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An Overview of Statistical Learning Theory
Vladimir N. Vapnik

Abstract—Statistical learning theory was introduced in the late
1960’s. Until the 1990’s it was a purely theoretical analysis of the
problem of function estimation from a given collection of data.
In the middle of the 1990’s new types of learning algorithms
(called support vector machines) based on the developed theory
were proposed. This made statistical learning theory not only
a tool for the theoretical analysis but also a tool for creating
practical algorithms for estimating multidimensional functions.
This article presents a very general overview of statistical learning
theory including both theoretical and algorithmic aspects of the
theory. The goal of this overview is to demonstrate how the
abstract learning theory established conditions for generalization
which are more general than those discussed in classical statis-
tical paradigms and how the understanding of these conditions
inspired new algorithmic approaches to function estimation prob-
lems. A more detailed overview of the theory (without proofs) can
be found in Vapnik (1995). In Vapnik (1998) one can find detailed
description of the theory (including proofs).

I. SETTING OF THE LEARNING PROBLEM

I N this section we consider a model of the learning and show
that analysis of this model can be conducted in the general

statistical framework of minimizing expected loss using ob-
served data. We show that practical problems such as pattern
recognition, regression estimation, and density estimation are
particular case of this general model.

A. Function Estimation Model

The model of learning from examples can be described
using three components:

1) a generator of random vectors, drawn independently
from a fixed but unknown distribution ;

2) a supervisor that returns an output vectorfor every
input vector , according to a conditional distribution
function1 , also fixed but unknown;

3) a learning machine capable of implementing a set of
functions .

The problem of learning is that of choosing from the given
set of functions the one which predicts the
supervisor’s response in the best possible way. The selection
is based on a training set ofrandom independent identically
distributed (i.i.d.) observations drawn according to

(1)
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1This is the general case which includes a case where the supervisor uses

a functiony = f(x):

B. Problem of Risk Minimization

In order to choose the best available approximation to the
supervisor’s response, one measures theloss or discrepancy

between the response of the supervisor to
a given input and the response provided by the
learning machine. Consider the expected value of the loss,
given by therisk functional

(2)

The goal is to find the function which mini-
mizes the risk functional (over the class of functions

in the situation where the joint probabil-
ity distribution is unknown and the only available
information is contained in the training set (1).

C. Three Main Learning Problems

This formulation of the learning problem is rather general.
It encompasses many specific problems. Below we consider
the main ones: the problems of pattern recognition, regression
estimation, and density estimation.

The Problem of Pattern Recognition:Let the supervisor’s
output take on only two values and let

be a set ofindicator functions (functions
which take on only two values zero and one). Consider the
following loss-function:

if
if

(3)

For this loss function, the functional (2) provides the proba-
bility of classification error (i.e., when the answersgiven
by supervisor and the answers given by indicator function

differ). The problem, therefore, is to find the function
which minimizes the probability of classification errors when
probability measure is unknown, but the data (1) are
given.

The Problem of Regression Estimation:Let the supervi-
sor’s answer be a real value, and let be a
set of real functions which contains theregression function

It is known that if then the regression function
is the one which minimizes the functional (2) with the the
following loss-function:

(4)

Thus the problem of regression estimation is the problem
of minimizing the risk functional (2) with the loss function
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(4) in the situation where the probability measure is
unknown but the data (1) are given.

The Problem of Density Estimation:Finally, consider the
problem of density estimation from the set of densities

For this problem we consider the following
loss-function:

(5)

It is known that desired density minimizes the risk functional
(2) with the loss-function (5). Thus, again, to estimate the
density from the data one has to minimize the risk-functional
under the condition where the corresponding probability mea-
sure is unknown but i.i.d. data

are given.
The General Setting of the Learning Problem:The general

setting of the learning problem can be described as follows.
Let the probability measure be defined on the space
Consider the set of functions The goal is: to
minimize the risk functional

(6)

if probability measure is unknown but an i.i.d. sample

(7)

is given.
The learning problems considered above are particular cases

of this general problem ofminimizing the risk functional (6) on
the basis of empirical data(7), where describes a pair
and is the specific loss function [for example, one
of (3), (4), or (5)]. Below we will describe results obtained
for the general statement of the problem. To apply it for
specific problems one has to substitute the corresponding loss-
functions in the formulas obtained.

D. Empirical Risk Minimization Induction Principle

In order to minimize the risk functional (6), for an unknown
probability measure the following induction principle is
usually used.

The expected risk functional is replaced by the
empirical risk functional

(8)

constructed on the basis of the training set (7).
The principle is to approximate the function which

minimizes risk (6) by the function which minimizes
empirical risk (8). This principle is called the empirical risk
minimization induction principle (ERM principle).

E. Empirical Risk Minimization Principle
and the Classical Methods

The ERM principle is quite general. The classical methods
for solving a specific learning problem, such as the least
squares method in the problem of regression estimation or
the maximum likelihood method in the problem of density
estimation are realizations of the ERM principle for the
specific loss functions considered above.

Indeed, in order to specify the regression problem one
introduces an -dimensional variable

and uses loss function (4). Using this loss
function in the functional (8) yelds the functional

which one needs to minimize in order to find the regression
estimate (i.e., the least square method).

In order to estimate a density function from a given set of
functions one uses the loss function (5). Putting this
loss function into (8) one obtains the maximum likelihood
method: the functional

which one needs to minimize in order to find the approxima-
tion to the density.

Since the ERM principle is a general formulation of these
classical estimation problems, any theory concerning the ERM
principle applies to the classical methods as well.

F. Four Parts of Learning Theory

Learning theory has to address the following four questions.

1) What are the conditions for consistency of the ERM
principle?

To answer this question one has to specify theneces-
sary and sufficientconditions for convergence in proba-
bility2 of the following sequences of the random values.

a) The values of risks converging to the
minimal possible value of the risk [where

are the expected risks for
functions each minimizing the empirical
risk

(9)

b) The values of obtained empirical risks
converging to the

minimal possible value of the risk

(10)

2Convergence in probability of valuesR(�`) means that for any" > 0
and for any� > 0 there exists a number̀0 = `0("; �) such, that for any
` > `0 with probability at least1� � the inequality

R(�`)�R(�0) < "

holds true.
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Equation (9) shows that solutions found using ERM
converge to the best possible one. Equation (10) shows
that values of empirical risk converge to the value of
the smallest risk.

2) How fast does the sequence of smallest empirical risk
values converge to the smallest actual risk?In other
words what is the rate of generalization of a learning
machine that implements the empirical risk minimization
principle?

3) How can one control the rate of convergence (the rate of
generalization) of the learning machine?

4) How can one construct algorithms that can control the
rate of generalization?

The answers to these questions form the four parts of
learning theory:

1) the theory of consistency of learning processes;
2) the nonasymptotic theory of the rate of convergence of

learning processes;
3) the theory of controlling the generalization of learning

processes;
4) the theory of constructing learning algorithms.

II. THE THEORY OF CONSISTENCY OFLEARNING PROCESSES

The theory of consistency is an asymptotic theory. It de-
scribesthe necessary and sufficient conditionsfor convergence
of the solutions obtained using the proposed method to the
best possible as the number of observations is increased. The
question arises:

Why do we need a theory of consistency if our goal is to
construct algorithms for a small (finite) sample size?

The answer is:
We need a theory of consistency because it provides not

only sufficient but necessary conditions for convergence of
the empirical risk minimization inductive principle. Therefore
any theory of the empirical risk minimization principle must
satisfy the necessary and sufficient conditions.

In this section, we introduce the main capacity concept (the
so-called Vapnik–Cervonenkis (VC) entropy which defines
the generalization ability of the ERM principle. In the next
sections we show that the nonasymptotic theory of learning is
based on different types of bounds that evaluate this concept
for a fixed amount of observations.

A. The Key Theorem of the Learning Theory

The key theorem of the theory concerning the ERM-based
learning processesis the following [27].

The Key Theorem:Let be a set of functions
that has a bounded loss for probability measure

Then for the ERM principle to be consistent it is necessary and
sufficient that the empirical risk convergeuniformly
to the actual risk over the set as follows:

(11)

This type of convergence is called uniform one-sided conver-
gence.

In other words, according to the Key theorem the conditions
for consistency of the ERM principle are equivalent to the
conditions for existence of uniform one-sided convergence
(11).

This theorem is called the Key theorem because it asserts
that any analysis of the convergence properties of the ERM
principle must be aworst case analysis. The necessary condi-
tion for consistency (not only the sufficient condition) depends
on whether or not the deviation for the worst function over
the given set of of functions

converges in probability to zero.
From this theorem it follows that the analysis of the ERM

principle requires an analysis of the properties of uniform
convergence of the expectations to their probabilities over the
given set of functions.

B. The Necessary and Sufficient Conditions
for Uniform Convergence

To describe the necessary and sufficient condition for uni-
form convergence (11), we introduce a concept calledthe
entropy of the set of functions on the sample
of size

We introduce this concept in two steps: first for sets of
indicator functions and then for sets of real-valued functions.

Entropy of the Set of Indicator Functions:Let
be a set of indicator functions, that is the functions

which take on only the values zero or one. Consider a sample

(12)

Let us characterize the diversity of this set of functions
on the given sample by a quantity

that represents the number of different
separations of this sample that can be obtained using functions
from the given set of indicator functions.

Let us write this in another form. Consider the set of
-dimensional binary vectors

that one obtains when takes various values from Then
geometrically speaking is the number of dif-
ferent vertices of the-dimensional cube that can be obtained
on the basis of the sample and the set of functions

Let us call the value

the random entropy. The random entropy describes the diver-
sity of the set of functions on the given data.
is a random variable since it was constructed using random
i.i.d. data. Now we consider the expectation of the random
entropy over the joint distribution function
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We call this quantity the entropy of the set of indicator
functions , on samples of size It depends on
the set of functions , , the probability measure

, and the number of observationsThe entropy describes
the expected diversity of the given set of indicator functions
on the sample of size

The main result of the theory of consistency for the pat-
tern recognition problem (the consistency for indicator loss
function) is the following theorem [24].

Theorem: For uniform two-sided convergence of the fre-
quencies to their probabilities3

(13)

it is necessary and sufficient that the equality

(14)

hold.
Slightly modifying the condition (14) one can obtain the

necessary and sufficient condition for one-sided uniform con-
vergence (11).

Entropy of the Set of Real Functions:Now we generalize
the concept of entropy for sets of real-valued functions. Let

be a set of bounded loss functions.
Using this set of functions and the training set (12) one
can construct the following set of-dimensional real-valued
vectors

(15)

This set of vectors belongs to the-dimensional cube with
the edge and has a finite -net4 in the metric Let

be the number of elements of the
minimal -net of the set of vectors

The logarithm of the (random) value

is called the random VC-entropy5 of the set of functions
on the sample The expectation

of the random VC-entropy

is called theVC-entropyof the set of functions
on the sample of the size Here expectation

3The sets of indicator functionsR(�) defines probability andRemp(�)
defines frequency.

4The set of vectorsq(�); � 2 � has minimal"-net q(�1); � � � ; q(�N )
if: 1. There existN = N�("; z1; � � � ; z`) vectorsq(�1); � � � ; q(�N); such
that for any vectorq(��); �� 2 � one can find among theseN vectors one
q(�r) which is"-close to this vector (in a given metric). For aC metric that
means

�(q(��); q(�r)) = max
1�i�`

jQ(zi�
�)�Q(zi; �r)j � ":

N is minimal number of vectors which possess this property.
5Note that VC-entropy is different from classical metrical"-entropy

H�
cl
(") = lnN�(")

whereN�(") is cardinality of the minimal"-net of the set of functions
Q(z; �); � 2 �:

is taken with respect to product-measure

The main results of the theory of uniform convergence of the
empirical risk to actual risk for bounded loss function includes
the following theorem [24].

Theorem: For uniform two-sided convergence of the em-
pirical risks to the actual risks

(16)

it is necessary and sufficient that the equality

(17)

be valid.
Slightly modifying the condition (17) one can obtain the

necessary and sufficient condition for one-sided uniform con-
vergence (11).

According to the key assertion this implies the necessary and
sufficient conditions for consistency of the ERM principle.

C. Three Milestones in Learning Theory

In this section, for simplicity, we consider a set of indicator
functions (i.e., we consider the problem of
pattern recognition). The results obtained for sets of indicator
functions can be generalized for sets of real-valued functions.

In the previous section we introduced the entropy for sets
of indicator functions

Now, we consider two new functions that are constructed
on the basis of the values the annealed VC-
entropy

and thegrowth function

These functions are determined in such a way that for any
the inequalities

are valid. On the basis of these functions, the three main
milestones in statistical learning theory are constructed.

In the previous section, we introduced the equation

describing thenecessary and sufficient conditionfor consis-
tency of the ERM principle. This equation is the first milestone
in learning theory: any machine minimizing empirical risk
should satisfy it.

However, this equation says nothing about the rate of
convergence of obtained risks to the minimal one

It is possible that the ERM principle is consistent but
has arbitrary slow asymptotic rate of convergence.
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The question is:
Under what conditions is the asymptotic rate of convergence

fast?
We say that the asymptotic rate of convergence is fast if for

any the exponential bound

holds true, where is some constant.
The equation

describes thesufficientcondition for fast convergence.6 It is the
second milestone in statistical learning theory: it guarantees a
fast asymptotic rate of convergence.

Note that both the equation describing the necessary and
sufficient condition for consistency and the one that describes
the sufficient condition for fast convergence of the ERM
method are valid for agiven probability measure (both
VC-entropy and VC-annealed entropy are con-
structed using this measure). However our goal is to construct
a learning machine for solving many different problems (i.e.,
for many different probability measures).

The question is:
Under what conditions is the ERM principle consistent and

rapidly converging,independently of the probability measure?
The following equation describes thenecessary and suffi-

cient conditionsfor consistency of ERM for any probability
measure

This condition is also sufficient for fast convergence.
This equation is the third milestone in statistical learning

theory. It describes the conditions under which the learning
machine implementing ERM principle has an asymptotic high
rate of convergence independently of the problem to be solved.

These milestones form a foundation for constructing both
distribution independent bounds and rigorous distribution de-
pendent bounds for the rate of convergence of learning ma-
chines.

III. B OUNDS ON THE RATE OF CONVERGENCE

OF THE LEARNING PROCESSES

In order to estimate the quality of the ERM method for
a given sample size it is necessary to obtain nonasymptotic
bounds on the rate of uniform convergence.

A nonasymptotic bound of the rate of convergence can
be obtained using a new capacity concept, called the VC
dimension, which allows us to obtain a constructive bound
for the growth function.

The concept of VC-dimension is based on a remarkable
property of the growth-function .

6The necessity of this condition for fast convergence is open question.

A. The Structure of the Growth Function

Theorem: Any growth function either satisfies the equality

or is bounded by the inequality

where is an integer for which

In other words the growth function will be either a linear
function or will be bounded by a logarithmic function. (For
example, it cannot be of the form

We say that the VC dimension of the set of indicator
functions is infinite if the Growth function
for this set of functions is linear.

We say that the VC dimension of the set of indicator
functions is finite and equals if the growth
function is bounded by a logarithmic function with coefficient

The finiteness of the VC-dimension of the set of indicator
functions implemented by the learning machine forms the
necessary and sufficient condition for consistency of the ERM
method independent of probability measure. Finiteness of VC-
dimension also implies fast convergence.

B. Equivalent Definition of the VC Dimension

In this section, we give an equivalent definition of the VC
dimension of sets of indicator functions and then we generalize
this definition for sets of real-valued functions.

The VC Dimension of a Set of Indicator Functions:The
VC-dimension of a set of indicator functions
is the maximum number of vectors which can
be separated in all possible ways using functions of this
set7 (shatteredby this set of functions). If for any there
exists a set of vectors which can be shattered by the set

then the VC-dimension is equal to infinity.
The VC Dimension of a Set of Real-Valued Functions:Let

be a set of real-valued functions
bounded by constants and can approach and
can approach

Let us consider along with the set of real-valued functions
the set of indicator functions

(18)

where is some constant, is the step function

if
if

The VC dimension of the set of real valued functions
is defined to be the VC-dimension of the

set of indicator functions (18).
7Any indicator function separates a set of vectors into two subsets: the

subset of vectors for which this function takes value zero and the subset of
vectors for which it takes value one.
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C. Two Important Examples

Example 1:

1) The VC-dimension of the set oflinear indicator func-
tions

in -dimensional coordinate space is
equal to , since using functions of this set one
can shatter at most vectors. Here is the step
function, which takes value one, if the expression in the
brackets is positive and takes value zero otherwise.

2) The VC-dimension of the set oflinear functions

in -dimensional coordinate space is
also equal to because the VC-dimension of
corresponding linear indicator functions is equal to
(using instead of does not changes the set of
indicator functions).

Example 2: We call a hyperplane

the -margin separating hyperplane if it classifies vectors
as follows:

if
if

(classifications of vectors that fall into the margin
are undefined).

Theorem: Let vectors belong to a sphere of radius
. Then the set of -margin separating hyperplanes has the

VC dimension bounded by the inequality

These examples show that in general the VC dimension
of the set of hyperplanes is equal to , where is
dimensionality of input space. However, the VC dimension
of the set of -margin separating hyperplanes (with a large
value of margin can be less than This fact will play
an important role for constructing new function estimation
methods.

D. Distribution Independent Bounds for the Rate of
Convergence of Learning Processes

Consider sets of functions which possess a finite VC-
dimension We distinguish between two cases:

1) the case where the set of loss functions
is a set oftotally bounded functions;

2) the case where the set of loss functions
is not necessarily a set of totally bounded functions.

Case 1—The Set of Totally Bounded Functions:Without
restriction in generality, we assume that

(19)

The main result in the theory of bounds for sets of totally
bounded functions is the following [20]–[22].

Theorem: With probability at least , the inequality

(20)

holds true simultaneously for all functions of the set (19),
where

(21)

For the set of indicator functions,
This theorem provides bounds for the risks of all func-

tions of the set (18) [including the function which
minimizes empirical risk (8)]. The bounds follow from the
bound on uniform convergence (13) for sets of totally bounded
functions that have finite VC dimension.

Case 2—The Set of Unbounded Functions:Consider the
set of (nonnegative) unbounded functions

It is easy to show (by constructing an example) that,
without additional information about the set of unbounded
functions and/or probability measures, it is impossible to
obtain an inequality of type (20). Below we use the following
information:

(22)

where is some fixed constant.8

The main result for the case of unbounded sets of loss
functions is the following [20]–[22].

Theorem: With probability at least the inequality

(23)

holds true simultaneously for all functions of the set, where
is determined by (22),

The theorem bounds the risks for all functions of the set
(including the function

8This inequality describes some general properties of distribution functions
of the random variables�� = Q(z; �), generated by theP (z): It describes the
“tails of distributions” (the probability of big values for the random variables
��): If the inequality (22) withp > 2 holds, then the distributions have so-
called “light tails” (large values do not occurs very often). In this case rapid
convergence is possible. If, however, (22) holds only forp < 2 (large values
of the random variables�� occur rather often) then the rate of convergence
will be small (it will be arbitrarily small ifp is sufficiently close to one).
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E. Problem of Constructing Rigorous
(Distribution Dependent) Bounds

To construct rigorous bounds for the rate of convergence
one has to take into account information about probability
measure. Let be a set of all probability measures and let

be a subset of the set We say that one has prior
information about an unknown probability measure if
one knows the set of measuresthat contains

Consider the following generalization of the growth func-
tion:

For indicator functions and for the extreme
case where the generalized growth function
coincides with the growth function For another extreme
case where contains only one function the generalized
growth function coincides with the annealed VC-entropy.

The following assertion is true [20], [26].
Theorem: Suppose that a set of loss-functions is bounded

Then for sufficiently large the following inequality:

holds true.
From this bound it follows that for sufficiently largewith

probability simultaneously for all (including the
one that minimizes the empirical risk) the following inequality
is valid:

However, this bound is nonconstructive because theory
does not specify a method to evaluate the generalized growth
function. To make this bound constructive and rigorous one
has to estimate the generalized growth function for a given
set of loss-functions and a given set of probability measures.
This is one of the main subjects of the current learning theory
research.

IV. THEORY FOR CONTROLLING THE

GENERALIZATION OF LEARNING MACHINES

The theory for controlling the generalization of a learning
machine is devoted to constructing an induction principle for
minimizing the risk functional which takes into account the
size of the training set(an induction principle for a “small”

sample size).9 The goal is to specify methods which are
appropriate for a given sample size.

A. Structural Risk Minimization Induction Principle

The ERM principle is intended for dealing with a large
sample size. Indeed, the ERM principle can be justified by
considering the inequalities (20). When is large, the second
summand on the right hand side of inequality (20) becomes
small. The actual risk is then close to the value of the empirical
risk. In this case, a small value of the empirical risk provides
a small value of (expected) risk.

However, if is small, then even a small
does not guarantee a small value of risk. In this case the
minimization for requires a new principle, based on
the simultaneous minimization of two terms in (20) one of
which depends on the value of the empirical risk while the
second depends on the VC-dimension of the set of functions.
To minimize risk in this case it is necessary to find a method
which, along with minimizing the value of empirical risk,
controls the VC-dimension of the learning machine.

The following principle, which is called the principle of
structural risk minimization (SRM), is intended to minimize
the risk functional with respect to both empirical risk and
VC-dimension of the set of functions.

Let the set of functions be provided with
a structure: so that is composed of the nested subsets of
functions such that

(24)

and
An admissible structureis one satisfying the following three

properties.

1) The set is everywhere dense in
2) The VC-dimension of each set of functions is

finite.
3) Any element of the structure contains totally bounded

functions

The SRM principle suggests that for a given set of obser-
vations choose the element of structure , where

and choose the particular function from for which
the guaranteed risk (20) is minimal.

The SRM principle actually suggests atradeoff between
the quality of the approximation and the complexity of the
approximating function. (As increases, the minima of em-
pirical risk are decreased; however, the term responsible for
the confidence interval [summand in (20)] is increased. The
SRM principle takes both factors into account.)

The main results of the theory of SRM are the following
[9], [22].

Theorem: For any distribution function the SRM method
provides convergence to the best possible solution with prob-
ability one.

In other words SRM method is universally strongly con-
sistent.

9The sample sizè is considered to be small if̀=h is small, saỳ =h < 20:
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Theorem: For admissible structures the method of structural
risk minimization provides approximations for
which the sequence of risks converge to the best
one with asymptotic rate of convergence10

(25)

if the law is such that

(26)

In (25) is the bound for functions from and is
the rate of approximation

V. THEORY OF CONSTRUCTING LEARNING ALGORITHMS

To implement the SRM induction principle in learning
algorithms one has to control two factors that exist in the
bound (20) which has to be minimized:

1) the value of empirical risk;
2) the capacity factor (to choose the elementwith the

appropriate value of VC dimension).

Below we restrict ourselves to the pattern recognition case.
We consider two type of learning machines:

1) Neural networks (NN’s) that were inspired by the bio-
logical analogy to the brain;

2) the support vector machines that were inspired by sta-
tistical learning theory.

We will discuss how each corresponding machine can
control these factors.

A. Methods of Separating Hyperplanes and
Their Generalization

Consider first the problem of minimizing empirical risk on
the set oflinear indicator functions

(27)

Let

be a training set, where is a vector,

To minimize the empirical risk one has to find the pa-
rameters (weights) which minimize the
empirical risk functional

(28)

There are several methods for minimizing this functional. In
the case when the minimum of the empirical risk is zero one

10We say that the random variables�`; ` = 1; 2; � � � converge to the value
�0 with asymptotic rateV (`) if there exists constantC such that

V �1(`)j�` � �0j �!P

`!1
C:

can find the exact solution while when the minimum of this
functional is nonzero one can find an approximate solution.
Therefore by constructing a separating hyperplane one can
control the value of empirical risk.

Unfortunately the set of separating hyperplanes is not flex-
ible enough to provide low empirical risk for many real-life
problems [13].

Two opportunities were considered to increase the flexibility
of the sets of functions:

1) to use a richer set of indicator functions which are
superpositions of linear indicator functions;

2) to map the input vectors in high dimensional feature
space and construct in this space a-margin separating
hyperplane (see Example 2 in Section III-C)

The first idea corresponds to the neural network. The second
idea leads to support vector machines.

B. Sigmoid Approximation of Indicator
Functions and Neural Nets

To describe the idea behind the NN let us consider the
method of minimizing the functional (28). It is impossible
to use regulargradient-basedmethods of optimization to min-
imize this functional. (The gradient of the indicator function

is either equal to zero or is undefined.) The solution
is to approximate the set of indicator functions (27) by so-
called sigmoid functions

(29)

where is a smooth monotonic function such that
For example, the functions

are sigmoid functions.
For the set of sigmoid function, the empirical risk functional

(30)

is smooth in It has a gradient grad and therefore
can be minimized using gradient-based methods. For example,
the gradient descent methoduses the following update rule:

where the data depends on the iteration
number For convergence of the gradient descent method to
a local minimum, it is enough that satisfy the conditions

Thus, the idea is to use the sigmoid approximation at the stage
of estimating the coefficients, and use the indicator functions
with these coefficients at the stage of recognition.

The generalization of this idea leads to feedforward NN’s.
In order to increase the flexibility of the set of decision rules
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of the learning machine one considers a set of functions
which are the superposition of several linear indicator func-
tions (networks of neurons) [13] instead of the set of linear
indicator functions (single neuron). All indicator functions in
this superposition are replaced by sigmoid functions.

A method for calculating the gradient of the empirical risk
for the sigmoid approximation of NN’s, called thebackprop-
agation method, was found [15], [12]. Using this gradient
descent method, one can determine the corresponding coef-
ficient values (weights) of all elements of the NN.

In the 1990s, it was proven that the VC dimension of NN’s
depends on the type of sigmoid functions and the number of
weights in the NN. Under some general conditions the VC
dimension of the NN is bounded (although it is sufficiently
large). Suppose that the VC dimension does not change during
the NN training procedure, then the generalization ability of
NN depends on how well the NN minimizes the empirical risk
using sufficiently large training data.

The three main problems encountered when minimizating
the empirical risk using the backpropagation method are as
follows.

1) The empirical risk functional has many local minima.
Optimization procedures guarantee convergence to some
local minimum. In general the function which is found
using the gradient-based procedure can be far from the
best one. The quality of the obtained approximation
depends on many factors, in particular on the initial
parameter values of the algorithm.

2) Convergence to a local minimum can be rather slow (due
to the high dimensionality of the weight-space).

3) The sigmoid function has a scaling factor which affects
the quality of the approximation. To choose the scaling
factor one has to make a tradeoff between quality of
approximation and the rate of convergence.

Therefore, a good minimization of the empirical risk de-
pends in many respects on the art of the researcher.

C. The Optimal Separating Hyperplanes

To introduce the method which is an alternative to the NN
let us consider the optimal separating hyperplanes [25].

Suppose the training data

can be separated by a hyperplane

(31)

We say that this set of vectors is separated by theoptimal hy-
perplane (or the maximal margin hyperplane)if it is separated
without error and the distance between the closest vector and
the hyperplane is maximal.

To describe the separating hyperplane let us use the follow-
ing form:

if

if

In the following we use a compact notation for these inequal-
ities:

(32)

It is easy to check that the Optimal hyperplane is the one that
satisfies the conditions (32) and minimizes functional

(33)

(The minimization is taken with respect to both vectorand
scalar )

The solution to this optimization problem is given by the
saddle point of the Lagrange functional (Lagrangian)

(34)

where the are Lagrange multipliers. The Lagrangian has to
be minimized with respect to and maximized with respect
to

In the saddle point, the solutions and should
satisfy the conditions

Rewriting these equations in explicit form one obtains the
following properties of the optimal hyperplane.

1) The coefficients for the optimal hyperplane should
satisfy the constraints

(35)

2) The parameters of the optimal hyperplane (vector)
are linear combination of the vectors of the training set.

(36)

3) The solution must satisfy the following Kühn–Tucker
conditions:

(37)

From these conditions it follows that only some training
vectors in expansion (36), thesupport vectors, can have
nonzero coefficients in the expansion of The
support vectors are the vectors for which, in (36), the
equality is achieved. Therefore we obtain

(38)

Substituting the expression for back into the Lagrangian
and taking into account the K¨uhn–Tucker conditions, one
obtains the functional

(39)

It remains to maximize this functional in the nonnegative
quadrant
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under the constraint

(40)

Putting the expression for in (31) we obtain the hyperplane
as an expansion on support vectors

(41)

To construct the optimal hyperplane in the case when
the data are linearly nonseparable, we introduce nonnegative
variables and the functional

which we will minimize subject to constraints

Using the same formalism with Lagrange multipliers one
can show that the optimal hyperplane also has an expansion
(41) on support vectors. The coefficients can be found by
maximizing the same quadratic form as in the separable case
(39) under slightly different constraints

(42)

D. The Support Vector Network

The support-vector network implements the following idea
[21]: Map the input vectors into a very high-dimensional fea-
ture space through some nonlinear mapping chosena priori.
In this space comstruct an optimal separating hyperplane. The
goal is to create the situation described in Example 2 of
Section III-C, where for -margin separating hyperplanes the
VC dimension is defined by the ratio To generalize
well, we control (decrease) the VC dimension by constructing
an optimal separating hyperplane (that maximizes the margin).
To increase the margin we use very high dimensional spaces.

Example: Consider a maping that allows us to construct
decision polynomials in the input space. To construct a poly-
nomial of degree two, one can create a feature spacewhich
has coordinates of the form

coordinates

coordinates

coordinates

where The separating hyperplane con-
structed in this space is a separating second-degree polynomial
in the input space.

To construct a polynomial of degreein an -dimensional
input space one has to construct -dimensional feature
space, where one then constructs the optimal hyperplane.

The problem then arises of how to computationally deal
with such high-dimensional spaces: to construct a polynomial
of degree 4 or 5 in a 200-dimensional space it is necessary to
construct hyperplanes in a billion-dimensional feature space.

In 1992, it was noted [5] that for both describing the optimal
separating hyperplane in the feature space (41) and estimating
the corresponding coefficients of expansion of the separating
hyperplane (39) one uses the inner product of two vectors

and , which are images in the feature space of the
input vectors and Therefore if one can estimate the
inner product of two vectors in the feature space and

as a function of two variables in input space

than it will be possible to construct the solutions which are
equivalent to the optimal hyperplane in the feature space. To
get this solution one only needs to replace the inner product

in (39) and (41) with the function
In other words, one constructs nonlinear decision functions

in the input space

(43)

that are equivalent to the linear decision functions (33) in the
feature space. The coefficientsin (43) are defined by solving
the equation

(44)

under constraints (42).
In 1909 Mercer proved a theorem which defines the general

form of inner products in Hilbert spaces.
Theorem: The general form of the inner product in Hilbert

space is defined by the symmetric positive definite function
that satisfies the condition

for all functions satisfying the inequality

Therefore any function satisfying Mercer’s condi-
tion can be used for constructing rule (43) which is equivalent
to constructing an optimal separating hyperplane in some
feature space.

The learning machines which construct decision functions of
the type (43) are calledsupport vectors networks or support
vector machines(SVM’s).11

Using different expressions for inner products one
can construct different learning machines with arbitrary types
of (nonlinear in input space) decision surfaces.

11This name stresses that for constructing this type of machine, the idea
of expanding the solution on support vectors is crucial. In the SVM the
complexity of construction depends on the number of support vectors rather
than on the dimensionality of the feature space.
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For example to specify polynomials of any fixed order
one can use the following functions for the inner product in
the corresponding feature space:

Radial basis function machines with decision functions of the
form

can be implemented by using a function of the type

In this case the SVM machine will find both the centers
and the corresponding weights

The SVM possesses some useful properties.

• The optimization problem for constructing an SVM has
a unique solution.

• The learning process for constructing an SVM is rather
fast.

• Simultaneously with constructing the decision rule, one
obtains the set of support vectors.

• Implementation of a new set of decision functions can be
done by changing only one function (kernel
which defines the dot product in-space.

E. Why Can Neural Networks and Support
Vectors Networks generalize?

The generalization ability of both the NN’s and support
vectors networks is based on the factors described in the theory
for controlling the generalization of the learning processes. Ac-
cording to this theory, to guarantee a high rate of generalization
of the learning machine one has to construct a structure

on the set of decision functions and
then choose both an appropriate elementof the structure
and a function within this element that
minimizes bound (20). The bound (16) can be rewritten in
the simple form

(45)

where the first term is an estimate of the risk and the second
is the confidence interval for this estimate.

In designing an NN, one determines a set of admissible
functions with some VC-dimension For a given amount
of training data the value determines the confidence interval

for the network. Choosing the appropriate element of
a structure is therefore a problem of designing the network for
a given training set.

During the learning process this network minimizes the first
term in the bound (45) (the number of errors on the training
set).

If it happens that at the stage of designing the network one
constructs a network too complex (for the given amount of

training data), the confidence interval will be large.
In this case, even if one could minimize the empirical risk
down to zero, the amount of errors on the test set could be
big. This case is calledoverfitting.

To avoid over fitting (to get a small confidence interval) one
has to construct networks with small VC-dimension.

Therefore to generalize well using an NN one must first
suggest an appropriate architecture of the NN and second find
in this network the function that minimizes the number of
errors on the training data. For NN’s both of these prob-
lems are solving using some heuristics (see remarks on the
backpropagation method).

In support vector methods one can control both parameters:
in the separable case one obtains the unique solution which
minimizes the empirical risk (down to zero) using a-margin
separating hyperplane with the maximal margin (i.e., subset
with the smallest VC dimension).

In the general case one obtains the unique solution when
one chooses the value of the trade off parameter

VI. CONCLUSION

This article presents a very general overview of statistical
learning theory. It demonstrates how an abstract analysis
allows us to discover a general model of generalization.

According to this model, the generalization ability of learn-
ing machines depends on capacity concepts which are more
sophisticated than merely the dimensionality of the space or
the number of free parameters of the loss function (these con-
cepts are the basis for the classical paradigm of generalization).

The new understanding of the mechanisms behind gen-
eralization not only changes the theoretical foundation of
generalization (for example from the new point of view the
Occam razor principle is not always correct), but also changes
the algorithmic approaches to function estimation problems.
The approach described is rather general. It can be applied
for various function estimation problems including regression,
density estimation, solving inverse equations and so on.

Statistical learning theory started more than 30 years ago.
The development of this theory did not involve many re-
searchers. After the success of the SVM in solving real-life
problems, the interest in statistical learning theory significantly
increased. For the first time, abstract mathematical results in
statistical learning theory have a direct impact on algorithmic
tools of data analysis. In the last three years a lot of articles
have appeared that analyze the theory of inference and the
SVM method from different perspectives. These include:

1) obtaining better constructive bounds than the classical
one described in this article (which are closer in spirit to
the nonconstructive bound based on the growth function
than on bounds based on the VC dimension concept).
Success in this direction could lead, in particular, to
creating machines that generalize better than the SVM
based on the concept of optimal hyperplane;

2) extending the SVM ideology to many different problems
of function and data-analysis;

3) developing a theory that allows us to create kernels
that possess desirable properties (for example that can
enforce desirable invariants);
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4) developing a new type of inductive inference that is
based on direct generalization from the training set to the
test set, avoiding the intermediate problem of estimating
a function (the transductive type inference).

The hope is that this very fast growing area of research will
significantly boost all branches of data analysis.
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