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Roughness Penalties on Finite Domains 
Joseph A. O'Sullivan, Senior Member, ZEEE 

Absmcr-A class of penalty functions for use in estimation 
and image regularization is proposed. These penalty functions are 
defined for vectors whose indexes are locations in a finite lattice as 
the discrepancy between the vector and a shifted version of itself. 
After motivating this class of penalty functions, their relationship 
to Markov random field priors is explored. One of the penalty 
functions proposed, a divergence roughness penalty, is shown to 
be a discretization of a penalty proposed by Good and Gaskins 
for use in density estimation. One potential use in estimation 
problems is explored. An iterative algorithm that takes advantage 
of induced neighborhood structures is proposed and convergence 
of the algorithm is proven under specified conditions. Examples 
in emission tomographic imaging and radar imaging are given. 

I. INTRODUCTION 

HE use of Markov random field models in image esti- T mation and regularization problems has become common 
121, 131, i l l ] ,  [141, [201, [34]. While these models have been 
applied to nonnegative-valued images, there does not appear 
to be a standard or natural model for these cases in the same 
sense that Gauss-Markov random fields are natural for real 
valued images. The penalty methods proposed in this paper 
form a possible alternative approach. While penalties may be 
considered to be equivalent to priors (in an obvious sense to be 
made precise in Section III), their use may be better motivated 
by taking the viewpoint proposed here. 

The goal of penalties is to include prior information in 
estimation problems. When this information concerns the 
smoothness of the estimates, a roughness penalty results. As 
discussed below, the roughness penalties are built from two 
quantities: shifts on the lattice and discrepancy measures. For 
simplicity, this paper restricts attention to periodic shifts on 
the lattice, resulting in what are commonly referred to as 
periodic boundary conditions. The penalty is determined by 
the discrepancy between the original vector and the shifted 
version of itself. The class of discrepancy measures studied 
is motivated by Csisz6r [8] and Jones and Byrne [19]. In 
those papers, axiomatic derivations of least squares and I- 
divergence discrepancy measures are presented. The examples 
in this paper use those measures, but the results hold for a 
wide class of discrepancy measures. 
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Several methods for regularization in estimation problems 
have been proposed. The majority of them may be classified 
as penalty, constraint, prior probability, and stopping criterion 
methods. Stopping criteria have been proposed for iterative 
algorithms such as the expectation-maximization (EM) algo- 
rithm. These methods are based on the observation that image 
estimates converge to rough images as iterations proceed. By 
prematurely stopping the algorithms prior to convergence, the 
images should be smoother than if the algorithms were allowed 
to converge. Prior probability methods (such as Markov ran- 
dom field priors) may be used when a stochastic model for the 
data is appropriate. These methods are very similar (equivalent 
in many cases) to penalty methods. Hierarchical priors have 
been used to successively put neighborhood structures in 
regions then segment the estimate into separate regions [ 1 13, 
[20], [24]. Miller et al. [24] (see also the references of 
[24]) relate some constraint and prior methods, demonstrating 
an equivalence between them. Constraint methods include 
Grenander's method of sieves [7], [26], [32] where the es- 
timate is constrained to be in a subset of parameter space. 
The subset is indexed by a quantity called the mesh size; 
as the number of data points gets large, the mesh size gets 
small, and the subset converges to the entire parameter space. 
These methods are important for studying properties such 
as consistency of the estimates. Penalty methods may be 
classified into two categories: those penalizing the discrepancy 
with a prior guess and those penalizing the roughness of 
the estimate. Our approach is the latter. The former are 
discussed in recent papers by Byrne [5], [6], they motivate 
Csisz5r's results [81 and Jones' results [18], [19], and they 
include maximum entropy penalties. Lange [21] (see also 
references in [21]) uses penalties that are special cases of 
those derived here. 

A major issue is the relationship between the proposed 
roughness penalties for finite lattices and penalties on func- 
tions defined on continuous domains. The divergence penalty 
introduced in the following section is shown to be a dis- 
cretization of an information-theoretic penalty due to Good and 
Gaskins [13], [35], giving further evidence of its importance 
in estimation problems. 

Applications of the results in this paper to two problems 
of interest are presented. The first is emission tomographic 
imaging. In this case, the equivalence between the divergence 
penalty and a standard implementation of a penalty due to 
Good and Gaskins [4], [23] is shown. The second is radar 
imaging, in which a very noisy image consisting of exponen- 
tially distributed random variables is given. The divergence 
penalty is applied to the means of the pixels and estimates are 
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obtained. A quantitative study of the smoothness obtained by 
different weights on the penalties is included. 

ties such as convexity of the penalties are studied in Section 
11. Section I11 discusses how neighborhood structures are 

Example 4: Let V = R+. The I-divergence is defined by 

The roughness penalties are derived and important proper- x k  

<k 
I ( X ,  e )  = 2 [ x k  log - - x k  + t i ] .  ( 5 )  

k = l  

Example 5: Let V = R+. The Itakura-Saito distance is generated by the penalties and the use of these penalties in 
estimation problems. The divergence penalty is shown to be 
a discrete approximation of a continuous penalty due to Good defined by 

and Gaskinsin Section IV. The penalties &e further extended 
to incorporate linear constraints in Section V. The applications 

VII. 

d(x,[)=C - l o g - - l + ? ] .  x k  (6) 
are presented in Section VI, and the conclusions are in Section k = l  " [  <k t k  

The roughness penalty is constructed from shifts and a 

11. ROUGHNESS PENALTIES 
Let R be the real line, R+ = {x E R: x > 0}, and C 

the complex numbers. Let 0 and 1 denote n-vectors of all 
zeros and ones, respectively, where the dimension n is clear 
from context. Let V E {R, R+, C}. Scalars are in R or C 
as appropriate. If x E V", then xt equals x transposed if 
V = R or R+ and xt equals x complex conjugate transposed 
if V = C. If it is clear that V # C, then xT may also be 
used for x transposed. 

DeJinition I :  Let ri be a permutation on n letters. A shift 
Si: V" + V" (generated by the permutation ri) is defined by 

discrepancy measure. 
Definition 3: A roughness penalty with respect to the shifts 

S = { S I ,  Sz, . . . , SI}  is a mapping @: V" + R+ U (0) 
defined by 

I 

@(x) = W i d ( X ,  s i x )  (7) 
i=l 

where wi > 0 is the ith weight. 

measure, @(x) 2 0 and @(x) = 0 if and only if 
As a direct consequence of the properties of the discrepancy 

Six = x, for alli = 1 ,2 ,  ,I. 

[ s l ( x ) ] k  = x ( k + l )  mod". (2 )  Q~(x)  = (xm - x m + 1 ) 2 -  (8) 
m=l 

Example 2: Let S, be the right (circular) shift 
Example 7: Let V = R+ . A roughness penalty with respect 

[ s r ( x ) ] k  = x ( k - l ) m o d n .  (3) to 5'1 and S,. is 

The shifts are circular shifts in that no vector element is 
shifted off the lattice. This is clear in the two examples. In 
the following, all subscripts are assumed taken modulo n and 
the right side of (2) is written simply as x k + 1 .  There exists an 
integer k ( i )  such that rf(i) is the identity map. The smallest 
such k(i) > 0 is the order of the shift. Clearly the two examples 
are of order n. 

If instead of viewing V" as being defined on the integers 
{ 1,2,  . . . , n}, V" is viewed as being defined on a higher 
dimensional lattice, the shifts may be viewed as circular shifts 
on that lattice. An application to images is discussed later. 

Definition 2: A function d: V" x V" --+ R+ U (0) is called 
a discrepancy measure if d(x, e )  = 0 if and only if x = <. 

The types of discrepancy measures studied are motivated 
by the work of Csiszir [SI and Jones [18]. 

Example3: Let V = R. The least squares measure is 
defined by 

@'I(x) = I(x, S l X )  + I(x, S,X) 

X m  = 2 (xmlog- X m - 1  - X m  + X m - 1  
m=l 

This penalty is called a divergence penalty and plays a central 
role in the simulations. This penalty has the nice feature that 
it is defined only for x E R: and it arises naturally in terms 
of shifts and the I-divergence. Since the shifts are circular, it 
may be rewritten in several ways including 

n In this form, it is a weighted second difference of the log- 
d(x, <) = x ( z k  - t k ) 2 .  

k = l  
(4) arithms. This may also be viewed as a discretization of the 

penalty due to Good and Gaskins as described in Section IV. 
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Example 8: The previous example may be extended to 
images by defining vertical and horizontal shifts. Let x E 
RYM. Define the vertical shift SV by 

Here and in (121, the two subscripts are taken modulo N and 
M, respectively. Similarly, the horizontal shift SH is 

Then, the divergence penalty with respect to shifts S = 
{ s V ,  s,', s H ,  si1) is 

An important property of penalties when used in estimation 
problems is convexity. The penalty CP(x) is convex on V" if 

for all x,E E V" and all 0 2 a 2 1. A sufficient condition 
for @ to be convex is that the Hessian of CP 

is nonnegative definite; in turn, this Hessian is nonnegative 
definite if the matrix of second partial derivatives of d 

is nonnegative definite. Note that 

so Hd being nonnegative definite is just a sufficient condition. 
Suppose that d(x, E )  = dl (x - E ) ;  then 

(17) 

In this case, Hd, should be nonnegative definite. Throughout 
most of this paper, a special form for d is assumed. 

Dejinition 4: A discrepancy measure d is generated by the 
scalar discrepancy measure h if 

n 

m=l 

Each of the discrepancy measures discussed in this paper is 
generated by a scalar discrepancy measure. Penalties based 
on such measures mesh well with neighborhood structure in 

second derivatives of h then determine whether @ is convex. 
Lange [21] uses penalties generated by h(x,E) = w(x - 
E )  for functions w ( a )  that have specific properties including 
convexity. 

I estimation problems, as discussed in the next section. The 

Lemma I :  Let V = R+ and let d be generated by h. 
If h(x ,J )  = If(./<) for some function f that is twice 
differentiable, then @ is convex if f is convex. 

Proo$ By direct computation, the second partial deriva- 
tives of h give 

Then, Hh is nonnegative definite as long as f is nonnegative.0 
An example of this lemma is given by the I-divergence. 

There, f(x) = x logs + 1 - x, and f = 1/x > 0. Discrepancy 
functions of the form given in the lemma play an important 
role in information theory (see [l], [8], [9]). The Itakura-Saito 
distance [I71 is not in this form and is not recommended. If 
Hh is the Hessian for 

(20) h(x, E) = - log !! - 1 + !! 
E E 

then one eigenvalue of Hh is positive, and one is negative. In 
fact, a more general result is the following. 

Lemma 2: Let V = R+. If h ( e , [ )  = f(x/() for some f 
that is twice differentiable with f # 0, then the matrix Hh 
has one positive and one negative eigenvalue. 

The proof is straightforward and omitted. This lemma is 
the primary motivation for ruling out the use of discrepancy 
measures like the Itakura-Saito distance to define roughness 
penalties. 

111. NEIGHBORHOOD STRUCTURES 
AND PENALIZED ESTIMATION 

The penalties described above induce neighborhood struc- 
tures in the same way as Markov random field priors. The 
terminology presented next follows the work of Besag [2], [3]. 
Throughout this section, assume that d is generated by h, that 
@ is a roughness penalty with respect to the shifts S = {Si}, 
and that 7ri is the permutation on n letters corresponding to 
the shift Si. When thought of as a lattice, the nth component 
of x may be referred to as a lattice site. 

De$nition 5: The neighborhood of site k is the set N ( k )  = 
(1 :  I # IC, 1 = 7r?'(k), i = 1,. . + , I } .  The neighbors of Xk are 
the entries in the set (x1:Z E N ( k ) } .  

Thus, the neighborhood consists of all sites that the kth site 
may be mapped to or that are mapped to the kth site by the 
shifts {S i }  (except the lcth site itself). The neighbors are the 
components of x in the neighborhood of k .  

Dejinition 6: A coding set C is a set of sites such that 
no two sites in the set are neighbors. If a family of coding 
sets {C1,C2,...,CJ} forms a partition of {1,2, . . . ,n},  the 
labeling of sites by the integers { 1,2, . . . , J} according to 
their coding sets is called a coloring. A minimal coloring is a 
coloring with J being the minimum possible. 

One motivation for this study is the use of these penalties in 
maximum-likelihood estimation problems. An iterative algo- 
rithm based on coding sets that is a generalized EM algorithm 
is presented. 

Suppose that y E V M  is measured. Given x, the probability 
density function for y is f(y1x). Assume that for all y there 
is an x E V" such that f (y(x)>0.  Then, the maximum 
penalized likelihood problem is to find the x E V" that 
maximizes 

l(x) = log f(y)x) - a@(x). (21) 
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In this problem, a is the weight given to the penalty; larger 
values of a give higher weight to the penalty and induce more 
smoothing in the estimate. 

The connection to prior probabilities follows from (21). If 

The vector z may be considered to be a random vector such 
that the joint probability density function for y and z given x 
is f2(ylz)fl(zlx). Furthermore, assume that 

fz(x) is a prior probability density function on x, then the 
log-likelihood function is 

Zl(X) = 1% f(YIX) + 1% fz(x). (22) The set of possible values of z is called the complete data 
space. The set of possible values of y is called the incomplete 
data space. It is clear from (22) that if 

1 Central to the EM algorithm is the function 
fdx)  = z exp [-a@(x)] (23) 

Q(xlx’) = fi(zlx)lY,x’l (29) 
where 

(24) Z = exp [-a@(x)] dx s 
then the penalty is equivalent to the prior. For least 
squares discrepancy measures, the penalty is equivalent to 
a Gauss-Markov random field prior. For other discrepancy 
measures, the equivalent prior may not take on a common 
form. For this reason, it may be easier to motivate the use 
of (21) by using a penalty than by using a prior probability 
density function. 

Let the sites be colored according to the coding sets 
(Cl,C2,. . . ,CJ}.  Let Pj = {Zk:k E Cj}. Let xo be an 
initial guess for the maximum penalized likelihood estimate. 
Then, we have the following iterative algorithm for finding the 
estimate based on the coloring. Each iteration of the algorithm 
has J steps. In the jth step of iteration p, fix all entries of x 
at their most recent estimates except those in Pi. Maximize 
Z(x) over the entries of x in Pi. If j < J ,  go to step j + 1, 
otherwise go to step one of iteration p + 1. 

Note that this algorithm is based on the algorithm proposed 
by Besag [3] .  It is convenient for implementation on parallel 
machines where a subvector of x may be updated all at once. 
Since the penalty neighborhood structure is used to determine 
the coding sets, the maximization of -a@(x) over one coding 
set results in independent maximizations. That is 

where 

The other terms in (25) do not depend on Pj (also recall that 
N ( k )  n Cj = 4, the null set, for k E Cj). If, in addition, 
f(y(x) decomposes into a product of terms in the components 
of x, then the algorithm would be fully parallel. One way to 
obtain a parallel implementation is through an EM algorithm. 

Suppose that for z E R“ there are two probability density 
functions fi and f2 such that 

the expected value of the complete data log-likelihood given 
the incomplete data y and the estimate x’ for x. The EM 
algorithm has two steps. In the expectation (E-) step, the 
quantity Q(xIxP) is computed. In the maximization (M-) step, 
Q(x1xJ’) is maximized over x to get xP+l. 

It is worth noting that the complete data space as defined 
here does not contain the usual many-to-one map to the incom- 
plete data space [lo], [25], [37]. That mapping is implicitly 
contained in the conditional density function f2(yIz). For 
more on this observation, see [12] and 1151. 

The new suggestion is that the maximization not be per- 
formed directly, but using a modified form of the iterative 
algorithm above. This makes the algorithm a generalized EM 
(GEM) algorithm [ 101. The GEM algorithm has the following 
iterations given an initial guess xo with p = 0: first, do the 
E-step (29) to get Q(xIxp); second, let j = p + 1 mod J ;  
third, for each k E Cj, maximize over Z k  

&:(ZklXp) =-ag(Zk;Zf, 1 E N ( k ) )  
+ E[logfik(zklZrc)l~,~~] (30) 

fourth, increment p and return to the E-step. Equation (30) 
emphasizes the parallel nature of the maximization step. For 
each element of the coding set Cj , the maximization proceeds 
independently of all other elements of that set since the 
neighbors of xk are not in Pj. The coding sets should be 
chosen wisely, ideally corresponding to a minimal coloring. 

A set of tools have developed in the literature for analyzing 
the convergence of EM algorithms [lo], [161, [251, 1331, [371. 
The following analysis relies on those results and convergence 
of this GEM algorithm is proven under conditions that guar- 
antee an EM algorithm would converge plus an additional 
condition. For this analysis, assume V is either R or R+. 

Convergence Assumptions: 
1) For Q(xll), let V,Q(xl[) and V,Q(xl[) denote the 

vectors of first partial derivatives of Q, and VJzQ(xl[), 
and V$Q(x(<) denote matrices of second derivatives 
of Q. Assume that all of these derivatives exist and are 
continuous. 

2) The set R(xo) = {x E Vn:I(x) 2 Z(xo)} is compact 
for Z(xo) > -CO. 

3) Assume that Ha(x) exists and is continuous for x E 

4) Z(x) is continuously differentiable for x E R(xo). 
R(X0). 
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5) Assume that for any sequence {xk} E s2(xo) Lemma 3: Let V E {R,R+}. Let xo be such that 
l(xo)> -m and suppose the sequence {xp} is given by 

lim Q(xk+'[xk) - a@(x"') - Q(xklxk) + a@(xk) = 0 the GEM algorithm described above. Under the convergence 
k-cx 

(3 1) Assumptions 1-4, 

implies 

lim [lxk+' - xk1( = o 
k+m 

for 1 1  . 1 1  an appropriate norm. 

n x 1 vector qk(X,x') to have Zth entry equal to' 
6) Let QL be given by (30), let IC E Cj, and define the 

2 1 ,  if 1 E Cm, for m < j ,  
if 1 E C,, for m 2 j .  [qk(x,x')I1 { 

Define G(x,x') to be an n x 1 vector with lcth entry 

Note that by definition of the algorithm and if As- 
sumptions 1-3 hold, G ( x ( ~ + ' ) ~ , x ~ ~ )  = 0. Let x* be 
such that G(x*,x*) = 0. Assume that VzG(x*,x*) is 
negative definite and that the magnitude of the largest 
eigenvalue of 

v ~ G ( x * , x * ) - ~ v ~ ~ G ( x * , x * )  (32) 

(denote this eigenvalue by p)  is less than one. 
7) From the definition of G in Assumption 6, the GEM 

algorithm proposed becomes both an A-algorithm in 
Hero and Fessler's terminology [16] and a one-step sta- 
tionary method in Ortega and Rheinholdt's terminology 
[27, p. 2991. Sufficient conditions for an iteration started 
at an arbitrary point in a fixed region to converge are 
given in [16, Theorem 11. Let ( 1  . [(:Rn + R+ be 
a vector norm and define the induced matrix norm by 
[ (A([  = sup+ ([[Ax[l/l[x[l). Let 0 c s2(xo) for some 
xo such that Z(xo) > -cm be defined as an arbitrary 
convex open set containing x* from Assumption 6 such 
that: 
a) For all x E 0, if xp = x for any p in the GEM 

with equality if and only if xi maximizes (30) for each 
IC E C j , j  = p + 1 mod J. If I[xP+l - x ( ( = O  P 

(Assumption 5 implies this), then the limit points of the 
algorithm form a connected and compact set and limit points 
are stationary points of 1. Under convergence Assumptions 1-4 
and 6, there is an open ball B(x*) in V" containing x* such 
that all GEM sequences starting at xo E B(x*) converge to 
x* at linear rate. The convergence factor for the subsequence 
{xmJ} is p. If in addition Assumption 7 holds, there is only 
one limit point for any xo E 0, and the GEM algorithm 
converges to that point at linear rate. 

The proof is in the appendix. The condition on the matrix 
(32) is the additional requirement needed for convergence of 
this algorithm. Note that G has a block triangular structure 
in its dependence on x and x'. This is due to the GEM 
algorithm only updating subblocks of the estimate for x at each 
iteration. The convergence is established for the subsequence 
of the GEM algorithm consisting of every Jth element through 
the use of G. The convergence of the entire sequence then 
follows from the fact that the iterations monotonically increase 
Z(x). The convergence factor is smaller ( p l l J )  than for the 
traditional EM algorithm ( p )  due to only updating subblocks 
of x. The convergence depends on the negative definiteness of 
the matrix V,G(., .) that has entries that depend on the second 
derivatives of Q and of a. Thus, while the convexity of @ is 
not used directly in the proof, it makes the satisfaction of this 
negative definiteness condition easier. 

Iv. RELATIONSHIP TO GOOD'S ROUGHNESS 
The divergence penalty as presented in (13) and (16) is 

closely related to a penalty proposed by Good and Gaskins 
1131. Let x(t) E L1(R) be a probability density function to 
be es?imated. Then, the penalty proposed in [13] is given by 

algorithm, then xP+l E 0. aiogx 
b) For any x,X E 0 such that G(X,x) = 0, define 

A(X,x) as the box in R2" with corners at (x*,x*) 
dt .  (35) 

and (x,x) and with sides parallel to the 2n axes'; Defining y(t) = a, this penalty may be rewritten as 
by the mean value theorem, there exists (XI,  x2) E 
A(X,x) such that 

X* - X = -V~G(X~,X~)-~V~/G(X~,X~)(X* - X )  (33) 

then assume VzG(xl,x2) is negative definite and 
)(V+G(xl,x2)-lV,,G(xl,x2)I) 5 a 2 <  1 for all 
x E 0. 

that if k and kr are both in c,, then qk(x ,  xr) = q k , ( x ,  x t ) ,  

This forms the basis for the implementation in [41, 1231 for 
images, which is used in Section VI for comparison to the 
proposed implementation. In that implementation, the integral 
in (36) is approximated by a discrete sum and the optimization 
is performed over a discrete version of ~ ( t )  rather than directly 
over z( t ) .  Also, if k E C1, then qk(x,x')  = XI. 
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As noted in [13], Q C ( x )  is the Fisher information for 
estimating the mean of an otherwise known density function. 
Thus, using the same arguments that lead to the conventional 
derivation of the Fisher information [36, p. 661, Qc may be 
rewritten as 

= - / x ( r )  a2 log x dt. 
(37) 

This motivates the use of a discretization of (37) directly. 
Approximate x( t )  by a piecewise constant function equal to 
Xk over intervals [ t o  + (k - l )A,  to + kA),  n = 1 , 2 , .  . . , n. 
Approximate the second derivative by 

- (logz, - logx,-1)]. (38) 

Then, the divergence penalty as written in (13) equals A times 
a discretization of (37) using (38). This approach avoids the 
need to use y(t). The positivity of the estimates for xk is 
guaranteed by the divergence only being defined for positive 
arguments. 

Note that while the derivation of (37) given above assumes 
that z(t) is a probability density function, the derivation 
carries through under more general conditions. Expanding the 
integrand in (37) yields x - (l/x)k2. Assume that x(t) is 
nonnegative and integrable. Then, as long as x exists and is 
integrable, its integral equals 0 and (37) equals (35).2 This 
justifies the use of the divergence penalty as a discretization 
of the penalty from Good and Gaskins. Further motivation for 
the continuous penalty (35) is that it is the Fisher information 
for position estimation for a Poisson process with integrable 
intensity function x(t), assuming count-record data [31, p. 801. 

V. LINEAR CONSTRAINTS 
In this section, the estimate for x is further constrained to 

(39) 

where B E Rkxn (resp., C k x n )  and b E Rk (resp., C k ) .  
Throughout, we assume that L is nonempty, k < n, and B is 
of full rank. We may also denote L by L(B, b). 

Example 9: Let V = R+. The set L = {x E Rn+: lTx  = 
1) is the set of probability vectors. 

The shift Si is compatible with L if Si(L) = L. Note that Si 
is compatible with L if and only if L(B, b) = L(BSi, b) = 
L (B Sy , b) , for all m. In order to explore the implications of 
this further, the structure of L is further defined. L is a linear 
variety [22, p. 161 (or the intersection of a linear variety and 
R; if V = R+). In fact 

(40) 

where x is an arbitrary vector from L and N(B) is the null 
space of B (in R" or C"). Since SiL = L,Six E L, and 
the null space of B is an invariant subspace for S i .  By the 

'As pointed out by an anonymous reviewer, an altemate condition for 
equality of (35) and (37) is that i ( a )  = k(h) ,  and that the limits on the 
integral are from a to h. 

satisfy linear equations. Denote by L the subset of V" 

L = {X E V": BX = b}, 

L = {x + N(B)} n V" 

projection theorem [22, p. 511, there is a unique element x, 
of R" (or C") of minimum Euclidean norm such that (40) 
is satisfied with x = x,. Furthermore, x, is orthogonal to 
all elements of N(B);x, = 0 if and only if b = 0.  In that 
case, the rows of B are linear combinations of k eigenvectors 
of S i .  The remaining n - k eigenvectors of Si span the null 
space of B (no distinction is made between the left and right 
eigenvectors of Si  since they are complex conjugate transposes 
of each other). Now suppose x, # 0.  Then it is still m e  that 
n - k eigenvectors of S; span the null space of B. The vector 
x, is a linear combination of the other k eigenvectors of S i .  

Now the claim is that x, is a multiple of an eigenvector of Si 
with eigenvalue one. This holds because Six, has the same 
norm as x, and Six, E {x, + N(B)}. If Six, # x,, then 
this contradicts the uniqueness of the minimum norm element 
from the projection theorem. Note that if V = R+, x, is not 
necessarily in L. 

Dejnition 8: The pair (B, b) is said to be in standard form 
if either 

1) b = [l 0 ... 0IT; the rows of B are orthogonal 
to each other; and all but the first row of B have unit 
Euclidean norm or 

2) b = 0 and the rows of B are orthonormal. 
Lemma 4: L(B, b) is equivalent to L(B,, bs), where 

(Bs, b,) is in standard form. 
Pro08 If U is an invertible k x k matrix, then L(B, b) = 

L(UB,Ub). If b = 0, select U (through elementary row 
operations) to make the rows of B orthonormal. If b # 0, 
let U = U1U2U3. Select U3 to transform b to standard 
form. Select U2 (using elementary row operations) to remove 
the linear dependence of the first row on the remaining rows. 
Select U1 to make the remaining k - 1 rows orthonormal. 0 

From the discussion above we have the following lemma. 
Lemma 5: If (B, b) is in standard form with b # 0, and S; 

is compatible with B, then the first row of B is an eigenvector 
of S i  with eigenvalue one. Let (zl,z2,...,zj) be a cycle 
in the decomposition of T; into disjoint cycles. Then, the 
il, i2, . . . , andij entries of the first row of B are equal. 

Pro08 Let the first row of B be denoted p. The minimum 
norm solution to Bx = b is given by 

x, = Bt(BBt)-'b. (41) 

Since the rows of B are orthogonal, BBt is diagonal implying 
that x, is proportional to pt. This means that p is an 
eigenvector of Si with eigenvalue one. The fact that the 
row elements are equal within one cycle follows by noticing 
that Si may be decomposed as a direct sum of matrices 
corresponding to each cycle. Then, the eigenvector for the 
matrix corresponding to a given cycle with eigenvalue one 

0 
The use of linear constraints in estimation problems com- 

plicates the GEM algorithm presented in the previous section. 
In particular, the coding sets are no longer decoupled, being 
coupled by the linear constraints. For the algorithm above to 
be useful an additional step must be included at the end of an 
iteration to promote mixing between the coding sets. 

has entries equal over that cycle. 
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Fig. 1. Photograph of the display on an AMT DAP 510 for the emission tomography simulation. The upper left is a digitized Hoffman brain phantom. 
The upper right shows the image obtained using the divergence penalty discussed in the paper with a = 0,0025. The lower left shows the unpenalized 
estimate. The lower right shows a cross section through the images. 

VI. APPLICATIONS 

A. Application to Emission Tomographic Imaging 
The problem of estimating a radioactivity distribution in 

the presence of photon attenuation and background radiation 
is presented by Snyder and Miller in [31]. The derivation 
here assumes familiarity with the basic concepts in [31]. Our 
emphasis is on a discrete version of the problem. 

Let N ( j )  be the available data at location j .  N ( j )  is Poisson 
distributed with mean p ( j )  

The term p o ( j )  accounts for background intensity, ,B(jli) is 
a spatially dependent attenuation, and p ( j  li) is the probability 
that an event at location i in the input space is measured 
at location j in the output space. The imaging problem is 
to recover the intensities {X i ,  i = 1,2,  . . , I} from the data 
{ N ( j ) ,  j = 1,2, . . , J }  . The log-likelihood function is given 
by 

I 

L(X) = - cp(i)xi 
i=l 

.I r I 1 

where p(i) = E $ l / 3 ( j ~ i ) p ( j ~ z ) .  The penalized log-likelihood 
is maximized over X i  using the GEM algorithm, with the 
divergence penalty (13). 

Simulations were run on an AMT DAP 510. We compared 
our penalty method with existing Good's roughness methods 
from [4], [23], [29]. The factor cy. was chosen to be equivalent 
for the two methods. From Figs. 1 and 2 and other simulations 
our method is seen to yield almost identical results to the 
implementations from [4], [23], [29]. This is expected since 
they are two implementations of the same penalty. 

B. Application to Radar Imaging 

As described in [26], [28], and [32], diffuse radar targets are 
commonly modeled as having a reflectivity density that is an 
uncorrelated complex Gaussian random process. The scattering 
function for the reflectivity density models the intensity of the 
reflections. If the estimate is piecewise constant, the scattering 
function estimation problem is one of estimating the variances 
of the vector of reflectivities. Experimental data have been 
collected from a rough rotating sphere placed on a pedestal 
in a compact radar range [28]. Under the assumptions in [28], 
a noisy estimate of the reflectivities may be obtained. More 
precisely, the measured data are modeled by 

= rk + (44) 

where w is a noise vector of independent and identically 
distributed zero-mean complex Gaussian random variables; c 
is a vector of independent complex-valued Gaussian random 
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Fig. 2. The upper right and lower left are the same as in Fig. 1. The upper left shows the image obtained using the implementation of Good’s penalty as 
presented in [41 and [231. The two upper images are almost identical and in the lower right, the cross sections lie on top of each other. 

variables representing the reflectivities; and I? is a matrix of 
samples of the complex envelope of the transmitted signal 
times complex exponentials. The matrix r is assumed to be 
unitary so rrf = I. n u s  

r y = c + +  (45) 

where w = rw has the same distribution as w. A sufficient 
statistic consists of the entries of ry magnitude squared, which 
are denoted by z; j .  

The zij are then independent, exponentially distributed 
random variables with means xij + NO, where x~ij is the 
discrete approximation to the scattering function and NO is the 
white noise intensity (measured as 0.0023, see [28]). Since the 
data are independent, there is no need to use the EM algorithm 
and the log-likelihood minus the penalty (21) is minimized 
for various values of a to attempt to measure the amount of 
smoothing introduced by the penalty. The divergence penalty 
(13) is used. Shown in Fig. 3 is a set of images produced for a 
range of values of cy for one of the experimental data sets. The 
signal-to-noise-ratio (total signal energy to total noise energy) 
was estimated to be 0 dB [28]. As can be seen in Fig. 3, the 
images become smoother for larger values of a. Fig. 3(b) and 
(c) are taken from near the corner of the tradeoff curve in 
Fig. 4. 

Fig. 4 shows the tradeoff curve for the penalized estimation 
problem. This curve plots the value of the log-likelihood at the 
maximum penalized likelihood estimate versus the value of the 
penalty at that estimate as the weight a varies. This curve 
quantifies the tradeoff in several senses. First, maximizing 
likelihood subject to a constraint on the value of the roughness 

penalty corresponds to finding the values of xij corresponding 
to the point on the curve for that penalty value. Second, all 
possible estimation procedures yield likelihoods and penalty 
values below the curve. Third, for a fixed value of likelihood, 
the curve defines the smallest possible penalty value. Fourth, 
the parametric nature of the curve can be examined. Let 
the value of the log-likelihood for a given cy be l (a) ,  the 
penalty value be +(a), and the penalized likelihood value be 
.(cy) = l (a)  - a+(a). Then, it is easy to show that 

and dv/da = -4(a) < 0. Thus, the penalized likelihood 
decreases as the weight on the penalty increases. The value 
of the likelihood and the value of the penalty decrease as the 
weight on the penalty increases. The tradeoff curve is concave 
because the increasing value of cy for smaller I(&) implies an 
increasing slope. 

VII. CONCLUSIONS 
A class of roughness penalties has been proposed for finite 

dimensional vector spaces. The penalties are formed from 
two quantities: shifts and discrepancy measures. Discrepancies 
between the vectors and shifted copies of themselves are 
penalized. If the coordinates in the vector correspond to lattice 
locations on a finite lattice, then the shifts correspond to cyclic 
shifts of the lattice. This is analogous to periodic boundary 
conditions on the lattice. 

An iterative algorithm has been proposed along with its use 
in an EM algorithm. This algorithm is based on the use of 
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Fig. 3. Shown are four penalized estimates of images of the rotating sphere using real data. Each image is 64 x 64 and displayed on a dB scale with 
the peak value shifted to the highest value on a linear gray scale. The weights in the images are: 0.0512 for (a), 0.4096 for (b), 3.277 for (c),  and 26.21 
for (d). The corresponding values of penalty and likelihood are shown in Fig. 4. 

coding sets to update only part of the estimated vector at each 
step. Convergence is proven under certain assumptions. In the 
process, a recent generalization of the concept of a complete 
data space was used (see [12], [15]). The penalty may be 
thoug!rt of as a discretization of a.*penalty on function spaces 
proposed by Good and Gaskins [13]. It avoids the need to 
use the square root of the function to be estimated, enforcing 
positivity in a natural way. 

The extension to the nonperiodic case is straightforward, 
but slightly less mathematically pleasing. There are lattice sites 
shifted off the lattice and the discrepancy measure is defined on 
the reduced dimensional vector representing the shifted sites 
that overlap the original lattice. The use of the EM algorithm 

goes through for this case with the modification that not all g 
functions are the same. 

APPENDIX 

Proof of Lemma 3: Taking the usual approach [lo], [16], 
[25], write 

logf(ylx) = -logf(zlY,x) + l%f2(YIZ) +logf1(zlx). 
(AI) 

Since the left hand side does not depend on z, multiplying by 
f(zly, x p )  and integrating out z yields 

logf(ylx) = H(xIxp) + Q(xIxP) + E[logf(~Iz)I~ ,x~I  
(A21 



OSULLIVAN: ROUGHNESS PENLITES ON FINlTE DOMAINS 1261 

x lo4 
2.2, 1 

I 
50 100 150 

1 B‘ 0 
Penalty Values 

Fig. 4. Tradeoff curve for penalized estimation. This curve plots log likeli- 
hood versus penalty values as the weight c2 varies. Each point on the curve is 
equivalently obtained by maximizing likelihood subject to a maximum value 
for the penalty. The “$” marks on the curve correspond to the images in 
Fig. 3. 

where 

Then 

I(xP+’) - I(xp) = Q(xP+llxP) - Q(xPIxP) - a@(xP+’) 
+ a@(xP) + D(XP+lIXP) (‘44) 

where 

is the divergence between the conditional densities of z given 
xP and xP+l. Note that 

D(XP+lIXP) 2 0 (Ab) 

with equality if and only if 

f(ZlY, XP) = f(ZlY, XP+7 (A71 

almost everywhere. Thus, to show (34) it is sufficient to show 
the remaining terms in (A4) are nonnegative. This follows 
from the maximization (30): 

Q(xP+’lxP) - Q(xPlxP) - a@(xP+l) + a@(xP) 
= & I ( Z ~ + ’ ~ X ~ )  - Q;(xiIxP) (A@ 

kEC, 

since (30) is maximized for each Z k ,  each term on the 
right side of (AS) is nonnegative. (AS) equals 0 only if Z; 
maximizes Q L ( z k  IxP). 
l(x) is bounded above because it is a continuous function 

on a compact set. Since l(x) is bounded above and l(xP) is 
nondecreasing, there is a limiting value, I* = limp+m I(xP). 
That the limit points form a connected and compact set and 
are stationary points follows from Wu [37]. The existence 
of an open ball such that all sequences starting in that ball 
converge and the derivation of the convergence rate follow 
from [27, Theorem 10.3.51. The convergence for all sequences 
starting from xo E 0 follows from the fact that I I x ( ~ + ’ ) ~  - 
x*IJ < a21(xmJ - x*II. For m large enough, xmJ E B(x*) 
and the sequence converges at a linear rate determined by p 
from [27, Theorem 10.3.51. See also 116, Theorem 11. U 
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