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APPENDIX: THE COX DERIVATION OF PROBABILITY

Richard Cox s approach applies the logic of inference , not immediately to the arbitrar
complexities of global problems, but merely to the simple, unambiguous, 8-state toy
world of up to thee binar switches. Remarkably, ths tiny world suffces to define the
rules of probability calculus. My brief outline here follows the original development of
Cox (1,2), with commenta by Jaynes ((10), chapter 2). I have modernsed the context,
re-ordered some of the material with clarty in mind, and omitted the idiosyncratic
manpulations required to solve the functional equations that occur. There are levels
of pedantry beyond anythng I attempt, but they don t change the conclusions.

Our belief about the state S of a system is always in a specific context X , and we write
n(S I X) for it. Thus, in the I-bit context = -(, n of a single switch we write our



belief in being "i" as

(A 11) = UJ I -(, n, with belief n(A I) ,

and the converse "not A" 

(A I 1) = tH I -(, n, with belief n(A I 1) .

In the 2-bit context = -(1, 1 i, i 1, nJ of two switches we have

(A J) = U 1, in I -(1, 1 i, i 1, in, with belief n(A 

for the fist bit and similarly for the second bit B. There are also AN B" joint
beliefs about two bits both being "

(AB J) un I -(1, 1 j, i 1, in, with belief n(AB J),

and other conditional beliefs such as

(B AJ) = un I U 1, in, with belief n(B AJ).

In the 3-bit context = tHL Hi, iLl n, ilL i 1 i, n 1, inJ of 

(A K) = tilL il j, n 1, nn I -(11, Hi, li 1, n, ilL il i, n 1, 
with belief n(A 

and similarly for the other varants.
We aim to develop a calculus for manipulating our beliefs about this system, and

star by asserting transitivity - if, in context we have more belief in than 

and more in than C, then we assert that we have more belief in C than in A. To do
otherwise would lead us to argue in circles (or at least trangles). A consequence is that
we can map n (whatever it was originally) onto real numbers, in which "more belief in
is represented by . The transitivity assertion is

n(A K) n(B K) 

n(B K) ? n( C I K) f 
n(A K) ? n( C I 

So beliefs are real numbers - or at least they may as well be.
We now assert that knowing about A, and also about given suffces to teach

us about all in the same overall context J. Some function depending on both its
arguments formalises this inference:

(A J) = U 1, in I -(1, 1 j, i 1, in, belief n(A J) ,
(B AJ) un I U 1, in, belief n(B AJ) ,
(AB J) = un I -(1, 1 i, i 1, in, belief n(AB J) F(a b).

The world of thee bits allows sequential learng too. The three beliefs

(A K) = U 11, i 1 i, n 1, nn I tHL... nn, belief n(A 

(B AK) = tn 1, nn I ti H, i 1 i, n 1, nn, beliefy = n(B AK)
(C I ABK) tnn Ui 1, nn, belief n(C ABK)

(1 )

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)



chain together to define our belief n(ABC K). In the chain, could be combined with
before linkng with C, or with C before A. Hence

n(ABC K) F(F(x y), z 

) = 

F( x F(y, z))
ABIK ClABK AIK BClAK

in which the arguments of the outer are labelled underneath. Ths is the "associativity
equation" and it restrcts to be of the form

(10)

F(a b) =G- (G(a)+G(b)) (11)

where G is some invertable function of only one varable, instead of two. (Ths is often
quoted multiplicatively as (W(a)W(b)), but it's better here not to exponentiate in
the proof, and let the components add instead.) Remembering that n was initially on an
arbitrar scale, we can upgrade to a less arbitrar scale of belief

cpO = G(n(.)) (12)

in which sequential learng (8) proceeds by addition

cp(AB J) cp(A J) cp(B AJ). (13)

Yet there remains some arbitrarness, because cp could be rescaled by any function 

to p( cp(.)) provided
p(u+v) p(u) +p(v) (14)

so that (13) still holds. Any constant scaling p (cp) ycp suffces, although that is the
only such freedom. To fix the scale completely, we consider negation.

In the two-state world 
= -(, n f a single bit, we assert that our belief about 

defines our belief about its converse formalised by some function 

cp(A I) f( cp(A 11)) . (15)

Repeated negation is the identity, so

f(J(x)) =x. (16)

Now consider the thee-state world = -( j, i 1, in of two bits and in which at
least one is "i". With context understood thoughout,

cp(AB) cp(A) +cp(B 

= cp(A) f( cp(:B A))

= cp(A) f( cp(:B , A) cp(A))

= cp(A) f( cp(:B) cp(A))

= cp(A) f(J(cp(B)) cp(A))
=x+ f(J(y) -

Symmetr cp(AB T) cp(BA T) then gives

x+ f(J(y) - x) y+ f(J(x) -

sequential learing
definition of 

sequential de-learng
= 1 state is unique in 

definition of 

name cp(A) , cp(B) 
(17)

(18)



The functional equations (16) and (18) together require

f(x) 

= y

1og(1- rx) (19)

and hence
exp (ycp(A I /)) = 1- exp (ycp(A I/)) (20)

Remembering that cp could be scaled with any coefficient y, we can upgrade to a
fixed scale by defining Pr(.) = exp(ycp(.)). Qualitatively, 0:: PrO:: 1 because neither
exponential in (20) can be negative. Quantitatively, (20) becomes

Pr(A I) +Pr(A I) = 1 (21)

which is the sum rule. Meanwhile, (13) exponentiates to

Pr(AB J) pr(A J) Pr(B AJ) (22)

which is the product rule. We have derived the sum and product rules of probability
calculus , and there s no scaling freedom left. With both rules obeyed, we are entitled to
call Pr(S I X) the probabilty of state S in context X.

For general inference, we use the simple switches , C

,... 

to encode arbitrar
propositions. Applying the product rule when we know to be "i" (hence Pr(AB J) =
Pr(A J)), shows that the tre statement (B AJ) has Pr(B AJ) = 1. In general context,
the unique tre proposition thus has to be assigned Pr(TRUE) = 1. The negation of truth
being falsity, it follows from the sum rule that Pr(FALSE) = O. Hence

Pr(FALSE) = 0 :: PrO:: 1 = Pr(TRUE) (23)

and this restrcts the assignments we can make.
The Cox derivation rests only upon elementar logic applied to very small worlds. If

there is a general theory of rational inference at all, it must apply in special cases, so it
can only be this probabilty calculus. Moreover, any defined problem can be broken
down into small steps. We have to use probabilty calculus in the small steps, and
this implies using it overall in the larger problem. This is the only globally-applicable
calculus we are ever going to have, so we should use it. And it does seem to be rather
successful.


