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Most. businesses in the United States
currently make change using four
different types of coins: 1¢ (cent),! 5¢
(nickel), 10¢ (dime), and 25¢ (quarter).
For people who make change on a daily
basis, it is desirable to make change in
as efficient a manner as possible. One
criterion for efficiency is to use the
smallest number of coins. For example,
to make change for 30¢, one could, at
least in principle, give a customer 30 1-
cent coins, but most would probably
prefer receiving a quarter and a nickel.
Formally, we can defline the optimal
representation problem as follows:
given a set of I) integer denominations
ey <@y < -+ < gpandaninteger N =
(0, we wish to express N as a non-neg-
ative integer linear combination N =
S =j=pt;e; such that the number of
coins S = X =;=pa; 18 minimized. In
order that every number actually have
a representation, we demand that e, =
L If (ay, as, . . . , ap) is the D-tuple that
minimizes S, then we say it is an opti-
mal representation, and we define

opt (N;.e1, €9, ..., ep):=8.

The optimal denomination prob-
lem is to find denominations that min-
imize the average cost of making
change. We assume that every amount
of change between 0¢ and 99¢ is
equally likely.> We then ask, what
choice of D denominations minimizes
the average number of coins needed (o
make change? More formally, solving
the optimal denomination problem for
D denominations up to the limit L
means determining the denominations

ey, s, + + +, ep which minimize
cost(L; ey, es, -+, ep) =
L -
= opt(i; ey, €3 . . ., ep).

4 =ieL

For the current system, where (e,
o, €3, €4) = (1, 5, 10, 25), a simple com-
putation determines that cost(100; 1, 5,
10, 25) = 4.7. In other words, on aver-
age a change-maker must return 4.7
coins with every transaction.

Can we do better? Indeed we can.
There are exactly two sets of four de-
nominations that minimize cost(100;
£1, €3, €3, 24); namely, (1, 5, 18, 25) and
(1, 5, 18, 29). Both have an average cost
of 3.89. We would therefore gain about
17% efficiency in change-making by
switching to either of these four-coin
systems. The first system, (1, 5, 18, 25),
possesses the notable advantage that
we only need make one small alter-
ation in the current system: replace the
current 10¢ coin with a new 18¢ coin.
This explains the title of this article.

Table 1 gives the optimal denomi-
nations of size D for 1=D =7, and
their associated costs.

Although the system (1, 5, 18, 25)
would be superior to the current (1, 5,
10, 25) for change-making, it may be
difficult to convince people to accept
the removal of the popular dime. Thus
it may be worthwhile to consider a dif-
ferent question: what single denomina-
tion could we add to (1, 5, 10, 25) to
achieve the maximum improvement in
cost? The unique answer is 32¢; this im-
proves cost(100; 1, 5, 10, 25) = 4.7 to
cost(100; 1, 5, 10, 25, 32) = 3.46. If we
also allow the infrequently used 50¢
piece as a legitimate denomination,
then the maximum improvement
comes from adding an 18¢ piece; this
improves cost(100; 1, 5, 10, 25, 50) =
4.2 to cost(100; 1, 5, 10, 18, 25, B()) =
3.18. Yet another reason to add an 18¢
piece to US coinage!

Other countries provide different
problems. In Canada, the coin denom-

*What this country needs is a really good five-cent cigar.” T, R. Marshall (US Vice-President), New York Tri-

Bune, January 4, 1820,

'Informally, & 1-cent coin is usually called a penny, but this usage is frowned upon by numismatists.
This ‘assumption is probably Inaccurate for saveral reasons, not least being the fact that many items
have prices that end in the digit 9. Also, Benford's law on first digits of random numbers may play a role; sea

Raimi [7].
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Table 1. Optimal Denominations for Change-Making for 1 <D =7

Denominations

D le, -, ep) cost{100; eq, - -, ep)

1 (M 495

2 {1, 10) 9
(1, 11)

3 (1,12, 19) 5.15

4 {1. 5,18, 25) 3.89
(1. 5, 18, 29)

5 (1,5, 16, 23, 33)

6 (1,4, 6,21, 80, 37)
(1, 5,8,20,31, 38

T (1. 4.9, 11, 26, 38, 44) 265

inations currently in wide circulation
are 1¢, 5¢, 10¢, 25¢, 100¢ (called a
“loonie” for the loon on the reverse),
and 200¢ (called a “toonie™). The small-
est denomination of paper money in
wide circulation is a $5 bill. Assuming
each amount of change between 0¢ and
499¢ is equally likely, the average cost
of making change in Canada is
cost(500; 1, 5, 10, 25, 100, 200) = 5.9.
This can be best improved by adding
an 83¢ coin; we have cost(500; 1, 5, 10,
25, 83, 100, 200) = 4.578. On the other
hand, the new Euro system introduced
by the European Union provides coins
of denomination .01, .02, .05, .1, .2, .5,
1, and 2 Euro. For this system we have
cost(B00; 1, 2, 5, 10, 20, 50, 100, 200) =
4.6. This can be best improved (to av-
erage cost 3.92) by adding a coin of de-
nomination 1.33 or 1.37 Euro.

Greedy Methods for
Change-Making

One nice feature of the current set of
US denominations (1, 5, 10, 25) is that
the greedy algorithm determines the
representation with the minimum num-
ber of coins. By the greedy algovithm,
I mean the following procedure: given
anumber N to be represented as a non-
negative integer linear combination of
denominations
take as many copies ay of the largest
denomination ¢; as possible, so that
apep =N. Then set N := N—apep
and continue the procedure with the
remaining smaller denominations. Use
of the greedy algorithm provides a sim-
ple, easily-remembered method for
making change. Not all sets of denom-
inations have the property that the
greedy method always determines the
optimal representation. For example,

ey << <ep,

with denominations (1, 7, 10) the
greedy algorithm gives the representa-
tion 14 =10+ 1+ 1+ 1 + 1, whereas
T+ T uses fewer coins.

Unfortunately, none of the optimal
sets of denominations in Table 1 for
D=3 gives optimal representations
when used greedily. For example, when
we try to greedily make change for 24¢
using the system (1, 12, 19), we get 19 +
14+1+ 1+1+1, afar cry from the
optimal representation 12 + 12.

This suggests considering a varia-
tion on the optimal denomination prob-
lem, where cost is replaced by the anal-
ogous function geost, and we count

only the cost of greedy representa-
tions. For the current system we still
have gcost(1000; 1, 5, 10, 25) = 4.7.
Table 2 displays the results for optimal
sets of denominations. An asterisk de-
notes an optimal set for which the
greedy representafion is always an op-
timal representation.

We also might consider what single
denomination could be added to the
current US system (1, 5, 10, 25) to best
improve the greedy cost. It turns out
that adding either a 2¢-piece or a 3¢-
piece improves geost(100;—) from 4.7
to 3.9, and this is the best possible 1-
coin improvement. It is interesting to
note that the US actually had a 2¢-piece
from 1864 to 1873, and has had two dif-
ferent 3¢-pieces: one made in silver
from 1851 to 1873, and one made in
nickel from 1865 to 1889.

Computational Questions

So far I have focused on systems par-
ticular to the US, Canada, and Europe,
but a good mathematician will want
more general results. Let us examine
the computational complexity of the
problems we have studied, and some
related ones.

TABLE 2. Optimal Denominations for Greedy Change-Making

b les, ., ep gcost(100; ey, .. ep)
i 1 495
2 (1, 10) 9
(1, 1j
3 i, 5, 22y 5.96
(1. 5, 23"
4 {1 3y 11, 37 41
(1, 3, 11, 38)
5 (1, 3, 7, 18, 40) 3.46
{1, 3 7, 16, 41)
(1. 3. 7. 18, 44y
{1, 3: 7, 18, 45)
(1, 3, 8. 20. 44)
(1, 3, 8, 20, 45)
) o2 & T, 25,89 3.18
(1,2, 5, 11, 25, 68)
(1,2, 5 13, 29, 64)
11,2, 5, 13, 29, 65)
¥ {1, 2, B. 8, 17, 27, B3) 2.86

(27 other sets omitled)

(1,2, 5, 8, 19, 30, 63)

1,2,
(s, 2

(1,2 5,

5, 8, 19, 80, 64)

8, 19, 30, 67)

5, 8. 19, 30. 66)°
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1. Suppose we are given an amount
of change to make, say N, and a system
of denominations, say 1 = e, < ey < - - -
< ¢p. How easy is it to compute opt(N;
ey, €z, * + +, ep) or find an optimal repre-
sentation N=3_;—pwe;, ie, one
which minimizes ¥;—;- pa;?

The answer depends on how N and
the e; are written down. If they are writ-
ten in ordinary decimal notation, or in
binary, then there is no fast algorithm
known to solve this problem. In fact, it
follows easily from results of Lueker [5]
that this problem is NP-hard; roughly
speaking, this means it is at least as hard
as many famous combinatorial prob-
lems, such as the fraveling salesman
problem, for which no polynomial-time
algorithm is ewrrently known.

If, on the other hand, N and the ¢;
are represented in unary, then a simple
dynamic programing algorithm such as
the one given in [10] solves the optimal
representation problem in polynomial
time.

2. Suppose we are given N and a
system of denominations. How easy is
it to determine if the greedy represen-
tation for N is actually optimal?

Kozen and Zaks [4] have shown that
this problem is co-NP-complete if the
data are provided in ordinary decimal,
or binary. This strongly suggests there is
no efficient algorithm for this problem.

3. Suppose we are given a system of
denominations. How easy is it to de-
cide whether the greedy algorithm ai-
ways produces an optimal representa-
tion, for all values of N?

It turns out that this problem can be
solved efficiently; this surprising result
is due to Pearson [6]. Since Pearson's
result appeared only in an obscure
technical report, I give a few details.

Suppose the greedy algorithm for
the system of denominations 1 = ¢; <
ey < + -+ < gp is not always optimal.
Pearson showed there exist integers i,
jwith 1 = j =i < D such that the min-
imal representation of the minimal
counterexample is of the form

O-e;+0-@a+ »~- +0‘f.f’,'7|
+(a; + Dej + ajuiejia + - +apep,

where the greedy representation of
Sy — lis
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ey + @oes -+ -+ - + apép.

This gives the following algorithm
for finding the smallest number such
that the greedy algorithm fails to be op-
timal (or = if no such number exists):

Pearson TeST (ey, €2, <+, ep)
m = @
forj := 1toD—1do

fori := jtoD — 1do
Let X)—;=pa;e; be the greedy
representation of ¢;., — 1

Gy += @yt 1

fork := 1toj— 1do
ag = 0

1= y=j=p@i6

if ¥ < m then
Let £y—;=pb;e; be the greedy
representation of »
if El—_.—,,'gnb_; > E]gf—_:[)”,' then
moi=r
return(m)

(Here the scope of the loops is denoted
by indentation.) It is easy to see that this
algorithm performs O(n?) arithmetic
operations on numbers of size O(ep).

4. Suppose we are given N and a
system of denominations. How easy is

it. to compute cost(N; ey, es, * - -, ep)?
Since
Upl(IV; 2y, 62! T, ﬂn)
= (N + Dcost(N -+ 1; ey, e9, =+, ep)
— N cost(N; ey, es, * - =, ep),

any algorithm to compute cost would
also provide an algorithm to compute
opt. It follows that computing cost is
NP-hard under Turing reductions.

5. Suppose we are given L and D
and want to find an optimal set of de-
nominations that minimizes the aver-
age cost of making change for all
amounts from 0 to L — 17 I don't know
the computational complexity of this
problem, but it seems quite hard. The
data presented in Table 1 were com-
puted using a brute-force enumeration
of possibilities, but with some tricks to
speed up the computation.

6. A related problem is the Frobe-
nius problem. Here we are given a set
of D denominations ¢; < ey < -+ - <ep
with ged(e), es---ep) =1, and we

want fo find the largest integer N which
cannot be expressed in the form
X = i=p;e; with the a; non-negative in-
tegers. There is a huge literature on this
problem (see, for example, Guy [2, pp.
113-114]), but only recently have re-
searchers considered its computational
complexity. Kannan [3] gave an algo-
rithm for the Frobenius problem that
runs in polynomial time if the dimension
D is fixed. On the other hand, Ramirez-
Alfonsin [8] has shown that the general
Frobenius problem is NP-hard.

7. Another related problem is the
postage stamp problem. There are two
flavors. The “local” problem asks,
given a set of D denominations 1 =
ep<ey< .-+ <ep and a bound #h,
what is the smallest integer N which
cannot be represented in the form N =
X =i=pa;e; where the a; are non-nega-
tive integers and X;<;=pa; = I? In the
“global” version, we are given [) and Ju
and want to find the set of denomina-
tions that maximizes N. There is a
larger literature on these two problems
(see Guy [2, pp. 123-127]), with much
effort devoted to finding efficient algo-
rithms for small ).

However, I recently showed [9] that
the local postage stamp problem is NP-
hard under Turing reductions, and that
there is a polynomial-time algorithm
for every fixed D.

Asymptotic Results
Now we turn to some asymptotic esti-
mates.

Let opteost(L, D) denote the mini-
mum value of cost(L; e, es, -+, ep)
over all suitable values of ¢y, - - -, ep.
Can we find good upper and lower
bounds on optcost(L, )?

One way to find an upper bound is
as follows: let k =[LY"] and define
e; = k'~ 1for1 =i = D.In this case, the
greedy algorithm always finds the op-
timal representation for any N, and it
turns out to be the base-k expansion of
N. Letting s,(N) denote the sum of the
digits in the base-k expansion of N, we
find

cost(L; ey, €9, + + +, ep) =
geost(L; ey, €9, "+, ep)
1l .
= £ P, SA-(I).
L o=i=t-3



Hence
opteost(L, D) = %S ree1(l) (@)
where Sp(N) := Zp=jen si(2).

The quantity Si(N) has a long his-
tory; it is known that

Sk(N)
k=1 o (log N\
] 2
ZloglAlogN w( gk). 2)

where Fj, is a continuous, nonpositive,
nowhere-differentiable function of pe-
riod 1; see, for example, [1]. Combin-
ing (1) and (2), we obtain the upper
bound

opteost(L, I)) = ) 0,

_-

Furthermore, using the identity

Sp(kN + a) = kSi(N)

pME=DN oo+ 2@ =D
2 2

one can compute Si(N) in time poly-

nomial in the number of digits in k and

N. This provides a fast way to compute
the upper bound (1).

For a lower bound, one may reason

as follows: fix a set of D) denominations

ey, 09, +, ep, and consider the num-

ber of different D-tuples (a,, as, - - -,
ap) such that X -;=p a; = k. A simple
combinatorial argument shows that
this number is (). Now if (%) =
L2, it follows that for at least L/2
choices of N, 1 = N = L, any represen-
tation for N must use at least k + 1
coins and hence optcost(L, D) =
L+ 1. Now (P5) = “‘*I“?" if D is
ﬁxed and L— =, this gives the lower
bound of opteost(L, D) = QLYP),
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The Cosmological Complaint

The universe, deSitter said, is like a shiny bubble
Expanding at a constant rate which has been named for Hubble;

And on its skin observers swim, who rarely intersect,

And see each other reddened by ihe Doppeler effect.

It's not anthropocentric, but it may not be the truth.
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The bubble’s lax and stretchable, if we're to credit Guth.
Our particles are handed down from broken symmerry.
Neutrinos will inherit; we subsist on the debris.

Chandler Davis
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