 (large values
2) 'the case Wherg the set of loss functiép, «), @c A of the random variables,, occur rather often) then the rate of convergence
is not necessarily a set of totally bounded functions  will be small (it will be arbitrarily small ifp is sufficiently close to one).
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E. Problem of Constructing Rigorous sample size’ The goal is to specify methods which are
(Distribution Dependent) Bounds appropriate for a given sample size.

To construct rigorous bounds for the rate of convergence
one has to take into account information about probabili#f. Structural Risk Minimization Induction Principle
measure. LefP, be a set of all probability measures and_ let The ERM principle is intended for dealing with a large
P C Py be a subset of the s&. We say that one has priorsampje size. Indeed, the ERM principle can be justified by
information about an unknown probability measuréz) if  considering the inequalities (20). Wheéft, is large, the second

one knows the set of measurgsthat containsP(z). summand on the right hand side of inequality (20) becomes
. Cpn3|der the following generalization of the growth funCgmgaji. The actual risk is then close to the value of the empirical
tion: risk. In this case, a small value of the empirical risk provides

A e Af_. a small value of (expected) risk.
Gp(e ) =lg ﬁ‘éf; EpN™(esz1,- 20). However, if ¢/h is small, then even a smalRe;p(c)
o ) does not guarantee a small value of risk. In this case the
For indicator functions)(z, «), « € A and for the extreme minimization for R(«) requires a new principle, based on
case where” = 7 the generalized growth functiois(e.£)  the simultaneous minimization of two terms in (20) one of
coincides with the growth functio®® (¢). For another extreme which depends on the value of the empirical risk while the
case wheré” contains only one functiof(z) the generalized gecond depends on the VC-dimension of the set of functions.
growth function coincides with the annealed VC-entropy. 14 minimize risk in this case it is necessary to find a method
The following assertion is true [20], [26]. which, along with minimizing the value of empirical risk,
Theorem: Suppose that a set of loss-functions is boundedntrols the VC-dimension of the learning machine.
. The following principle, which is called the principle of
mf <A<Qza)sB<ooach structural risk minimization (SRM), is intended to minimize

Then for sufficiently large? the following inequality: the risk functional with respect to both empirical risk and
VC-dimension of the set of functions.
1 ¢ Let S the set of function$(z, «), « € A, be provided with
P i‘g’\ / Q(z ) dF (z) — 7 Z Qzi, )| > € a structure so thatS is composed of the nested subsets of
=1 functions S, = {Q(z,a),« € Ax}, such that
{ <G7’}.Aann(s/6(B — A),20)
< 12exp
14 S, CSC--CSy--- (24)
g2 In/
- +— 7 .
B—-A ¢ and S* = U Sk.
An admissible structurés one satisfying the following three
holds true. properties.

From this bound it follows that for sufficiently largewith
probability 1 — r simultaneously for albv € A (including the
one that minimizes the empirical risk) the following inequality
is valid:

1) The setS* is everywhere dense if.

2) The VC-dimensionh; of each setS; of functions is
finite.

3) Any elementsy, of the structure contains totally bounded

14 functions0 < Q(z,a) < By, € Ay.
/ Qz,a) dF(2) < 5 Z Qzi, ) The SRM principle suggests that for a given set of obser-
=t vations z1, - - - 2z, choose the element of structus,, where
n \/g%(E/G(BA)a 2¢) —Ilnp/12. n = n(¢) and choose the particular function frasy for which
£ the guaranteed risk (20) is minimal.

However, this bound is nonconstructive because theory' "€ SRM principle actually suggests teadeoff between

does not specify a method to evaluate the generalized gro ff quality of the approximation and the complexity of the

function. To make this bound constructive and rigorous oPProximating function(As » increases, the minima of em-

has to estimate the generalized growth function for a givai‘rical risk are decreased; however, the term responsible for

set of loss-functions and a given set of probability measurdd€ confidence interval [summand in (20)] is increased. The

This is one of the main subjects of the current learning theo*M Principle takes both factors into account.) _
The main results of the theory of SRM are the following

research.
(91, [22].
Theorem: For any distribution function the SRM method
IV. THEORY FOR CONTROLLING THE provides convergence to the best possible solution with prob-
GENERALIZATION OF LEARNING MACHINES ability one.

The theory for controlling the generalization of a learning In other words SRM method is universally strongly con-
machine is devoted to constructing an induction principle feistent.
minimizing the risk functional which takes into account the
size of the training sefan induction principle for a small’ 9The sample sizé is considered to be small iff h is small, say’/h < 20.
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Theorem: For admissible structures the method of structurabn find the exact solution while when the minimum of this
risk minimization provides approximation@(z,azl(é)) for functional is nonzero one can find an approximate solution.
which the sequence of risk&(a}“)) converge to the best Therefore by constructing a separating hyperplane one can

one R(ayp) with asymptotic rate of convergene control the value of empirical risk.
Unfortunately the set of separating hyperplanes is not flex-
V(£) = 7y + By hneyIné (25) ible enough to provide low empirical risk for many real-life
£ problems [13].
if the law n. = n(#) is such that Two opportunities were considered to increase the flexibility
B2 b ng of the sets of functions:
lim _r@n@O R (26) 1) to use a richer set of indicator functions which are
£—o0 ¢ superpositions of linear indicator functions;
In (25) B, is the bound for functions frons,, andr,(¢) is 2) to map the input vectors in high dimensional feature
the rate of approximation space and construct in this spacé&anargin separating
hyperplane (see Example 2 in Section IlI-C)
T = aienlfn /Q(% o) dP(z) — ;Ig\ / Q(z, o) dP(z). The first idea corresponds to the neural network. The second

idea leads to support vector machines.

V. THEORY OF CONSTRUCTING LEARNING ALGORITHMS

: . . o . . B. Sigmoid Approximation of Indicator
To implement the SRM induction principle in IeammgFunctgi]ons andprl)\leural Nets

algorithms one has to control two factors that exist in the
bound (20) which has to be minimized: To describe the idea behind the NN let us consider the

method of minimizing the functional (28). It is impossible
to use regulagradient-baseanethods of optimization to min-
imize this functional. (The gradient of the indicator function

Below we restrict ourselves to the pattern recognition caseRem"(w) Is either equal to zero or is undefined.) The solution
We consider two tvoe of learnin pmach'neS'g Is to approximate the set of indicator functions (27) by so-
! yp g ines. called sigmoid functions

1) Neural networks (NN’s) that were inspired by the bio-
logical analogy to the brain; - B - i

2) the support vector machines that were inspired by sta- fla,w) =5 Z wik (29)
tistical learning theory. =0

We will discuss how each corresponding machine caphere S(u) is a smooth monotonic function such that
control these factors. S(—o0) = 0, S(+00) = 1. For example, the functions

1) the value of empirical risk;
2) the capacity factor (to choose the elemg&ptwith the
appropriate value of VC dimension).

1 2arctanu +

Sl(u)Im’ Sa(u) = -

A. Methods of Separating Hyperplanes and

Their Generalization ) ) )
are sigmoid functions.

Consider first the problem of minimizing empirical risk on £, the set of sigmoid function, the empirical risk functional
the set oflinear indicator functions

£
n 1 - )
flz,w) = 9{2 wixi}, we W. (27) Remp(w) = / 221 (v = /g w) (30)
=0 7=
Let is smooth inw. It has a gradient grad..,,,,(w) and therefore
can be minimized using gradient-based methods. For example,
(@1,91), 5 (@e, ye) the gradient descent methagkes the following update rule:
be a training set, where:;; = («},---,27}) is a vector, Wnew = Word — Y(+) grad Remp(wola)

Yj € {071}7J = 17"'7£'
To minimize the empirical risk one has to find the pawhere the datay(-) = +(n) > 0 depends on the iteration

rametersw = (w!,---,w™) (weights) which minimize the numbern. For convergence of the gradient descent method to
empirical risk functional a local minimum, it is enough that(n) satisfy the conditions
a4 oo [e%9)
1
Rewp(w) = 5 D (0 = [l w))*. (28) Do)y =00, 3 n) <o
j=1 n=1 n=1

There are several methods for minimizing this functional. Ihhus, the idea is to use the sigmoid approximation at the stage
the case when the minimum of the empirical risk is zero orfd estimating the coefficients, and use the indicator functions
10 . . with these coefficients at the stage of recognition.
We say that the random variablés ¢ = 1,2, - - - converge to the value o .. ,
€0 with asymptotic rate”(¢) if there exists constar’ such that The generalization of this idea leads to feedforward NN's.
V=HOlE — &l — T, C. In order to increase the flexibility of the set of decision rules
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of the learning machine one considers a set of functiohsthe following we use a compact notation for these inequal-
which are the superposition of several linear indicator fundies:
tions (networks of neurons) [13] instead of the set of linear
indicator functions (single neuron). All indicator functions in
this superposition are replaced by sigmoid functions. It is easy to check that the Optimal hyperplane is the one that
A method for calculating the gradient of the empirical rislsatisfies the conditions (32) and minimizes functional
for the sigmoid approximation of NN's, called thackprop- 1 2 1
agation methodwas found [15], [12]. Using this gradient b(w) = 3 [[wll” = z(w,w). (33)
descent method, one can determine the corresponding cd&fie minimization is taken with respect to both vectoand
ficient values (weights) of all elements of the NN. scalarb.)
In the 1990s, it was proven that the VC dimension of NN’s The solution to this optimization problem is given by the
depends on the type of sigmoid functions and the number s#ddle point of the Lagrange functional (Lagrangian)

yil(w-z;) — b > 1, 1=1,---,4. (32)

weights in the NN. Under some general conditions the VC ‘
dimension of the NN is bounded (although it is sufficiently 7,(, b, o) = Lw-w) — Z ai{[(z; - w) — Dly; — 1} (34)
large). Suppose that the VC dimension does not change during i1

the NN training procedure, then the generalization ability %here then; are Lagrange multipliers. The Lagrangian has to

NN depends on how well the NN minimizes the empirical rislye minimized with respect t@, b and maximized with respect
using sufficiently large training data. to a: > 0.

The three main problems encountered when minimizating|, he saddle point, the solutionso, by, and o should
the empirical risk using the backpropagation method are asicry the conditions Y

follows.
0 0
1) The empirical risk functional has many local minima. 9L(wo, bo, o) _ 0, 9L(wo, bo,7) _ 0
Optimization procedures guarantee convergence to some b Iw

local minimum. In general the function which is foundRewriting these equations in explicit form one obtains the
using the gradient-based procedure can be far from tifdlowing properties of the optimal hyperplane.
best one. The quality of the obtained approximation 1) The coefficients:? for the optimal hyperplane should
depends on many factors, in particular on the initial satisfy the constraints
parameter values of the algorithm. ‘

2) Convergence to a local minimum can be rather slow (due Z ady; =0, a®>0
to the high dimensionality of the weight-space). P

3) The sigmoid function has a scaling factor which affects 2) The parameters of the optimal hyperplane (veetg)

the quality of the approximation. To choose the scaling 56 |inear combination of the vectors of the training set.
factor one has to make a tradeoff between quality of

approximation and the rate of convergence.
Therefore, a good minimization of the empirical risk de-
pends in many respects on the art of the researcher.

i=1,--,0  (35)

4
TUO:Z yia?fl'i, Q?ZQ 'L:].,,f (36)
i=1

3) The solution must satisfy the following tkhn—Tucker
. ) conditions:
C. The Optimal Separating Hyperplanes
0 5 —
To introduce the method which is an alternative to the NN < (& - wo) = boly; =1} =0, t=1,--,4 (37)
let us consider the optimal separating hyperplanes [25].

e From these conditions it follows that only some training
Suppose the training data

vectors in expansion (36), theupport vectorscan have

" nonzero coefficientsy) in the expansion ofw,. The
(@1,0), 5 (@, w0, v € R ye{+l,-1} support vectors are the vectors for which, in (36), the
equality is achieved. Therefore we obtain

wo = Z yia?xi, oz? > 0. (38)

support, vectors

can be separated by a hyperplane
(w-z)—b=0. (31)

Substituting the expression far, back into the Lagrangian

We say that this set of vectors is separated byagbmal hy- Tuck dit
—Tucker conditions, one

perplane (or the maximal margin hyperplariéjt is separated 2nd taking into account the uin
without error and the distance between the closest vector £#fjains the functléonal )
the hyperplane is maximal.
To describe the separating hyperplane let us use the follow- W(a) = Z @ = 3 Z @iy (e x;). (39)
ing form: =1 &
It remains to maximize this functional in the nonnegative
(w-z;)=b2>1 ify; =1 quadrant

(w-z)—b< =1 ify, =-1. a; > 0, i=1,---4
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under the constraint The problem then arises of how to computationally deal
¢ with such high-dimensional spaces: to construct a polynomial
Z iy = 0. (40) of degree 4 or 5 in a 200-dimensional space it is necessary to

=1 construct hyperplanes in a billion-dimensional feature space.

In 1992, it was noted [5] that for both describing the optimal
separating hyperplane in the feature space (41) and estimating
the corresponding coefficients of expansion of the separating
o hyperplane (39) one uses the inner product of two vectors

Z a;(,x;) +bo =0 (41) z(x1) and z(z5), which are images in the feature space of the
i=1 input vectorsz; and z». Therefore if one can estimate the

To construct the optimal hyperplane in the case wheananer product of two vectors in the feature spage;) and
the data are linearly nonseparable, we introduce nonnegati{e2) as a function of two variables in input space
variables¢; > 0 and the functional

Putting the expression far, in (31) we obtain the hyperplane
as an expansion on support vectors

(2 - 2) = K(z, ;)

(&) = (w,w)+C Z & than it will be possible to construct the solutions which are
i=1 equivalent to the optimal hyperplane in the feature space. To
which we will minimize subject to constraints get this solution one only needs to replace the inner product
(xi, ;) in (39) and (41) with the functiod( (x;, zs).
yi((w-z;) =b) 21 =&, i=1,2..- L In other words, one constructs nonlinear decision functions

Using the same formalism with Lagrange multipliers on& the input space
can show that the optimal hyperplane also has an expansion
(41) on support vectors. The coefficients can be found by I(z) = sign < Z o K(x; -x) + bo) (43)
maximizing the same quadratic form as in the separable case
(39) under slightly different constraints

support vectors

that are equivalent to the linear decision functions (33) in the
¢ feature space. The coefficiertsin (43) are defined by solving
the equation

OSCYiSC; i:]-v"'v
14

Z oGy =0, (42) ‘ ¢

i=1 W(a) = Z o — % Z oy Yy K (s - o) (44)

D. The Support Vector Network =t !
The support-vector network implements the following idef"der constraints (42). _ _

[21]: Map the input vectors into a very high-dimensional fea- In 1909 Mercer proved a theorem which defines the general

ture spaceZ through some nonlinear mapping chosepriori. [0rm of inner products in Hilbert spaces. o
In this space comstruct an optimal separating hyperplane. Thd "€orem: The general form of the inner product in Hilbert
goal is to create the situation described in Example 2 §pace is defined by the symmetric positive definite function
Section 111-C, where forA-margin separating hyperplanes thdt (¢:¥) that satisfies the condition
VC dimension is defined by the rati&?/A?. To generalize
well, we control (decrease) the VC dimension by constructing / K(x,y)z(x)z(y) de dy 2 0
an optimal separating hyperplane (that maximizes the margin).
To increase the margin we use very high dimensional spact¥. all functionsz(z), z(y) satisfying the inequality
Example: Consider a maping that allows us to construct

decision polynomials in the input space. To construct a poly- / 2*(x) dr < oo.
nomial of degree two, one can create a feature sgaedich
has N = (n(n + 3)/2) coordinates of the form Therefore any functiorf{(x, i) satisfying Mercer’s condi-

tion can be used for constructing rule (43) which is equivalent

FLZHL T A = s n coordinates to constructing an optimal separating hyperplane in some
Zn+l :x%, e Rop = xi, n coordinates feature space.
Zop4l =1L, AN = TnTn 1, The learning machines which construct decision functions of
n(n— 1) _ the type (43) are calledupport vectors networks or support
coordinates vector machinegSVM's).!
] Using different expressions for inner produéf$z, ;) one
where z = (z1,---,2,). The separating hyperplane con¢an construct different learning machines with arbitrary types

structed in this space is a separating second-degree polynomgiainonlinear in input space) decision surfaces.
in the input space.

To construct a polynomial of degrdein ann-dimensional 11This name stresses that for constructing this type of machine, the idea
of expanding the solution on support vectors is crucial. In the SVM the

Input space one has to ConStl’L@(n )-d|m¢n5|onal feature complexity of construction depends on the number of support vectors rather
space, where one then constructs the optimal hyperplane. than on the dimensionality of the feature space.
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For example to specify polynomials of any fixed ordér training data), the confidence inten@{¢/4*) will be large.
one can use the following functions for the inner product im this case, even if one could minimize the empirical risk
the corresponding feature space: down to zero, the amount of errors on the test set could be

big. This case is calledverfitting
) L d
Kz, i) = () + 1)% To avoid over fitting (to get a small confidence interval) one

Radial basis function machines with decision functions of tHs to construct networks with small VC-dimension.
form Therefore to generalize well using an NN one must first
|z — @i
0-2

suggest an appropriate architecture of the NN and second find
in this network the function that minimizes the number of
can be implemented by using a function of the type
— 2
K(z,z;) = exp {—M}

n
f(x) =sign <Z Yioy; exp
i=1
lems are solving using some heuristics (see remarks on the
backpropagation method).

In support vector methods one can control both parameters:
in the separable case one obtains the unique solution which
minimizes the empirical risk (down to zero) using\amargin
separating hyperplane with the maximal margin (i.e., subset

errors on the training data. For NN’s both of these prob-
g

In this case the SVM machine will find both the centets
and the corresponding weights. with the smallest VC dimension).

The SVM .pc?sse.sses some useful proper.tles. In the general case one obtains the unique solution when
¢ The optimization problem for constructing an SVM ha%ne chooses the value of the trade off paraméter
a uniqgue solution.

* The learning process for constructing an SVM is rather VL.

fa_St' i ) . This article presents a very general overview of statistical

* Simultaneously with constructing the decision rule, on@ning theory. It demonstrates how an abstract analysis
obtains the set of support vectors. _ allows us to discover a general model of generalization.

* Implementation of a new set of decision functions can be a¢cording to this model, the generalization ability of learn-
dor_1e by (_:hangmg only one fu_nctlon (kernkl(z;, ), ing machines depends on capacity concepts which are more
which defines the dot product id-space. sophisticated than merely the dimensionality of the space or

the number of free parameters of the loss function (these con-

E. Why Can Neural Networks and Support cepts are the basis for the classical paradigm of generalization).
Vectors Networks generalize? The new understanding of the mechanisms behind gen-
The generalization ability of both the NN’s and supporeralization not only changes the theoretical foundation of
vectors networks is based on the factors described in the thegeneralization (for example from the new point of view the
for controlling the generalization of the learning processes. A©ccam razor principle is not always correct), but also changes
cording to this theory, to guarantee a high rate of generalizatitire algorithmic approaches to function estimation problems.

of the learning machine one has to construct a structure The approach described is rather general. It can be applied
for various function estimation problems including regression,

density estimation, solving inverse equations and so on.

on the set of decision function$ = {Q(z,a),« € A} and Statistical learning theory started more than 30 years ago.
then choose both an appropriate eleméptof the structure The development of this theory did not involve many re-
and a functionQ(z,a%) € S, within this element that searchers. After the success of the SVM in solving real-life
minimizes bound (20). The bound (16) can be rewritten ipfoblems, the interest in statistical learning theory significantly
the simple form increased. For the first time, abstract mathematical results in
statistical learning theory have a direct impact on algorithmic

R(a¥) < Repp(af) + Q<£) tools of data analysis. In the last three years a lot of articles

ha have appeared that analyze the theory of inference and the

where the first term is an estimate of the risk and the secoRM method from different perspectives. These include:

is the confidence interval for this estimate. 1) obtaining better constructive bounds than the classical
In designing an NN, one determines a set of admissible  one described in this article (which are closer in spirit to

functions with some VC-dimensioh*. For a given amourd the nonconstructive bound based on the growth function

of training data the valug* determines the confidence interval than on bounds based on the VC dimension concept).

Q(¢/h*) for the network. Choosing the appropriate element of ~ Success in this direction could lead, in particular, to

CONCLUSION

51CSQC,"',CS

(45)

a structure is therefore a problem of designing the network for
a given training set.

During the learning process this network minimizes the first 2)
term in the bound (45) (the number of errors on the training
set).

If it happens that at the stage of designing the network one
constructs a network too complex (for the given amount of

3)

creating machines that generalize better than the SVM
based on the concept of optimal hyperplane;

extending the SVM ideology to many different problems
of function and data-analysis;

developing a theory that allows us to create kernels
that possess desirable properties (for example that can
enforce desirable invariants);
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4) developing a new type of inductive inference that is

based on direct generalization from the training set to t 3
test set, avoiding the intermediate problem of estimating
a function (the transductive type inference). [17]

The hope is that this very fast growing area of research will

significantly boost all branches of data analysis.

(18]
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