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A consistent approach to the inference of a probability distribution given a limited number of ex-
pectation values of relevant variables is discussed. There are two key assumptions: that the experi-
ment can be independently repeated a finite number (not necessarily large) of times and that the
theoretical expectation values of the relevant observables are to be estimated from their measured
sample averages. Three independent but complementary routes for deriving the form of the distri-
bution from these two assumptions are reviewed. All three lead to a unique distribution which is
identical with the one obtained by the maximum-entropy formalism. The present derivation thus
provides an alternative approach to the inference problem which does not invoke Shannon’s notion
of missing information or entropy. The approach is more limited in scope than the one proposed by
Jaynes, but has the advantage that it is objective and that the operational origin of the “given” ex-

pectation values is specified.

I. INTRODUCTION

Maximum entropy is a procedure,'~3 stated in its most
sweeping form by Jaynes,"? for inducing an unknown
probability distribution given only partial data. The pro-
cedure is finding an increasing number of incisive applica-
tions in different branches of science.* It is therefore
worthwhile to clarify the rationale for its use. Jaynes’
proposal was based on maximizing Shannon’s’ measure of
missing information subject to given expectation values
(or, in general, given constraints). There are therefore
many who regard the procedure as subjective in that it re-
lies on the notion of missing information. A more techni-
cal objection is that the origin of the constraining condi-
tions is not specified. Hence they need not be the results
of observations. The resulting distribution reflects there-
fore the “state of knowledge” of the observer rather than
necessarily a statement about nature. The purpose of this
paper is to discuss three alternative approaches to the
problem of inference. All three lead to the same opera-
tional procedure as the usual maximum-entropy method,
but none invokes Shannon’s notion of missing informa-
tion.

The technical problem under consideration can be stat-
ed (for the simplest case of a discrete distribution) as fol-
lows: Let i =1,...,n be a set of n mutually exclusive and
together exhaustive alternatives. In view of the typical
applications in physics we refer to these n alternatives as
states. Let {A4,} be a set of m (linearly independent, see
below) variables defined on these states, A, obtaining the
\<1a1u§ A,; on the state i. Given the m expectation values

4,7,

n
(4,)=3 A4,P;, r=1,...,m m<n—1 (1)
i=1
a normalized probability distribution, py,...,p,, is re-
quired which fulfills (1). Inference is necessary whenever
m <n—1 so that the m given expectation values do not
determine, via (1), a unique distribution. One requires
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therefore a procedure [or an algorithm, denoted here by
(a)] which will select a single probability distribution from
the set of all normalized distributions which are consistent
with (1).

In the maximume-entropy procedure the (unique) distri-
bution is selected by maximizing the entropy,
—>.piln(p; /g;) (g; is the multiplicity of the state i), sub-
ject to normalization ;p;=1 and the m additional con-
straints given by (1). The solution is' 3

m
- 2 }"rAri

r=1

Pi=8;€xp /ZAyy oy )

- % )"rAri

r=1

ZAy .., Ay) =, giexp

The m Lagrange multipliers, Ay, ..., A, are determined
by the condition that the solution (2) satisfy the m con-
straints (1). The resulting set of implicit equations can be
written as

(A4,)=—3IZ(Ay, ..., Ap)/3N,, r=1,...,m. (3

The three approaches reviewed below will lead to the very
same solution. Only the rationale will be different.

A basic requirement of a scientific experiment is repro-
ducibility (of the experiment, not the results). The present
derivation is therefore limited to such experiments that
can be independently repeated a finite (but not necessarily
large) number of times. It is thus narrower in scope than
the method proposed by Jaynes. The constraints used
here are in the form of expectation values (4, ) which we
assume to be measured in terms of the sample averages
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Here N; is the number of times the state { has been real-
ized in N independent repetitions of the experiment. The
present approach has therefore the advantage that it is
free of any reference to the state of knowledge of the ob-
server and that the origin of the “given” constraints is
spelled out. In what follows we shall use relations be-
tween the (measured) sample averages and the (theoretical)
expectation values to induce the desired probability distri-
bution.

In the first approach, the requirement that the given
averages represent possible outcomes of a reproducible ex-
periment, leads to a confrontation between inferences for
two distributions: the probability p; for entering the state
i=1,...,n and the probability Py for obtaining (in N
independent repetitions of the elementary experiment) the
set of occupation numbers N=(N...,N,), where

7_i1N;=N. The latter can be regarded either as a prob-
ability distribution for an elementary experiment in (the
much larger) occupation number space, or as a compound
(multinomial) distribution determined by the elementary
distribution p;. Comparison between the two points of
view leads to a consistency condition which must be satis-
fied by any algorithm (a) for inducing a probability distri-
bution from given averages. This consistency condition
together with the requirement that the algorithm (a) treats
all problems uniformly (regardless of the dimension of the
probability space), determine the algorithm uniquely.

The second approach selects (a) as the algorithm lead-
ing to the most stable inference from the data 4,. That
is, among all possible normalized distributions p; con-
sistent with (1), the distribution which is least sensitive to
statistical errors in the data is chosen.

The third approach is the oldest one and, unfortunately,
perhaps the least meaningful to physicists, namely, that of
sufficient statistics. Loosely speaking, a function
T(xy,...,xy) is called “sufficient statistic for the pa-
rameter 8" in the distribution p(x | 8), if all the informa-
tion conveyed by the sample x;,...,xy about the un-
known value of the parameter 6 can be summarized by
the single number T(x;...,xy). Returning to our
inference problem, a choice of an algorithm (a) determines
pi=pi({4,),...,{4,)) as a known function of the (un-
known) m values of the parameters (4,). Demanding
that the m sample averages

N
4,=3 4,/N

i=1
serve (together) as sufficient statistics for the m parame-
ters (A4;),...,(A4,,) is enough to identify p; as the
maximum-entropy solution. Because of our notion of a
reproducible experiment we are, however, able to obtain a
stronger version of the more familiar results and, specifi-
cally, our inferred distribution has a unique functional
form.

Since all the approaches above lead to the maximum-
entropy solution and none uses the concept of entropy, we
can reverse the usual argument to identify
— . piIn(p; /g;) as that unique functional of the distribu-
tion which attains its maximal value [subject to the con-
straints (1)] for the “correct” inference. Furthermore, ac-
cepting the reasoning given by Jaynes,"? the entropy
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— Y. piIn(p; /g;) must be interpreted as the amount of
missing information in a situation characterized by a
probability distribution {p;}.5

II. CONSISTENT UNIFORM INFERENCE

Let an experiment with » possible (mutually exclusive
and collectively exhaustive) outcomes be repeated N
times. We then form the sample averages 4, defined by
(4). Our requirement’ is that averaging the sample aver-
age over all possible occupation numbers N; [cf. Eq. (4)]
should give the expectation values { 4, ) over the probabil-
ities p;.

Assume that we already have an algorithm (a) for infer-
ring the elementary probabilities p;,...,p,. Then the
probability Py for observing a set of occupation numbers

N=(N,,...,N,), where 3,7_ N;=N, is determined by
the multinomial distribution®
Nl NZ Nn
Py=gypy p2" " pn" . (5a)
Here
n
gn=N!/ [ N:! (5b)

i=1

is the multiplicity (or degeneracy factor) of the compound
state N=(Ny, ..., N,). Introducing the variables B, de-
fined on the occupation number space

n
Bru=2N.~An-, r=1,...,m (6)

i=l

with expectation values

n
(B,)=23 PyBy=2 Py 3 N;Ay,
N N

i=1

n
=N 3 piAd;=N(4,), ©)

i=1

the result (5) can be regarded as a solution to the inference
problem (7) in the (much larger) occupation number space.
The number of states in the space of occupation numbers
is I=(¥*"""). But using the same data, namely, the m
expectation values {B,)=N(4,) of the variables B,, we
could apply the algorithm (a) directly in the occupation
number space to infer a probability distribution Qy agree-
ing with the data. The algorithm (a) will be called con-
sistent if the two alternative routes to the distribution of
outcomes in N independent repetitions of the experiment
lead to the same distribution. That is,

On=Py . (8)

We now show that the consistency condition (8), together
with the requirement that the algorithm (a) treats all prob-
lems uniformly, regardless of the dimension of the proba-
bility space involved, suffice to determine the algorithm.
Without loss of generality, we may assume that the m
variables A,=(A,;) considered as n-dimensional vectors
together with the normalization vector Ay (dg;=1), are
linearly independent. This can always be achieved by
reducing m. Completing these m +1 vectors to a full



2640

" base of the n-dimensional space, we can always expand

n—1

1np,~=—— 2 }‘rAﬂ B 9)
r=0

Given a complement A4, .1, ..., A4,_; and the expansion
coefficients Am 41 -«-sAn_y, the values of Ag, ..., 4,
are uniquely’ determmed by the constraints (1). Thus, a
choice of the complement {4} and the expansion coeffi-
cients {A;}, s=m +1,...,n —1 defines an algorithm (a).
Similarly, the variables

, r=0...

n
B,=(B,-N)= KZN,A,, ,n—l,

i=1

considered as vectors in l—(N+"_l) dimensional space,

can be complemented to a full base of the I-dimensional
space. [It is easy to check that linear independency of
Ag, ..., A,_, as vectors in n-dimensional space implies
linear independency of By, ..., B,_; in the /-dimensional
space. Indeed,

n-—1 n—1

Ear rN'—zN ECCA,,

i=1

for each N, implies, in particular, for

N=(,...,0,N,0,...,0),
that
n-—1
N 2 a,A,i =0,
r=>0
Hence, by the linear independency of A, ..., d,_| we
have a, =0 for r=0, ..., n —1.] Expanding
Oy 1—1
ln—gz.v_: - ;O“r W s (10)

and using the consistency condition (8) together with Egs.
(5) and (9), we obtain
-1 n—1

Z,U‘r rl\“zN E)“An

i=1 r=
n—1

_zx ENA,,—-EAB,N (11)

r=0 i=1

But the vectors B,, r=0
linearly independent, hence

u,=A, forr=0,...,n—1
and (12)
-1,

Up to now we have used only the consistency condition
(8). If, in addition, we require that the algorithm (a) treats
all inference problems uniformly as problems in elementa-
ry spaces regardless of the dimensions of the spaces in-
volved, we must have (since » is not an input and is un-
known to the problem in the /-dimensional space) u, =0
for r=m+1,...,/—1. Hence, by Eq. (12), A,=0 for
r=m+1,...,n—1. This completes the identification of
the consistent uniform algorithm with the maximum-
entropy algorithm.®

The fact that the maximum-entropy algorithm is con-
sistent in the sense of Eq. (8) has been demonstrated by

.,/ —1 wére chosen to be

p,=0forr=n,...
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Levine.'® Indeed, the maximum-entropy solution to the
problem (7) is

m
Oy=gyexp |— 3 ABuy |, 13)
r=0
where
m n
AoN=AoBoy=In| ¥ gnexp [— 3 A, 3 N; A4, (14)
N r=1 i=1

and the other m Lagrange multipliers A, are determined
by solving

a(AeN)

_ an, =(B,)=N(4,), r=1,...,m. (15)

The solution (13) can be rewritten as
v " .
Ov=gy [Ipni*, (16)
i=1

where

pi=exp |—Ao— 3 A Ay (17)

r=1

Using the identity

A,
=(p1e’+ - +pue W

EgNII pie”

i=l1

N A
o (18)

together with Egs. (14) and (15), the distribution (17) is
identified as the maximum-entropy solution to problem
(1.

III. MOST STABLE INFERENCE

We begin this section by establishing an inequality sa-
tisfied by the class C of normalized distributions con-
sistent with (1). Interpretation of the result as a stability
criterion will lead us to identify the distribution least sen-
sitive to statistical errors in the input (A4,), as the
maximum-entropy distribution. Conversely, the max-
imum-entropy distribution using the “natural representa-
tion” for the constraints (to be defined below), will be
shown to be the most stable distribution in the class C.

Given an algorithm (a) for selecting a probability distri-
bution from the class C, the chosen distribution p; be-

comes a function of the parameters (A4;),..., (4, ).
This function satisfies
3

l—zp, and hence 0= 2 34 Pi Ay (19)

and
. e ap;
(A4,)= 3 p; Ay yielding 1= ———4,; . 20)
i T 9(4,)

Rewriting (20) with the help of (19) as
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ap; ap;
1=3 3y =2 300y An— {4
d Inp;
;Vﬂm\/ﬁ(/‘ﬂ—@‘irﬂ ,
(20"

1g< % >‘/2AA,, 1)
where
Ad,={(A4,;—{A4,)))"?
=[Var(4,)]'%, r=1,...,m. (22)

Equality in Eq. (21) holds if and only if the vector
(d1np;/3( 4, )) is proportional to the vector (4, —{ 4,)),
that is

alnp,/a<Ar)=ar(<A1), ey (Am))(An_(Ar))

fori=1,...,n. (23)

Equation (21) is a special case of the Rao-Cramer inequal-
ity well known in statistics.® The case of a single con-
straint (m =1) has been discussed by Alhassid and
Levine.!! Confining our interest to the situation where
equality prevails [Eq. (23)], we shall now show the follow-
ing.

(a) The covariance matrix

Cr={(A; — (A4, ) Az —(4;)))

is diagonal.
Indeed, multiplying Eq. (23) by p;(4;—{4,)) and
summing over all states i, we have by Egs. (19) and (20)

0Ca =3 5y (ha—(A))= e
In particular, '

a,=1/C,,=1/Var(4,) . (25)

(b) The proportionality constant a, depends only on

(4,).
Taking the derivative of Eq. (23) by (4, ), we have

9%Inp; da,
a{4,)a(4,) a<As>(
3%Inp;
~8(4,)3(4,)
da
~3(4,)

Hence, multiplying both sides by p;(4,; — {4, )) and sum-
ming over all states i, we obtain [using (a)]

An‘ - ( Ar >)_ar6rs

(Asi _<As >)—as6rs .

da, c da c
a4,y " a4,y ™

(c) The distribution p; is the maximum entropy distribu-
tion.

=0 for s=£r .

Integrating Eq. (23) once, we have
(4,)
a,d(A,)

(4,)
— [ T a(A4,)d(A, )y +h,

where h; is independent of (4,). Taking the derivative
of the last equation by {4, Y=( 4, ), we secure

ah,/a(As)=alnp,/8(As)
=a,({(A4; )4y —(4)) .
Integrating again over {4, ), we obtain
(4,) (4,)
hi=Asi d(As>_ f as<As>+ki ’

where k; is independent of (4,) and (4,). Continuing
in the same fashion we finally obtain

m (4,)
Inp;= 3 A, f a,d{4,)
r=1

Inp;=A,

m (4,
-3 [ 7 a(d4,)d(4,)+1;,
r=1

where [; is independent of the data (4;),...,{4,).
Using the notation
(4,)
}"rz_f a,d(A,),
m {4,)
mz=3 [ " a(4,)d(4,), (26)
r=1
and
lngizli »
we have
m
pi=gexp |— 32 MA, |/Z . 27
r=1

It is easy to check [using the chain rule, the normalization
> .pi=1 and Egs. (24) and (25)] that InZ, defined by Eq.
(26), satisfies —9InZ /dA,=(A4,), as it should. This
completes the proof of our claim that equality in Eq. (21)
implies that p; is the maximum-entropy distribution. The
converse is not true unless the covariance matrix C=(Cy)
happens to be diagonal. But C is a real symmetric matrix.
Hence, there exists a real orthogonal matrix O such that
C’'=0CO0 is diagonal. Transforming to the “natural rep-
resentation”

A= 2 O, Ay (28)
k
and
A= 20,,?», , (29) -
!
we have
DMAr=3 M4, . (30)
r r

Thus the probability p; in Eq. (27) remains unchanged,
while the covariance matrix becomes ‘diagonal,
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Cro=3 pi(Ay;— A, )45 —(4;))

=20rkcklosl=(Q_Q)rs . 31
k1
We now turn to the interpretation of the inequality (21).
If (A4, ) is estimated by the sample average
- 1 X
A,=—> 4,
= El r
then the statistical error is proportional to the width A4,,
that is -

- 1
8<A,>=8A,OCFNAA, . (32)
More generally, if the estimated error in (4, ) is known to
be proportional to A4,, that is 8(4,) =4, A4,, Eq. 21)
can be rewritten as
2

Sr i
B, s< ——’f >”2 , (33)
where
ap; ap;
Srpx“a<A’)ﬁrAAr— a<Ar>8<Ar) (34)

is the (first-order) deviation of p; due to the estimated er-
ror 8{A4,) in {4,). The right-hand side of Eq. (33) is
naturally interpreted as a measure of the sensitivity of the
distribution p; to (statistical) errors in the data (4, )."?
Recalling our discussion above, we conclude the follow-
ing. Among all possible normalized distributions p; con-
sistent with (1), the least sensitive to (statistical) errors in
the data is that of maximum entropy using the natural
representation for the constraints. It is interesting to note
that equality in Eq. (21) also assures the fulfillment of a
necessary condition for p; to be useful as a predictive tool.
Indeed, if the inferred distribution p; is to be used to
predict an expectation value (B ) for a variable B (not in-
cluded in the data (4, )), we must have (8{B)/AB) «<1.
Here 6{B) and AB are the estimated error (due to errors
8(A4,)) and the estimated width of B. Using the first-
order estimate

a(B) N
a<A,>8(A’>~ ) 3(4,)

i=1
and repeating the steps leading to Eq. (21), we obtain

8,(B)= B;5{4,) (35

5,(B) 8(4,) [/[amp |A\,,
15 < AA, < (A ) A4, | . (36)
Equality in Eq. (21) now assures
5,(BY (4
_<_l L)_z 37

AB ST A4, Fr-

By employing a large enough sample we can always secure
B, << 1.

The intuitive meaning of the results of this section is
that the maximume-entropy distribution is as “spread out”
as possible subject to the constraints. Hence small

changes in the values of the constraints do not lead to ap-
preciable changes in the distribution.

IV. SUFFICIENT STATISTICS INFERENCE

The concept of sufficient statistics has been introduced
by Fisher'® in the twenties for the problem of parameter
estimation. In the Introduction we have loosely defined
T(xy,...,xy) as a sufficient statistic for the parameter 0
in the known distribution p(x | @), if all the information
concerning the unknown value of 8, conveyed by the sam-
ple x, ..., xy, can be summarized by the single number
T(xy,...,xy). We now have to be more precise. Given
the sample distribution

N
Pxy,...,xy|0)=[[p(x: 10, (38)

i=1

we can use Bayes’ theorem to calculate the inverse distri-
bution

F(O|xy,...,xy)=P(xy, ..., xy|0)fo(0)/ [ Pfod6

(39)

for the parameter 6. Here f(0) is a “prior” distribution
independent of the sample x,...,xy. Following Dyn-
kin,'* we call T(xy,...,xy) a sufficient statistic for the
parameter 6 if, for any prior fy(0), the inverse distribu-
tion F(6|x,, ..., xy) depends on the sample x,...,xy
only through the value of T(xy, ..., xy), that is

FO|xy,...,x8)=¢(T(xy,...,x§),0)fo(6). (40)

With this definition it is easy to check that T is a suffi-

cient statistic for the parameter 8 if and only if the

(dilrect) sample distribution P(xy,..., xy |6) factorizes
5

as

N
L xy |0=TLpx:|6)

i=1

P(xl,..

=k(x, ..., xy)(T(x(,...,xy5),0)

41)

with k and [ independent of the sample. A celebrated
theorem by Pitman,'® Koopman,!” and Darmois'® now
states that if p(x | 6) is known to have a sufficient statis-
tic T, then necessarily p is of the exponential form

plx |0)=m(x)e ~MOBE) /Z()(0)) . 42)

[Conversely, if p is of the form (42), then, by Egs. (38) and
@41), T=3¥ |B(x;) is a sufficient statistic for 8]. The
definition (40) of a sufficient statistic for the parameter
can be naturally generalized to define a set of sufficient
statistics T'{,T,,... for the set of parameters 6,,0,,.... In
the proof given below for the Pitman-Koopman-Darmois
theorem, we shall follow essentially the work of Pitman.!6

Let T(x,,...,xy) be a sufficient statistic for the pa-
rameter 6 in the distribution p(x |0). Then the sample
distribution P(xy, ..., xy | 0) factorizes as per Eq. (41).
Differentiating Eq. (41) with respect to the parameter 6,
we have for each admissible 0,
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dlnP _

N dlnp(x; |6)  3KT,0) _
20 — =

30 =30 =n(T,0). (43)

i=1

In particular, substituting 8=6, we can solve Eq. (43) for
T to obtain

Txpy e oo xn)=FBlxys ooy xn)) s (44)
where

_ N N 3lnp(x; | 6)

Blxy,...,xy)= 3 Blx;) EEL”-"—. (45)

i=1

Substituting the solution (44) in Eq. (43), we have

3lnp(x; | 6 _
Blopxi|0) _, 1 0y=r(B,0) . (46)
Y. ‘
Hence, by differentiation with respect to x;,
Fnp(x; | 0) _ dB(x)
opxi [6) _3H 5 o) dB(x 47
axiae aB dx,-

Now, for a given 6, the left-hand side of (47) depends only
on x;. Hence, the right-hand side of (47) can depend only
on x; and OH /0B, being a symmetric function of

Xy, ... Xy, must be independent of x, . ..,xy. Thus
d%np(x; | 6) dB(x;)
= 48
a0 O 48)
and by integration
aTlgﬂ —a(6)B(x;)+B(0) ,
(49)

(x,)+B1(9)+7(x,) .

Taking the exponential of the last equation, we recover
Eq. (42). Note that the Pitman-Koopman-Darmois
theorem does not establish the specific form of B(x) in
the exponent of the distribution (42). Since the form of
p(x | 0) is not known, Egs. (44) and (45) determine B(x),
via the known sufficient statistic 7'(x), only up to an un-
known (one-to-one function) f. If, however, T:ZA(xi)
is an additive sufficient statistic, then, by Eq. (44),

dA( — dB
xt df— il (x )
Cdx;  dB dx;

Inp(x; | 0)=a;(6)B

(50)

and, by the reasoning leading to Eq. (48),
A(x;)=yB(x;)+38, (51)

where ¥ and § are constants. The unknown constants ¥
and 8 can be absorbed in the definition of the Lagrange
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multiplier A(8) and the partition function Z(A(6)) ap-
pearing in the distribution (42), thus leaving only the den-
sity of states (or prior) m (x) unspecified. The proof given
above for the Pitman-Koopman-Darmois theorem can be
easily extended to the multiparameter case.

Coming back to our inference problem (1), a choice of
an algorithm (a) determines p; =p;({4;),...,{(4,,)) asa
function of the parameters (A4,), .. (A ) Demand-
ing that the sample averages Z,:E,_IA,, /N serve to-
gether as sufficient statistics for the parameters
(Ay),...,(A,,) is enough to identify p; as the
maximum-entropy distribution (2). Note that the degen-
eracy factors g; [or the density of states m (x) in the con-
tinuous case] are considered as known, being part of the
specification of states for the inference problem.

V. CONCLUDING REMARKS

Three complementary points of view, each of which in-
vokes the concept of a reproducible experiment, lead to
the same, unique, procedure for inducing a probability
distribution. The procedure is the one known as the
maximum-entropy procedure. None of the three charac-
terizations presented here invokes the concept of entropy
nor that of information. Rather, the requirement that the
experiment is reproducible is translated into relations be-
tween the measured sample averages and the expectation
values for the (unknown) probability distribution. In the
first approach we require that averaging (in a Gedanken
experiment) the sample average over all possible samples
yields the expectation value. In the second approach we
use a particular (measured) value of the sample average
for the (unknown) expectation value but recognize that in
so doing there may be a statistical error (due to the finite
size of the sample). The third approach stems from the
assumption that the sample average is all that can be ex-
tracted from the observations regarding the expectation
value. These derivations should help remove the “subjec-
tive” character that is sometimes associated with the pro-
cedure of maximum entropy. They also clearly show that
physics comes in not by the choice of the procedure
(which is universal) but by the choice of the variables
whose average is the input to the method.
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