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Abstract

Bicyclic graphs are connected graphs in which the number of edges equals the number of vertices plus
one. In this paper we determine the graph with the largest spectral radius among all bicyclic graphs with n
vertices and diameter d. As an application, we give first three graphs among all bicyclic graphs on n vertices,
ordered according to their spectral radii in decreasing order.
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1. Introduction

Let G = (V (G), E(G)) be a (simple) graph with n vertices, and let A(G) be a (0, 1)-adja-
cency matrix of G. Since A(G) is symmetric, its eigenvalues are real. Without loss of generality,
we can write them as λ1(G) � λ2(G) � · · · � λn(G) and call them the eigenvalues of G. The
characteristic polynomial of G is just det(λI − A(G)), and is denoted by φ(G; λ). The largest
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eigenvalue λ1(G) is called the spectral radius of G, denoted by ρ(G). If G is connected, then
A(G) is irreducible, and by the Perron–Frobenius theory of non-negative matrices, ρ(G) has
multiplicity one and there exists a unique positive unit eigenvector corresponding to ρ(G). We
shall refer to such an eigenvector as the Perron vector of G.

The investigation on the spectral radius of graphs is an important topic in the theory of graph
spectra. Recently, the problem of finding all graphs with maximal or minimal spectral radius
among a given class of graphs has been studied extensively. For related results, one may refer to
[1–9,11–13,15–17] and the references therein.

Bicyclic graphs are connected graphs in which the number of edges equals the number of
vertices plus one. Chang et al. [3] determined graphs with the largest spectral radius among all the
bicyclic graphs on n vertices with perfect matching. Yu and Tian [17] determined the graph with
the largest spectral radius among all the bicyclic graphs on n vertices with a maximum matching
of cardinality m. Guo et al. [7,13] determined the graph with the largest spectral radius among
all the bicyclic graphs with n vertices and k pendant vertices. Simić [15] determined the bicyclic
graphs on prescribed number of vertices with spectral radius minimal.

The diameter of a connected graph is the maximum distance between pairs of its vertices. Very
recently, Guo et al. [9] determined the graphs with the largest and the second largest spectral
radius among all trees with n vertices and diameter d . Guo and Shao [6] characterized the first⌊

d
2

⌋ + 1 trees with n vertices and diameter d ordered according to their spectral radii. Guo [8]
determined the graph with the largest spectral radius among all unicyclic graphs with n vertices
and diameter d.

In this paper, we study the spectral radius of bicyclic graphs with n vertices and diameter d, and
determine the graph with the largest spectral radius among all bicyclic graphs with n vertices and
diameter d. As an application, we give first three graphs among all bicyclic graphs on n vertices,
ordered according to their spectral radii in decreasing order.

2. Preliminaries

Denote by Cn and Pn the cycle and the path, respectively, each on n vertices. Let G − uv

denote the graph that arises from G by deleting the edge uv ∈ E(G). Similarly, G + uv is
the graph that arises from G by adding the edge uv /∈ E(G), where u, v ∈ V (G). For v ∈
V (G), N(v) denotes the set of all neighbors of vertex v in G, and d(v) = |N(v)| denotes the
degree of vertex v in G. A pendant vertex of G is a vertex of degree 1. A pendant edge is
an edge with which a pendant vertex is incident. For a real number x, we denote by �x�
the greatest integer �x, and by �x� the least integer �x. We denote by Bn,d the set of all
bicyclic graphs with n vertices and diameter d . Let Cp and Cq be two vertex-disjoint
cycles. Suppose that a1 is a vertex of Cp and al is a vertex of Cq . Joining a1 and al by a
path a1a2 · · · al of length l − 1 results in a graph B(p, l, q) (Fig. 1) to be called an ∞-graph,
where l � 1 and l = 1 means identifying a1 with al . Let Pl+1, Pp+1 and Pq+1 be three vertex-
disjoint paths, where l, p, q � 1 and at most one of them is 1. Identifying the three initial
vertices and terminal vertices of them respectively results in a graph P(l, p, q) (Fig. 2) to
be called a θ -graph. Obviously Bn,d consists of two types of graphs: one type, denoted by
B∞

n,d , are those graphs each of which is an ∞-graph with trees attached; the other type, de-

noted by Bθ
n,d , are those graphs each of which is a θ -graph with trees attached. Then Bn,d =

B∞
n,d ∪ Bθ

n,d .
In order to complete the proof of our main result, we need the following lemmas.
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Fig. 1. B(p, l, q).

Fig. 2. P(l, p, q).

Lemma 1 [16,12]. Let G be a connected graph and let ρ(G) be the spectral radius of A(G).

Let u, v be two vertices of G. Suppose v1, v2, . . . , vs ∈ N(v)\N(u)(1 � s � d(v)) and x =
(x1, x2, . . . , xn) is the Perron vector of A(G), where xi corresponds to the vertex vi(1 � i � n).

Let G∗ be the graph obtained from G by deleting the edges vvi and adding the edges uvi (1 �
i � s). If xu � xv, then ρ(G) < ρ(G∗).

By Lemma 1, we obtain easily Lemmas 2 and 3 which may be regard as immediate conse-
quences of Lemma 1. Since their proofs are similar, we only give the proof of Lemma 2.

Lemma 2. Let G be a connected graph and let e = uv be a non-pendant edge of G with N(u) ∩
N(v) = ∅. Let G∗ be the graph obtained from G by deleting the edge uv, identifying u with v,

and adding a pendant edge to u(= v). Then ρ(G) < ρ(G∗).

Proof. We use xu and xv to denote the components of the Perron vector of G corresponding
to u and v respectively. Suppose that N(u) = {v, v1, . . . , vs} and N(v) = {u, u1, . . . , ut }. Since
e = uv is a non-pendant edge of G, it follows that s, t � 1. If xu � xv, let

G′ = G − {vu1, . . . , vut } + {uu1, . . . , uut }.
If xu < xv, let

G′′ = G − {uv1, . . . , uvs} + {vv1, . . . , vvs}.
Obviously, G∗ = G′ = G′′. By Lemma 1, we have ρ(G) < ρ(G∗).

This completes the proof. �

Lemma 3. Let G, G′, G′′ be three connected graphs disjoint in pairs. Suppose that u, v are two
vertices of G, u′ is a vertex of G′ and u′′ is a vertex of G′′. Let G1 be the graph obtained from
G, G′, G′′ by identifying, respectively, u with u′ and v with u′′. Let G2 be the graph obtained
from G, G′, G′′ by identifying vertices u, u′, u′′. Let G3 be the graph obtained from G, G′, G′′ by
identifying vertices v, u′, u′′. Then either ρ(G1) < ρ(G2) or ρ(G1) < ρ(G3).

Let G be a connected graph, and uv ∈ E(G). The graph Gu,v is obtained from G by subdividing
the edge uv, i.e., adding a new vertex w and edges wu, wv in G − uv. Hoffman and Smith define
an internal path of G as a walk v0v1 · · · vs (s � 1) such that the vertices v0, v1, . . . , vs are distinct,
d(v0) > 2, d(vs) > 2, and d(vi) = 2, whenever 0 < i < s (note, s is the length of the path). An
internal path is closed if v0 = vs . They proved the following result.
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Fig. 3. Wn.

Lemma 4 [10]. Let uv be an edge of the connected graph G on n vertices.

(i) If uv does not belong to an internal path of G, and G /= Cn, then ρ(Gu,v) > ρ(G).

(ii) If uv belongs to an internal path of G, and G /= Wn, where Wn is shown in Fig. 3, then
ρ(Gu,v) < ρ(G).

Lemma 5 [4]. The characteristic polynomial of Pn satisfies the expression

φ(Pn; λ) = 1√
λ2 − 4

(
xn+1

1 − xn+1
2

)
,

where

x1 = 1

2

(
λ +

√
λ2 − 4

)
and x2 = 1

2

(
λ −

√
λ2 − 4

)

are the roots of the equation x2 − λx + 1 = 0.

Lemma 6 [11,6]. Let u and v be two adjacent vertices of the connected graph G with d(u) > 1
and d(v) > 1. For non-negative integers k and l, let G(k, l) denote the graph obtained from
G by adding pendant paths of length k at u and length l at v. If k � l � 1, then ρ(G(k, l)) >

ρ(G(k + 1, l − 1)).

Lemma 7 [11,6]. Let G be a connected graph, and G′ be a proper spanning subgraph of G. Then
ρ(G) > ρ(G′) and φ(G′; λ) > φ(G; λ) for all λ � ρ(G).

The following two results are often used to calculate the characteristic polynomials of graphs.

Lemma 8 [4,14]. Let e = uv be an edge of G, and C(e) be the set of all cycles containing e. The
characteristic polynomial of G satisfies

φ(G; λ) = φ(G − e; λ) − φ(G − u − v; λ) − 2
∑

Z∈C(e)

φ(G\V (Z); λ).

Lemma 9 [4,14]. Let u be a vertex of G, and let C(u) be the set of all cycles containing u. The
characteristic polynomial of G satisfies

φ(G; λ) = λφ(G − u; λ) −
∑

v∈N(u)

φ(G − u − v; λ) − 2
∑

Z∈C(u)

φ(G\V (Z); λ).

As usual, we assume that the characteristic polynomial of an empty graph is equal to 1. Let
d � 2 and 2 � i � d. We denote by P ∗

d+1(i) the graph obtained from a path Pd+1 : v1v2 · · · vd+1

and isolated vertices vd+2, . . . , vn by adding edges vivd+2, . . . , vivn. Denote by P ∇∇
d+1(i) the

graph obtained from P ∗
d+1(i) by adding edges vd+2vd+3 and vd+4vd+5, by P �∇

d+1(i) the graph
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obtained from P ∗
d+1(i) by adding edges vi−1vd+2 and vd+3vd+4, by P ��

d+1(i) the graph obtained
from P ∗

d+1(i) by adding edges vi−1vd+2 and vi+1vd+3, and by P +
d+1(i) the graph (Fig. 7) obtained

from P ∗
d+1(i) by adding edges vi−1vn and vi+1vn.

Lemma 10. Let d � 3. Then ρ(P ��
d+1(i)) � ρ(P �∇

d+1(i)) � ρ(P ∇∇
d+1(i)) with the first equality if

and only if i = d and the second equality if and only if i = 2.

Proof. Clearly, P ��
d+1(d) = P �∇

d+1(d), P �∇
d+1(2) = P ∇∇

d+1(2). Denote by P �
d+1(i) the graph obtained

from P ∗
d+1(i) by adding edge vi−1vd+2.

For 2 � i < d , applying Lemma 8 to edge vi+1vd+3 of P ��
d+1(i) and edge vd+3vd+4 of P �∇

d+1(i)

respectively, we have

φ(P ��
d+1(i); λ) = φ(P �

d+1(i); λ) − φ(P ��
d+1(i) − vi+1 − vd+3; λ)

− 2λn−d−3φ(Pi; λ)φ(Pd−i; λ),

φ(P �∇
d+1(i); λ) = φ(P �

d+1(i); λ) − φ(P �∇
d+1(i) − vd+3 − vd+4; λ)

− 2λn−d−4φ(Pi; λ)φ(Pd−i+1; λ).

Note that P ��
d+1(i) − vi+1 − vd+3 is a proper spanning subgraph of P �∇

d+1(i) − vd+3 − vd+4, and
K1 ∪ Pd−i is a proper spanning subgraph of Pd−i+1. By Lemma 7 we have

φ(P �∇
d+1(i); λ) − φ(P ��

d+1(i); λ)

= φ(P ��
d+1(i) − vi+1 − vd+3; λ) − φ(P �∇

d+1(i) − vd+3 − vd+4; λ)

+ 2λn−d−4φ(Pi; λ)[λφ(Pd−i; λ) − φ(Pd−i+1; λ)] > 0

for all λ � ρ(P �∇
d+1(i)). Thus ρ(P ��

d+1(i)) > ρ(P �∇
d+1(i)).

For 3 � i � d, applying Lemma 8 to edge vi−1vd+2 of P �∇
d+1(i) and edge vd+2vd+3 of P ∇∇

d+1(i)

respectively, by similar reasoning as above, we have

φ(P ∇∇
d+1(i); λ) − φ(P �∇

d+1(i); λ)

= φ(P �∇
d+1(i) − vi−1 − vd+2; λ) − φ(P ∇∇

d+1(i) − vd+2 − vd+3; λ)

+ 2λn−d−5(λ2 − 1)φ(Pd−i+1; λ)[λφ(Pi−2; λ) − φ(Pi−1; λ)] > 0

for all λ � ρ(P ∇∇
d+1(i)). Thus ρ(P �∇

d+1(i)) > ρ(P ∇∇
d+1(i)).

This completes the proof. �

Lemma 11. Let G1(i), G2(i) and P θ
d+1(i), shown in Figs. 4–6, belong to Bn,d . Then

ρ(G1(i)) < ρ(G2(i)) � ρ(P θ
d+1(i)),

and the equality holds if and only if i = 2.

Fig. 4. G1(i).
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Fig. 5. G2(i).

Fig. 6. Pθ
d+1(i).

Proof. Applying Lemma 8 to edge vn−2vn−1 of G1(i) and edge vivn of G2(i) respectively, we
have

φ(G1(i); λ) = φ(G1(i) − vn−2vn−1; λ) − φ(G1(i) − vn−2 − vn−1; λ)

− 2φ(G1(i) − vn−2 − vn−1 − vi; λ) − 2φ(G1(i) − vn−2 − vn−1 − vn; λ),

φ(G2(i); λ) = φ(G2(i) − vivn; λ) − φ(G2(i) − vi − vn; λ)

− 2φ(G2(i) − vi − vn − vn−2; λ) − 2φ(G2(i) − vi − vn − vn−1; λ).

Note that G1(i) − vn−2vn−1 = G2(i) − vivn and

G1(i) − vn−2 − vn−1 − vi = G2(i) − vi − vn − vn−2.

Also note thatG2(i) − vi − vn,G2(i) − vi − vn − vn−1 are proper spanning subgraphs ofG1(i) −
vn−2 − vn−1, G1(i) − vn−2 − vn−1 − vn respectively. By Lemma 7 we have

φ(G2(i) − vi − vn; λ) > φ(G1(i) − vn−2 − vn−1; λ)

for all λ � ρ(G1(i) − vn−2 − vn−1) and

φ(G2(i) − vi − vn − vn−1; λ) > φ(G1(i) − vn−2 − vn−1 − vn; λ)

for all λ � ρ(G1(i) − vn−2 − vn−1 − vn). These imply that φ(G1(i); λ) > φ(G2(i); λ) for all
λ � ρ(G1(i)). Thus ρ(G1(i)) < ρ(G2(i)).

Clearly, G2(2) = P θ
d+1(2). For 3 � i � d , applying Lemma 8 to edge vn−2vn of G2(i) and

edge vi−1vn of P θ
d+1(i) respectively, we have

φ(G2(i); λ) = φ(G2(i) − vn−2vn; λ) − φ(G2(i) − vn−2 − vn; λ)

− 2λn−d−3φ(Pi−1; λ)φ(Pd−i+1; λ) − 2λn−d−4φ(Pi−1; λ)φ(Pd−i+1; λ),

φ(P θ
d+1(i); λ) = φ(P θ

d+1(i) − vi−1vn; λ) − φ(P θ
d+1(i) − vi−1 − vn; λ)

− 2λn−d−2φ(Pi−2; λ)φ(Pd−i+1; λ) − 2λn−d−3φ(Pi−2; λ)φ(Pd−i+1; λ).

Applying Lemma 8 to edge vn−1vn of G2(i) − vn−2vn and edge vi−1vn−1 of P θ
d+1(i) − vi−1vn

respectively, by similar arguments to the proof of Lemma 10 we can show

φ(G2(i) − vn−2vn; λ) > φ(P θ
d+1(i) − vi−1vn; λ)



S.-G. Guo / Linear Algebra and its Applications 422 (2007) 119–132 125

Fig. 7. P+
d+1(i).

Fig. 8. G3(i).

for all λ � ρ(G2(i)). Note that P θ
d+1(i) − vi−1 − vn is proper spanning subgraph of G2(i) −

vn−2 − vn. By Lemma 7 we have

φ(P θ
d+1(i) − vi−1 − vn; λ) > φ(G2(i) − vn−2 − vn; λ)

for all λ � ρ(G2(i) − vn−2 − vn). Moreover, since λφ(Pi−2; λ) − φ(Pi−1; λ) = φ(Pi−3; λ) >

0 for all λ � ρ(G2(i)) > 2, it follows that

2λn−d−2φ(Pi−2; λ)φ(Pd−i+1; λ) > 2λn−d−3φ(Pi−1; λ)φ(Pd−i+1; λ)

and

2λn−d−3φ(Pi−2; λ)φ(Pd−i+1; λ) > 2λn−d−4φ(Pi−1; λ)φ(Pd−i+1; λ)

for all λ � ρ(G2(i)). These imply that

φ(G2(i); λ) > φ(P θ
d+1(i); λ)

for all λ � ρ(G2(i)), Thus ρ(G2(i)) < ρ(P θ
d+1(i)).

This completes the proof. �

Lemma 12. If n � d + 4 and d � 4 is even, then ρ
(
P θ

d+1

(
d+4

2

))
< ρ

(
P θ

d+1

(
d+2

2

))
.

Proof. Let a = d−2
2 . Denote P θ

d+1

(
d+4

2

)
by G(a + 1, a), and P θ

d+1

(
d+2

2

)
by G(a, a + 1).

Applying Lemma 9 several times we have

φ

(
P θ

d+1

(
d + 4

2

)
; λ

)
− φ

(
P θ

d+1

(
d + 2

2

)
; λ

)

= φ(G(a + 1, a); λ) − φ(G(a, a + 1); λ)

= λφ(G(a, a); λ) − φ(G(a − 1, a); λ) − λφ(G(a, a); λ) + φ(G(a, a − 1); λ)

= φ(G(a, a − 1); λ) − φ(G(a − 1, a); λ) = · · · = φ(G(1, 0); λ) − φ(G(0, 1); λ)

= λφ(G(0, 0); λ) − φ(K1,n−d−1; λ) − λφ(G(0, 0); λ) + λn−d−3φ(K1,2; λ) > 0

for all λ � ρ
(
P θ

d+1

(
d+4

2

))
. Thus ρ

(
P θ

d+1

(
d+4

2

))
< ρ

(
P θ

d+1

(
d+2

2

))
.

This completes the proof. �

Lemma 13. If n � d + 3 and 2 � i − 2 � d − i + 1, then ρ
(
P θ

d+1(i)
)

< ρ
(
P +

d+1(i)
)
.
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Fig. 9. G+.

Proof. Applying Lemma 8 to edge vi−1vn of P θ
d+1(i) and edge vnvi+1 of P +

d+1(i), and then
applying Lemma 9 to the highest degree vertices of P θ

d+1(i) − vi−1 − vn and P +
d+1(i) − vn − vi+1

respectively, we have

φ
(
P θ

d+1(i); λ
) − φ

(
P +

d+1(i); λ
)

= 2λn−d−3φ(Pi−2; λ)φ(Pd−i−1; λ) + λn−d−3[λ2 + 2λ − (n − d − 2)]
× [φ(Pi−1; λ)φ(Pd−i; λ) − φ(Pi−2; λ)φ(Pd−i+1; λ)].

Case 1. i − 2 < d − i + 1. Applying Lemma 9 several times, we have further

φ(Pi−1; λ)φ(Pd−i; λ) − φ(Pi−2; λ)φ(Pd−i+1; λ)

= [λφ(Pi−2; λ) − φ(Pi−3; λ)]φ(Pd−i; λ) − φ(Pi−2; λ)[λφ(Pd−i; λ) − φ(Pd−i−1; λ)]
= φ(Pi−2; λ)φ(Pd−i−1; λ) − φ(Pi−3; λ)φ(Pd−i; λ)

= · · · = φ(P2; λ)φ(Pd−2i+3; λ) − λφ(Pd−2i+4; λ)

= λφ(Pd−2i+2; λ) − φ(Pd−2i+3; λ) = φ(Pd−2i+1; λ) � 0

for all λ � ρ(Pd−2i+3). It follows that

φ
(
P θ

d+1(i); λ
) − φ

(
P +

d+1(i); λ
)

> 0

for all λ � ρ(P θ
d+1(i)) >

√
n − d + 1. Thus ρ(P θ

d+1(i)) < ρ
(
P +

d+1(i)
)
.

Case 2. i − 2 = d − i + 1. Then d − 2i + 3 = 0. Similarly to Case 1, we have

φ(Pi−1; λ)φ(Pd−i; λ) − φ(Pi−2; λ)φ(Pd−i+1; λ) = φ(P2; λ) − λ2 = −1.

From Lemma 5 we can easily get that φ(Pn; λ) is equal to sinh((n+1)θ)
sinh(θ)

after putting λ = 2 cosh(θ).

Making use of this fact, we easily get that φ(Pi−2; λ)φ(Pd−i−1; λ) � λ2, for λ � 2 and d −
i + 1 � 3 (follows from the fact that sinh(2x) = 2 sinh(x) cosh(x) and that cosh and sinh are
increasing functions in the interval [0, ∞)). Combining the above arguments, in this case we have

φ
(
P θ

d+1(i); λ
) − φ

(
P +

d+1(i); λ
)

= λn−d−3[2φ(Pi−2; λ)φ(Pd−i−1; λ) − λ2 − 2λ + n − d − 2]
� λn−d−3[2λ2 − λ2 − 2λ + n − d − 2] = λn−d−3(λ2 − 2λ + n − d − 2) > 0

for all λ � ρ(P θ
d+1(i)) >

√
n − d + 1 � 2. Thus ρ(P θ

d+1(i)) < ρ
(
P +

d+1(i)
)
.

This completes the proof. �

Lemma 14. Let d � 3 and n � d + 3. Then ρ(G3(i)) < ρ
(
P +

d+1(i)
)
.

Proof. Let a = i − 2, b = d − i and G0(i) = G3(i) − {vd+2, . . . , vn−1}. Applying Lemma 9 to
vertices vd+2, . . ., vn−1 of G3(i) and to vertices vd+2, . . ., vn−1 of P +

d+1(i) respectively, we have
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φ(G3(i); λ) = λn−d−2φ(G0(i); λ) − (n − d − 2)λn−d−3φ(Pb; λ)φ(� − Pa; λ),

φ
(
P +

d+1(i); λ
) = λn−d−2φ(G0(i); λ) − (n − d − 2)λn−d−3φ(Pd+1; λ),

where � − Pa is the graph obtained from a cycle C3 : u1u2u3 and a path Pa by joining u3 and
an end vertex of Pa . Applying Lemma 9 to va+3 of Pd+1 and u1 of � − Pa respectively, we have

φ(G3(i); λ) − φ
(
P +

d+1(i); λ
)

= (n − d − 2)λn−d−3[φ(Pd+1; λ) − φ(Pb; λ)φ(� − Pa; λ)]
= (n − d − 2)λn−d−3[(λ + 2)φ(Pa; λ)φ(Pb; λ) − φ(Pa+2; λ)φ(Pb−1; λ)].

From this we can see that it is sufficient to show for all λ � ρ(G3(i))

(λ + 2)φ(Pa; λ)φ(Pb; λ) − φ(Pa+2; λ)φ(Pb−1; λ) > 0.

By Lemma 5, we have x1 + x2 = λ, x1x2 = 1 and

(λ + 2)φ(Pa; λ)φ(Pb; λ) − φ(Pa+2; λ)φ(Pb−1; λ)

= 1

λ2 − 4

[(
x1 + x2 + 2

)(
xa+1

1 − xa+1
2

)(
xb+1

1 − xb+1
2

) − (
xa+3

1 − xa+3
2

)(
xb

1 − xb
2

)]

= 1

λ2 − 4

[
2xd

1 + 2xd
2 + xd−1

1 + xd−1
2 + xa+3

1 xb
2 + xb

1xa+3
2 − xa+2

1 xb+1
2 − xb+1

1 xa+2
2

− xa+1
1 xb+2

2 − xb+2
1 xa+1

2 − 2xa+1
1 xb+1

2 − 2xb+1
1 xa+1

2

]
.

Since ρ(G3(i)) >
√

n − d + 1, it follows that x1 > 1 and x2 > 0 when λ � ρ(G3(i)). Let r > 1.
It is easy to see that function f (x) = rx + r−x is increasing strictly on interval [0, +∞). We
consider the following two cases.

Case 1. a � b − 1. Since a + b = d − 2, it follows that d − 1 � a − b + 1. For all λ �
ρ(G3(i)), by x1x2 = 1 we have further

(λ + 2)φ(Pa; λ)φ(Pb; λ) − φ(Pa+2; λ)φ(Pb−1; λ)

= 1

λ2 − 4

[
2xd

1 + 2xd
2 + xd−1

1 + xd−1
2 + xa−b+3

1 + xa−b+3
2

− xa−b+1
1 − xa−b+1

2 − xa−b−1
1 − xa−b−1

2 − 2xa−b
1 − 2xa−b

2

]
= 1

λ2 − 4

[
2
(
xd

1 + x−d
1

) − 2
(
xa−b

1 + x
−(a−b)
1

) + (
xd−1

1 + x
−(d−1)
1

)

− (
xa−b+1

1 + x
−(a−b+1)
1

) + (
xa−b+3

1 + x
−(a−b+3)
1

) − (
xa−b−1

1 + x
−(a−b−1)
1

)]
> 0.

Case 2. a � b − 2. By x1x2 = 1 we have further

(λ + 2)φ(Pa; λ)φ(Pb; λ) − φ(Pa+2; λ)φ(Pb−1; λ)

= 1

λ2 − 4

[
2xd

1 + 2xd
2 + xd−1

1 + xd−1
2 + xb−a−3

2 − xb−a−1
2 + xb−a−3

1 − xb−a−1
1

− xb−a+1
2 − xb−a+1

1 − 2xb−a
2 − 2xb−a

1

]
= 1

λ2 − 4

[
2
[(

xd
1 + x−d

1

) − (
xb−a

1 + x
−(b−a)
1

)] − [(
xb−a+1

1 + x
−(b−a+1)
1

)

− (
xb−a−3

1 + x
−(b−a−3)
1

)] + [(
xd−1

1 + x
−(d−1)
1

) − (
xb−a−1

1 + x
−(b−a−1)
1

)]]
.
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By a + b = d − 2, we have d − (b − a) = 2a + 2 � 2. For r > 1, since f ′′(x) = (ln r)2(rx +
r−x) > 0 for all x in [0, +∞), it follows that f (x) is concave up on (0, +∞). Therefore

f (d) − f (b − a) > f (b − a + 1) − f (b − a − 1),

f (d) − f (b − a) > f (b − a − 1) − f (b − a − 3)

and so

2[f (d) − f (b − a)] > f (b − a + 1) − f (b − a − 3).

This implies that

2
[(

xd
1 + x−d

1

) − (
xb−a

1 + x
−(b−a)
1

)]
>

(
xb−a+1

1 + x
−(b−a+1)
1

) − (
xb−a−3

1 + x
−(b−a−3)
1

)
for λ � ρ(G3(i)). Hence, for all λ � ρ(G3(i)), we have

(λ + 2)φ(Pa; λ)φ(Pb; λ) − φ(Pa+2; λ)φ(Pb−1; λ) > 0.

Combining Cases 1 and 2, the proof follows. �

Lemma 15. Let i − 2 � d − i + 2. Then ρ
(
P +

d+1(i)
)

< ρ
(
P +

d+1(i − 1)
)
.

Proof. Let a = i − 2 and b = d − i. Denote P +
d+1(i) by G(a, b). Similarly, denote P +

d+1(i − 1)

by G(a − 1, b + 1). Applying Lemma 9 several times we have

φ
(
P +

d+1(i); λ
) − φ

(
P +

d+1(i − 1); λ
)

= φ(G(a, b); λ) − φ(G(a − 1, b + 1); λ)

= λφ(G(a − 1, b); λ) − φ(G(a − 2, b); λ) − λφ(G(a − 1, b); λ)

+ φ(G(a − 1, b − 1); λ)

= φ(G(a − 1, b − 1); λ) − φ(G(a − 2, b); λ)

= · · · = φ(G(a − b, 0); λ) − φ(G(a − b − 1, 1); λ)

= λn−d−2(λ + 1)2φ(Pa−b−2; λ) > 0

for all λ � ρ(P +
d+1(i)). Thus ρ

(
P +

d+1(i)
)

< ρ(P +
d+1(i − 1)).

This completes the proof. �

3. Main results

Theorem 1. Let n � d + 4 and G ∈ Bn,d . If d � 4, then

ρ(G) � ρ

(
P +

d+1

(⌊
d + 2

2

⌋))

with equality if and only if G = P +
d+1

(⌊
d+2

2

⌋)
; if d = 3, then ρ(G) � ρ(P θ

4 (3)) with equality

if and only if G = P θ
4 (3).

Proof. Choose G ∈ Bn,d such that the spectral radius of G is as large as possible. Denote the
vertex set of G by {v1, v2, . . . , vn} and the Perron vector of G by x = (x1, x2, . . . , xn), where xi

corresponds to the vertex vi (1 � i � n). We first prove the following fact. �
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Fact 1. There is not an internal path of G with length greater than 1 unless the path lies on a cycle
of length 3.

Proof. Assume, on the contrary, that Pk+1 : vivi+1 · · · vi+k is an internal path of G with length
k � 2 and Pk+1 does not lie on a cycle of length 3. Let G′ = G − {vivi+1, vi+1vi+2} + {vivi+2}.
If the diameter of G′ − vi+1 is d , it is easy to see that there is v ∈ V (G′ − vi+1) such that
G∗ = G′ + {vvi+1} ∈ Bn,d . If the diameter of G′ − vi+1 is d − 1, then any shortest path of G

between two vertices with length d contains vivi+1 · · · vi+k as a part. Let v be an initial vertex of
such a path and let G∗ = G′ + {vvi+1}, then G∗ ∈ Bn,d . By Lemmas 4 and 7, in both cases we
have ρ(G∗) > ρ(G), a contradiction. This completes the proof of Fact 1. �

Let Pd+1 be a shortest path between two vertices of G with length d. Since Bn,d = B∞
n,d ∪

Bθ
n,d , it follows that G ∈ B∞

n,d or G ∈ Bθ
n,d . Now we distinguish two cases to determine G.

Case 1. Suppose that G ∈ B∞
n,d . Let B(p, l, q) be the ∞-graph in G. We first prove that

|V (Pd+1) ∩ V (Cp)| � 1 or |V (Pd+1) ∩ V (Cq)| � 1. Assume, on the contrary, that |V (Pd+1) ∩
V (Cp)| = 0 and |V (Pd+1) ∩ V (Cq)| = 0. Let Pk : u1u2 · · · uk be a shortest path such that u1 ∈
V (Pd+1) and uk ∈ V (Cp) ∪ V (Cq). Then k � 2. Applying Lemma 2 to the edge u1u2, we
get a graph G∗ ∈ B∞

n,d with ρ(G∗) > ρ(G), a contradiction. Hence |V (Pd+1) ∩ V (Cp)| � 1
or |V (Pd+1) ∩ V (Cq)| � 1.

Let V ′ = V (Pd+1) ∪ V (B(p, l, q)) and G′ = G[V ′] be the induced subgraph of G. Then G

is G′ with some trees attached. Applying Lemma 2 to the non-pendant edges, we can similarly
prove that all these attached trees are stars with centers in V ′. That is to say that G is G′ with
some pendant edges attached. Applying Lemma 3, we can further prove that all these pendant
edges are attached at the same vertex of G′.

From Fact 1, we can see that p = q = 3. Let Pd+1 : v1 · · · vi · · · vi+s · · · vd+1, where vi+k ∈
V (B(p, l, q)), k = 0, 1, . . . , s. We claim that the path a1 · · · al in B(p, l, q) lies on Pd+1. Oth-
erwise, if l � 2, we may assume a1a2 /∈ E(Pd+1). Applying Lemma 2 to a1a2 we get a graph
G∗ ∈ B∞

n,d with ρ(G∗) > ρ(G), a contradiction. If l = 1 and a1 /∈ V (Pd+1), applying Lemma
3 to a1 and vi we get a graph G∗ ∈ B∞

n,d with ρ(G∗) > ρ(G), a contradiction. Hence the path
a1 · · · al lies on Pd+1. We distinguish the following four cases.

Subcase 1. |V (Pd+1) ∩ V (Cp)| = |V (Pd+1) ∩ V (Cq)| = 1. Applying Lemma 3, we have
G = P ∇∇

d+1(i). This contradicts Lemma 10.
Subcase 2. |V (Pd+1) ∩ V (Cp)| = 2 and |V (Pd+1) ∩ V (Cq)| = 1. We may assume that

vi−1vi ∈ E(Cp) and vj ∈ V (Cq). By Lemma 3, all the pendant edges, not lying on Pd+1, of
G must be attached at vj . So we may further assume that i � j . By Fact 1 we have j � i + 1.
If j = i + 1, applying Lemma 1 to vi and vi+1, by similar reasoning as the proof of Lemma
2 we can obtain a graph G∗ ∈ B∞

n,d such that ρ(G∗) > ρ(G), a contradiction. Thus j = i, and
so G = P �∇

d+1(i). This contradicts Lemma 10 when 2 � i < d. For i = d, it is easy to see that
P �∇

d+1(d) = P ��
d+1(d). Applying Lemma 1 to vertices vd−1 and vd+1 of P ��

d+1(d), we have either
ρ(P ��

d+1(d)) < ρ(P θ
d+1(2)) or ρ(P ��

d+1(d)) < ρ(P θ
d+1(d)), a contradiction.

Subcase 3. |V (Pd+1) ∩ V (Cp)| = 1 and |V (Pd+1) ∩ V (Cq)| = 2. By similar reasoning as
Subcase 2, we can obtain a contradiction.

Subcase 4. |V (Pd+1) ∩ V (Cp)| = |V (Pd+1) ∩ V (Cq)| = 2. We may assume that vi−1vi ∈
Cp, vjvj+1 ∈ Cq , and j � i. By Fact 1, we have either j � i + 1 or j = i + 2, d(vi+1) > 2. If
j = i + 1, or j = i + 2, d(vi+1) > 2, applying Lemma 1 to vertices vi and vi+1 we can obtain
a graph G∗ ∈ B∞

n,d such that ρ(G∗) > ρ(G), a contradiction. Thus j = i. Applying Lemma 1 to
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vertices vi−1 and vi+1 we can obtain a graph G∗ ∈ Bθ
n,d such that ρ(G∗) > ρ(G), a contradic-

tion.
Case 2. Suppose that G ∈ Bθ

n,d . Let P(l, p, q) be the θ -graph in G. By similar reasoning as
Case 1, we can prove that |V (Pd+1) ∩ V (P (l, p, q))| � 1. Let V ′ = V (Pd+1) ∪ V (P (l, p, q))

and G′ = G[V ′] be the induced subgraph of G. By similar reasoning as Case 1, we can further
prove that G is G′ with some pendant edges attached at one vertex. This implies that at most 5
vertices of G have degree greater than 2.

By the definition of P(l, p, q), we have that l, p, q � 1 and at most one of them is 1. Without
loss of generality, we may assume that l � p � q. We claim that l = 1 and p = q = 2. Indeed,
if l � 2, by Fact 1 and the fact that at most 5 vertices of G have degree greater than 2, we have
l = p = q = 2 and the two vertices of degree 2 of P(l, p, q) lie on Pd+1, the third vertex, denoted
by w, of degree 2 of P(l, p, q) is attached by some pendant edges. Applying Lemma 2 to aw in G

(a is as given in Fig. 2), we obtain a graph G∗ ∈ Bθ
n,d such that ρ(G∗) > ρ(G), a contradiction.

So l = 1. Similarly, by Fact 1 we can show that p � q � 3 and that if q = 3 then p = 2. If
q = 3, denote Pq+1 : auvb, where a and b are shown in Fig. 2. By Fact 1, we have d(u) > 2
and d(v) > 2. In the case when neither au nor vb lies on Pd+1, applying Lemma 2 to bv, we
obtain a graph G∗ ∈ Bθ

n,d such that ρ(G∗) > ρ(G), a contradiction. So we many assume that au

lies on Pd+1. If neither uv nor ab lies on Pd+1, applying Lemma 2 to bv, we obtain similarly a
contradiction. Otherwise, G must be the graph G+ shown in Fig. 9. Apply Lemma 1 to u and
v, we obtain a graph G∗ ∈ Bθ

n,d such that ρ(G∗) > ρ(G), a contradiction. So, in further, l = 1,
p = q = 2.

Subcase 1. |V (Pd+1) ∩ V (P (l, p, q))| = 1. Applying Lemma 3, we can prove that G = G1(i)

or G2(i). By Lemma 11 we have G = G2(2) = P θ
d+1(2). Since d � 3, by Lemma 6 we have

ρ(G2(2)) < ρ(P θ
d+1(3)), a contradiction.

Subcase 2. |V (Pd+1) ∩ V (P (l, p, q))| = 2. If one edge of Pp+1 or Pq+1 lies on Pd+1, we may
assume that Pp+1 : aub and au lies on Pd+1. Applying Lemma 1 (and Lemma 6, if necessary) to
u and b we can obtain a graph G∗ ∈ Bθ

n,d such that ρ(G∗) > ρ(G), a contradiction. If Pl+1 lies
on Pd+1, by Fact 1, Lemmas 1 and 2 we can similarly prove that all the pendant edges, not lying
on Pd+1, of G must be at one of a and b. That is to say that G = P θ

d+1(i). For d � 5, by Lemmas
6, 12 and 13, we have further

ρ(P θ
d+1(i)) � ρ

(
P θ

d+1

(⌊
d + 3

2

⌋))
< ρ

(
P +

d+1

(⌊
d + 3

2

⌋))
,

a contradiction. For d = 4, applying Lemmas 6 and 9, by direct calculation we have ρ(P θ
5 (2)) <

ρ(P θ
5 (3)) < ρ(P +

5 (3)), and by Lemma 13 we have ρ(P θ
5 (4)) < ρ(P θ

5 (3)) < ρ(P +
5 (3)). That is

to say that ρ(P θ
5 (i)) < ρ(P +

5 (3)), a contradiction. For d = 3, by Lemma 9 we have ρ(P θ
4 (2)) <

ρ(P θ
4 (3)). Hence G = P θ

4 (3).
Subcase 3. |V (Pd+1) ∩ V (P (l, p, q))| = 3. Then G must be G0(i) (see Lemma 14) with

n − d − 2 pendant edges attached at vj , where 2 � i, j � d. By Fact 1 we may assume that
i � j � i + 2. If j = i + 2, applying Lemma 1 to vj and vi−1, we can obtain a graph G∗ ∈
Bθ

n,d such that ρ(G∗) > ρ(G), a contradiction. So G must be P +
d+1(i) or G3(i) for some i. By

Lemma 14, we have G = P +
d+1(i). By Lemma 15, we have further G = P +

d+1

(⌊
d+2

2

⌋)
. For

d = 3, applying Lemma 9, by direct calculation we have ρ(P +
4 (2)) < ρ(P θ

4 (3)), a contradic-
tion.
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Combining Cases 1 and 2, we have G = P +
d+1

(⌊
d+2

2

⌋)
for d � 4 and G = P θ

4 (3) for d =
3.

This completes the proof. �

By Lemma 6, we have ρ
(
P +

d+1

(⌊
d+2

2

⌋))
< ρ

(
P +

d

(⌊
d+1

2

⌋))
for d � 5. Moreover, it is easy

to see that P ∇∇
3 (2) and P +

3 (2) are all bicyclic graphs with n vertices and diameter 2. Applying
Lemma 9, by direct calculation we can show when n � 9

ρ(P +
3 (2)) > ρ(P ∇∇

3 (2)) > ρ(P θ
4 (3)) > ρ(P +

5 (3)).

Combining these inequalities and Theorem 1, we have the following two corollaries.

Corollary 1. Let d � 4, and G be a bicyclic graph on n vertices with diameter not less than d.

Then

ρ(G) � ρ

(
P +

d+1

(⌊
d + 2

2

⌋))
,

and the equality holds if and only if G = P +
d+1

(⌊
d+2

2

⌋)
.

Corollary 2. Let n � 9. The first three graphs among all bicyclic graphs on n vertices, ordered
according to their spectral radii in decreasing order, are P +

3 (2), P ∇∇
3 (2) and P θ

4 (3).
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[15] S.K. Simić, On the largest eigenvalue of bicyclic graphs, Publ. Inst. Math. (Beograd) (N.S.) 46 (60) (1989) 101–106.
[16] B.F. Wu, E.L. Xiao, Y. Hong, The spectral radius of trees on k pendant vertices, Linear Algebra Appl. 395 (2005)

343–349.
[17] A. Yu, F. Tian, On the spectral radius of bicyclic graphs, MATCH Commun. Math. Comput. Chem. 52 (2004)

91–101.


	Introduction
	Preliminaries
	Main results
	Acknowledgments
	References

