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Abstract

We consider the problem of giving explicit spectral bounds for time inhomogeneous Markov chains
on a finite state space. We give bounds that apply when there exists a probability 7 such that each of the
different steps corresponds to a nice ergodic Markov kernel with stationary measure 7. For instance, our
results provide sharp bounds for models such as semi-random transpositions and semi-random insertions
(in these cases 7 is the uniform probability on the symmetric group).
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Spectral theory is one of the basic quantitative techniques for studying time homogeneous
ergodic finite Markov chains. See, e.g., [2,5,7,9,22]. This paper shows how spectral theory can
be used to study the convergence of time inhomogeneous finite Markov chains under the strong
assumption that there is a (positive) probability measure 7 which is invariant for each individual
step.

One of the first relevant references concerning such Markov chains is a note of Emile
Borel [4] where a Doeblin type criterion is derived for time inhomogeneous card shuffling
models. Ergodicity for time inhomogeneous finite Markov chains in general is discussed in [17,
21,25] where further references can be found. However, there seems to be very little in the
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literature concerning explicit convergence bounds for specific models of time inhomogeneous
chains in the spirit of the work of Aldous, Diaconis, and their collaborators (e.g., [2,7]) for time
homogeneous chains. One such result is found in [19,20] where Mironov and Mossel et al. study
a time inhomogeneous shuffling process defined as follows. Consider a deck of n cards. For any
infinite sequence r = (rx){° withr € {1, ..., n}, the r-semi-random transposition chain evolves
as follows: At time k, transpose the card at position r; with the card at a uniformly chosen random
position. This model was considered earlier in [1,3]. Mironov uses the cyclic-to-random shuffle
to study the attacks on the RC4 stream cipher. Using a strong stationary time argument, due
to Broder, he shows that the cyclic-to-random shuffle mixes the deck in order nlogn shuffles.
Mossel et al. generalize the results of Mironov to show that for any r, order n log n semi-random
transpositions suffice to mix up the deck. Their main result is to prove that order n logn cyclic-
to-random transpositions are necessary, an improvement to the lower bound of order n given by
Mironov (see [20]).

The present work is motivated in part by the following question. What can be said if semi-
random transpositions are replaced by other similar models, for instance semi-random insertions?
More precisely, for each sequence r as above, the r-semi-random insertion chain is the time
inhomogeneous Markov chain which, at time &, inserts the card at position r¢ into a uniformly
chosen random position (a more formal definition will be given later). We do not see how to
apply the strong stationary time technique of [20] to semi-random insertions, yet the spectral
technique developed in this paper applies to both semi-random transpositions and semi-random
insertions. In either case, it shows that a deck of n cards is mixed up after order n logn shuffles.
The same technique applies to many further examples.

After this work was completed, Yuval Peres informed us that the improved upper bound
obtained here for semi-random transpositions was derived independently and by a similar
argument by Murali Ganapathy in [15] where time inhomogeneous Markov chains are interpreted
as models for adversarially modified Markov chains.

2. Time inhomogeneous Markov chains
2.1. Basic notation

Let V be a finite set equipped with a sequence of kernels (K,){° such that, for each n,
K,(x,y) > 0and Zy K, (x,y) = 1. An associated Markov chain is a V-valued random process
X = (Xp)g° such that

PX,=x|Xn-1=y, Xn2=xp-2,..., Xo=x0) = P(X,, =x|Xpn-1=Yy)
= Kn(xv y)'

The distribution u, of X, is determined by the initial distribution ¢ and given by
pn(x) =Y o) Kon(x, y)

xeV
where K, ,, (x, y) is defined inductively for each n and each m > n by
Knm(@.9) =Y Knm1(x.2)Kn (2. y)
zeV

with K, , = I (the identity). If we interpret the K,’s as matrices then this definition means
that K, » = Kj,+1--- K. This paper is mostly concerned with the behavior of the measures
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Ko n(x,-) as n tends to infinity. In the case of time homogeneous chains where all K; = Q are
equal, we write Ko, = Q".

Definition 2.1. We say that a measure 7 is invariant for the sequence (K ,1)‘1’0 if, for each n, we
have

D o m)Ka(x, y) =7(y).

xeV

We say that a measure 7 is reversible for the sequence (K,,)‘l>o if, for each n, we have

T(X)Ky(x,y) =7 () Ky (y, x).

Recall that a Markov kernel K on V is irreducible if for any x, y € V there exists n = n(x, y)
and a finite sequence (x;)| with xo = x,x, = y and K(x;, x;41) > 0,i =0,...,n — 1. An
irreducible Markov kernel on a finite set V admits a unique invariant probability measure and
this measure is positive (i.e., gives positive mass to every element of V).

Obviously, most sequences of Markov kernels do not admit any invariant measure and the
existence of such a measure is a very special assumption on the sequence (K,){°. However,
a large class of examples is provided by (time inhomogeneous) random walks on groups.
Namely, let G be a finite group. Then, for any probability measure p on G, the Markov kernel
K(x,y) = p(x~'y) admits the uniform measure 75 : 7g(A) = |A|/|G| (JA| = #A) as an
invariant measure. Thus, any sequence (p;){° of probability measures on G yields a sequence
(K;){° of Markov kernels having 77 as an invariant measure. The measure 7 is reversible if and
only if each p; satisfies the symmetry condition p;(x) = p;(x~!), x € G. The iterated kernels
K,.m are then given by the convolution product

Knn (X, Y) = pug1 % - % pu(x™'y)

where

uxv(x) =Y u@v ).

yeG

The problem treated by Borel [4] as well as the examples of semi-random transpositions and
semi-random insertions all fall into this category with the group G being the symmetric group.
The uniform measure is a reversible measure for semi-random transpositions but not for semi-
random insertions. The following example shows that a good choice of kernels can lead to a very
efficient mixing process.

Example. On the symmetric group S, consider the kernels K ; defined by

{1/(n—j+1) if x~'y = (j, k) forsome k € {j,...,n}
0

K . fr— .
j(x,y) otherwise.

Thus K ; corresponds to transposing the card in position j with the card at a uniformly chosen
position in {j, ..., n}. With this notation, the sequence K, ..., K,—1 leads to a uniformly
chosen permutation, that is,

KO,n—l(x’ )=

where 7 denotes the uniform measure on S,,. This is a special case of the subgroup algorithm of
Diaconis and Shahshahani [12]. Note that, except for K1, the K;’s are not irreducible.
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Definition 2.2. Fix a probability measure 7 on V. Let Q@ = {Qy,..., Q,} be a finite set of
Markov kernels on a finite set V, all admitting 7 as an invariant measure. We say that (Q, )
is ergodic if, for any sequence (K;){° of Markov kernels with invariant measure 7 such that
K; € Q for infinitely many i’s, we have

lim Ko ,(x,z) — Kon(y,2) =0 2.1
n—0o0
forallx,y,z e V.

We will give in Theorem 3.4 a necessary and sufficient condition for the ergodicity of a finite
family Q of Markov kernels sharing a given positive invariant measure 7.

Remarks. 1. Let Q = {Q1, ..., O} and 7 be as in Definition 2.2. If (Q, ) is ergodic then for
any sequence (K i)fo of Markov kernels with invariant measure 7 such that K; € Q for infinitely
many i’s, we have

VxeV, lim Ko,(x,)—m=0.
n—oo

2. Let @ = {Q1,..., 0y} and 7 be as in Definition 2.2. If (Q, ) is ergodic then there
exists Vo C V such that Vj is the unique recurrent class for any Q; € Q. Moreover,
Vo = {x : m(x) > 0}. In particular, if 7 is positive and (Q, i) is ergodic then each kernel
in @ must be irreducible.

3. Fix an irreducible Markov kernel Q with invariant measure 7. Set @ = {Q}. We will see
that the property that (Q, i) is ergodic in the sense of Definition 2.2 is stronger than the property
that

Vx,y,zeV, lim 0"(x,2) — Q0"(y,2) =0
n— o0

which is satisfied if and only if Q is aperiodic. See Theorem 3.4.

4. Condition (2.1) is an example of what [6] calls a merging of measures. Such conditions
are classical in the literature of inhomogeneous Markov chains; see [17,21]. Note that remark 1
shows that if a sequence (K;){° has invariant measure 7 then the merging of measures property
in (2.1) yields the stronger result of converging to a distribution.

2.2. Borel-Doeblin ergodicity theorem

In this short section we present one of the simplest quantitative convergence results that
we know for time inhomogeneous finite Markov chains admitting a stationary distribution. It
essentially captures (in a slightly more general form) the content of Borel’s note [4] and is based
on a Doeblin type hypothesis. Although the result is quantitative, it usually gives very poor
estimates.

Proposition 2.3. Let (K,){° be a sequence of Markov kernels on a finite set V. Assume that it
admits an invariant measure 1. For any increasing sequence of integers (n J-)SO we have

k—1

sup (1Ko, (x. ) = w()I} < [Ja—cp 22)
X,ye 0

where, for each j, c; is the largest real ¢ such that

Knjni(x,y) = cm(y). (2.3)
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Proof. Observe that Pj(x,y) = (1 —c;)~! (Knjinjer (X, y) = cjm(y)) is a Markov kernel with
invariant measure 7t and that

k—1 k—1
Kon (x,) =7 = (H(l —c,-)) <1’[(Pj(x, ) - n)) :
0 0

The result follows. O

Proposition 2.4. Let (K, ){° be a sequence of Markov kernels on a finite set V. Assume that it
admits an invariant measure 7. If there exists an increasing sequence of integers (n ;)§° such that
Zgo cj = oo where c; is defined at (2.3) then

lim |Ko,(x,y) —7(y)| =0.
n—od
Furthermore, if there exists ¢ > 0 such that for nj = mj we have cj > c then

sup {|Ko(x,y) — ()|} < (1 —c)lr/m,
x,yeV

Example. Let G be a finite group. Fix a sequence of generating sets (S;){° and assume that each
S; contains the identity element of G. Let K;(x,y) = |S;|~!ifx~!y € §; and K;(x,y) = 0
otherwise. Thus K ; is the Markov kernel of the simple random walk on G associated with S;.
We claim that the time inhomogeneous Markov chain with kernel sequence (K;){° converges to
the uniform distribution. To see this, observe that

Vx, xS8j---Sjyi61=G
because the sequence of sets xS --- Sj 1, k = 0,2, ..., is (strictly) increasing under inclusion.
It follows that, for any j, x, y, K j46|(x,y) > |G|~1¢1 and Proposition 2.4 applies.
3. Spectral analysis

3.1. Singular values

Recall that the singular values of a given linear map A acting on a finite dimensional Euclidean
space are the square roots of the eigenvalues of the self-adjoint linear map AA™ where A* is the
adjoint of A (note that A*A and A A* have the same eigenvalues).

Given a Markov kernel K with a positive invariant measure 77, we can consider K as a linear
map

Ku=Y K(, yu®y)

yeV
defined on the Euclidean space L?(V, ) with scalar product

(u, v) = Z u(x)v(x)m(x).

xeV
The adjoint K* is associated with the Markov kernel
K*(x,y) =7 (MK (y, x)/7(x)

which also has 7 as invariant measure. Note that in what follows we always assume that the
invariant measure 7 is positive, that is w(x) > 0 foreachx € V.
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Definition 3.1. Let K be a Markov kernel K with positive invariant measure w. For i €
{0,...,|V] — 1}, we denote by o;(K) the i-th singular value of K on L2(V, ) arranged in
non-increasing order.

Note that for any Markov kernel K, 0¢(K) = 1l and 0;(K) € [0, 1],i € {1,...,|V| =1} If K is
normal (i.e., K*K = K K*) then K and K* are diagonalizable in the same basis and the singular
values of K are the moduli of the eigenvalues of K counted with multiplicity and arranged in
non-increasing order.

Given two probability measures p, 7 on V with 7 positive, set

1/2
w(y) 2
dr(u, 1) =( — = 1' ﬂ(y)) 3.1
; 7 (y)
and
dry(u, m) = :uré [u(A) —m(A)]. (3.2)
C

By Jensen’s inequality we get that d»> (e, ) controls drv (i, ) in the following way
2drv(p, ) < dao(p, ).

Proposition 3.2. Let K be a Markov kernel with positive invariant measure 7 on a finite set V.
Letoj(K),i =0,...,|V|—1, be its singular values as introduced in Definition 3.1. Let (xpi)(')v'_l

be an orthonormal basis of L*>(rr) such that V; is an eigenfunction of K K* with eigenvalue

0; (K)? (without loss of generality, we always assume that v is the constant function 1). Then

we have
[V]—1

dy(K(x,), 1) = Y oi(K)* [y (x)]. (3.3)

i=1

Proof. Set

_Jl/rx) ify=x
8 (y) = {0 otherwise.

Then 8, (y) = >_; ¥i (x)¥i(y) and

3 Ky [

‘ m(y) = (K*8¢, K*8) = (KK™8y, 8x)
sl T

[V|-1

= Y oK) [y (34)

i=1

Remark. 1. In the context of time inhomogeneous chains, one would like to apply this result to
K = Ko, = Kj - - - K,,. This is generally not practically feasible because neither the eigenvalues
nor the eigenfunctions of Ky - -- K, Ky - - - K are available. In the next subsection, we use well
known singular value inequalities to extract useful estimates from (3.3) when K = K - - - K.

2. In the finite Markov chains literature, the use of K K* was introduced by [18,13] under the
name of multiplicative reversibilization.
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3.2. Ergodicity via singular values

The main technical result of this paper is the following theorem.

Theorem 3.3. Let (K;){° be a sequence of Markov kernels on V admitting the positive
probability measure 7 as an invariant distribution. For each j, let 0;(K;), i =0,...,|V|—1,
be the singular values of K on L% () as in Definition 3.1. Then we have

172 2
d(Kon(x,),m) = (7@ = 1) " [Toik)) (3.5)
1
and
[VI—-1 n
Y da(Kon(x, ), ) w(x) < Y [ etk (3.6)
xeV i=1 j=1

Proof. For clarity, we break the proof into two steps. In the first step, we eliminate eigenvectors.
For (3.5), apply (3.3) with K = Ko, and note that, by definition, o;(Ko,) < 01(Ko.),
j=1,...,]V] — 1. Thus

12
dy(Kon(x, ), 1) < 01(Ky -+ Kp) (Z |w,»<x>|2>
J

1 1/2
<o1(K1---Kp) (%—1) . 3.7

The second inequality is, in fact, an equality and follows from the identity §, = (|)V|—1 Wi ()Y

which implies 311" 19 ()12 = 18,13 = 7w (x) "
For (3.6), write

[V|—1
Y (Ko, ), m)w(x) = Y oi(Ki - Kn) i (x)| P (x)
xeV xeV j=1
V-1
= > oi(Ki-- Ky (3.8)
j=I
The second step uses the following singular value inequalities with k = 1 for (3.5) and
k=1V|—1for (3.6):
k k n
Vek=1,....[VI=1, Y oj(Ki---Kp»)* <Y []oikn* (3.9)
j=1 j=li=1

These inequalities follow from Theorem 3.3.4 and Corollary 3.3.10 of [16] after observing that
in the case at hand, all the largest singular values (denoted here by og(-)) are equal to 1. In fact,
in the present setting, [16, Theorem 3.3.4] yields the interesting inequalities

k k n
Vek=1,....[VI=1, J]ojKi-- K < []]]os K. (3.10)
j=1

j=li=1
Theorem 3.3 now follows from (3.7)—(3.9). O
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Remarks. 1. Let K be a Markov kernel with positive invariant measure 7. It follows from (3.5)
applied to the constant sequence K; = K that o7(K) = 1 whenever K is either non-irreducible
or periodic. Indeed, if o1 (K) < 1 then K" (x, -) converges to 7 for all x, which implies that K is
irreducible and aperiodic. The converse holds true if 7 is a reversible measure for K but is false
in general. On the symmetric group S, consider the Markov kernel K corresponding to inserting
the top card at one of the two bottom positions (picked with equal probability). This is known as
the Rudvalis shuffle and is discussed in [27]. This kernel K yields an irreducible aperiodic chain
but K*K corresponds to either transposing the two bottom cards or doing nothing, each with
probability 1/2. In particular K*K is very far from being irreducible and 1 is a singular value for
K with high multiplicity.

2. Let us point out that there are many examples of time inhomogeneous random walks
that converge but for which the present techniques may fail to apply. For instance, let each K;
correspond to transposing the cards in positions i and i + 1 or doing nothing each with equal
probability. Note that in this case Q = {K1, ..., K, } is not ergodic in the sense of Definition 2.2
and while 01(K, --- K1) < 1 each K; has 01(K;) = 1. See also the example of Section 2.1
(subgroup algorithm).

One basic application of (3.5) is to give a necessary and sufficient condition for a finite family
Q of Markov kernels to be ergodic in the sense of Definition 2.2.

Theorem 3.4. Let Q = {Q1, ..., Qk} be a finite family of Markov kernels on a finite set V with
positive invariant measure 1. The pair (Q, ) is ergodic in the sense of Definition 2.2 if and
only if 01(Qj) < 1 foreach j € {1,...,k}.

Moreover, if (Q, ) is ergodic then for any sequence (K;){° with invariant measure w such
that infinitely many K; are in Q, we have

VxeV, lim Ko,(x,:)—ma=0.
n—oo

Proof. Assume that

o = max o1(Q;) < 1.
{1,...k}

Let (K;){° be a sequence of Markov kernels with invariant measure 7z such that
N, =#{ie{l,...,n}: K; € Q}

tends to infinity with k. By (3.5),
do(Kon(x, ), ) < (@)~ o,

Hence
Jm Ko (x,y) —7(y) =0

forallx,y e V.

Conversely, assume that one of the Q;, say, Q1, satisfies 01(Q1) = 1. Then consider the
sequence Koi+1 = Q1, Koi = Q’l‘, i =1,2,.... As 01(Q1) = 1, the reversible chain with
kernel Q; QT is not irreducible. It follows that there exists x, y, z such that

lim Koo, (x,y) = lim [Q107]"(x,y) =0
n—oo n—oo



L. Saloff-Coste, J. Ziniga / Stochastic Processes and their Applications 117 (2007) 961-979 969
and
lim Ko 2.(z,y) = lim [0107]"(z, y) > 0.
n—>00 n—00
This shows that
lim Koon(x,y) — Koo2n(z,y) #0
n—0oo
as desired. O

Remarks. 1. Note that the condition that 01 (Q;) < 1 in Theorem 3.4 cannot be replaced by the
hypothesis that the Q;’s are irreducible and aperiodic. For instance, on the symmetric group, let
K correspond to inserting the top card into one of the two bottom positions with equal probability.
This K is irreducible and aperiodic but the pair ({K'}, ) (where 7 is the uniform measure) is not
ergodic in the sense of Definition 2.2.

2. If the Q;’s are all reversible with respect to 7 then the condition that o1(Q;) < 1 for each
i is equivalent to the fact that each Q; is irreducible aperiodic. Thus Theorem 3.4 implies that,
for any finite family Q = {Q1, ... Ok} of Markov kernels that are all reversible with respect
to a given distribution 7 and irreducible aperiodic, the pair (Q, ) is ergodic in the sense of
Definition 2.2.

We end this section with an observation that often yields control on

do(L, ™) = sup (3.11)

x,yeV

wo |
7(y) '

Note that Proposition 2.3 is concerned with the quantity doo(Ko n, w) whereas Theorem 3.3
controls the smaller quantity d2(Ko ,(x, -), 7). The following simple inequality shows how to
bound dw, (Ko, ) using Theorem 3.3 and other similar results. Namely, for any decomposition
n=m—m)+ mform < n, we have

Kon(x,y)
‘"— — 1| = d2(Kom(x, ), m)d2 (K, (¥, -), 70) (3.12)
7 (y)
where K, = [Knal* = K Ky, -~~K:;l+1. Indeed, with the notation used in the proof of
Proposition 3.2, we have
KOJI (.X, )’) _

1‘ = ((Ko,n — T[)(;yv 0x) = ((Koym — ) (Km,n — 77)8)2’ Ox)
= ((Km,n — 77)8))’ (K(Tm — 7)8x)
< ((Kmun — )8y, (K — 1)8,) 2U(KG,y — m)8x, (K, — 7)8:) 12
= dZ(KO,m(x7 ')a n)dz(K:;l,n(y’ ')7 JT)

7(y)

Often, dz(K;;’,,(y, -), ) can be controlled just like d» (Ko, (x, -), 7). For instance, using (3.5)
and the fact that 01 (K ;) = o} (K;), we obtain

‘Ko,n(x7 y) _ 1
7(y)

< @@r) ] Jor(K). (3.13)
1
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3.3. Application to time inhomogeneous random walks

Theorem 3.3 simplifies in the case of a random walk. This subsection spells this out and
provides a few simple applications. More sophisticated examples will be discussed in Section 4
below.
Let G be a group and let w(x) = 1/|G| be the uniform measure on G. For any sequence
(pi i’o of probability measures on G we let (K i)fo be the sequence of Markov kernels with
Ki(x,y) = pix™'y).

As noted earlier, the iterated kernels K, ,, are then given by the convolution product
Kn,m(x, V) = Pnil ke k Pm(xfl)’)

where u * v(x) = ZyGG u(y)v(y~'x). Set
Pnm = Pn1 %% Dm

so that
Ko (6, ) = prm(x'y).

If the p;’s are equal, say p; = p, we write po, = p*---* p = p"™. Finally, set
0j(pi) = 0;(Ky)

where all singular values are with respect to the uniform measure 7 on G. The following result
is a direct application of Theorem 3.3 in the case of random walks. Note that, for random walks
as above, d2(Ko n(x,-),w) = da(pon, ) is independent of the starting point x. Hence (3.8)
becomes

dy(pon. ™) =Y _0j(prx- - pa)’. (3.14)
To obtain (3.17) below, use (3.12).

Theorem 3.5. Let (p;){° be a sequence of probability measures on a finite group G as above.
Then we have

dr(pon, 1) < (1G] = D[ To1(py), (3.15)
1

IGl—1 n 172
dr(po.n, ) < (Z ]‘[m(p,-f) (3.16)

i=1 j=1

and, for any m < n,

IGl=1 m 2 611 12
doo(po,n,n)s<z ]_[Ui(p,/)2> (Z I1 ai(pj)2> : (3.17)

i=1 j=1 i=1 j=m+l

Example 1. Let G be a finite group. Fix a sequence of generating set (S;){° and assume that each
S; contains the identity element of G. Let K;(x,y) = |S;|7 ifx~!y € §; and K;(x,y) = 0
otherwise. Thus K ; is the Markov kernel of the simple random walk on G associated with S;.
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For each j, consider the Cayley graph associated with the generating set S? =S;uU Sj_1 and let
d; be the diameter of this Cayley graph. Applying the well known eigenvalue estimate stated in
[23, Theorem 6.2] to the reversible walk associated with K ; K ;‘, we obtain

o1(Kj)? < 1—€d;?
where
€j = ml[} KjK;()C,XS) > |Sj|_2'

seSj

Thus the bound (3.15) yields

n 1 12
dy(Kon(x,),m) < GI'"* ] (1 ) :
1

T2
1, 2d2

Even if we use the trivial bounds |S;| < |G|, d; < |G/, this result is much better than the one
obtained in the same situation in Section 2.2.

Example 2. This example illustrates what can be lost going from (3.14) to (3.16). Let G =
Z/pZ, p prime, equipped with its uniform probability measure 7. Forany n € {1,..., p — 1},
let g, be the probability measure such that g, (+n) = 1/2. Because any n € {1,..., p — 1} is
a generator of the cyclic group G, all the g, have precisely the same behavior (see, e.g., [23]).
Namely, they are irreducible aperiodic and

¢ <1 + p2/k> e P < (g™, 1) < & (1 + p2/k) e C2k/P?,

Thus it takes order p? steps for the walk associated with ¢, to converge. Let us now consider the
time inhomogeneous chain for which the k-th step is associated with g, if k = a(p — 1) + n,
ne{l,...,p—1},a=0,1,....In particular, for k < p, the distribution after k steps is

40,k = q1 * -+ * gk.
All the g,,’s share the same orthonormal eigenvectors
x = exp(—2rwijx/p), j=0,...,p—1,

with associated eigenvalue B8;(g,) = cos(2mjn/p) (to get the singular values o;(g,), simply
take the absolute value and enumerate in non-increasing order). Note that the parametrization by
j €1{0,1,..., p — 1} is not the non-increasing enumeration introduced earlier. In any case, the
list of all singular values of g1 * - - - % g (counted with multiplicity) is

k
[T1cos@rjn/p)l. j=1.....p—1L.

n=1

Observe that ordering these in non-increasing order is not a simple task! In the present case,
(3.14) is equivalent to

p—1 k
dr(qox 7)> =Y [ Icos@mjn/p)? (3.18)

j=1ln=1
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whereas a moment of thought reveals that (3.16) reads

p—1
dy(qor.m)* = Y [eosrj/p)[* = da(g(”. m)*. (3.19)
j=1

This last estimate shows that Ap> steps with A large enough suffice to reach approximate
stationarity. This is very far from optimal. Indeed, we now proceed to show that the correct
answer is close to p?/3. Since p is prime, for each j, multiplication by j(mod p) is a bijection.
Thus the values of jn (mod p),n =1, ..., k, are all distinct when k < p. In particular

p—1

dr(qo.p-1,7)° = (p — 1) [ ] I cos@mj/p)* < pe™'7

j=1

is very small for large p. In fact, by the argument above, for k < p/4, we have

k 2 k
. Y .
dr(qox, m)* < (p— 1) [ ] leos@rj/p)I* < pexp (—2? > :ﬂ)
j 1

j=1

- 27 2k3

exp | —
= pexp 3p2
Thus da(qo.k, ) is small after order p*3 (log 3 steps. Now, (3.18) also yields

k

dy(qox, ) = [ ]I cos@mj/p)l
j=1

and the left-hand side is larger than e=k/P? for k < p/8. This shows that da2(go k, ) is not
small after order p%/3 steps.

4. Examples
4.1. Semi-random transpositions

On the symmetric group Sy, let & be the uniform probability measure. Foreachi € {1, ..., n},
set

() = 1/n ifx=(,j)forsome j, 1 <j<n,
i) =10 otherwise.

Here we use the convention that (i, i) = id. Using the method of [11] and results from [14], one
proves the following result. See [24] for details.

Theorem 4.1. Let g, be the measure corresponding to transposing top to random on the
symmetric group Sy,.
1. Foranyn > l and all k > n(logn + ¢), ¢ > 0, we have

dz(qik), 7) <27

2. For any sequence k,, such that (k, — nlogn)/n tends to —oo as n tends to infinity, we have

lim d>(q\*, 7) = oo, lim dry(g\™, m) = 1.
n—>0oo n—>oo
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Note that ¢; (x) = g; (x~') for all x € G and all i. Thus these chains are reversible with respect
to the uniform measure 7. Furthermore, for any i, the measures ¢, g; are images of each other
under some inner automorphisms of the symmetric group. It follows that all g;’s have the same
singular values (counted with multiplicity),

n!—1

d(q”. 1) = d(q{”. 1) =Y omlgn*. @1
m=1

Theorem 4.1 applies to g;, i # 1, as well.

Definition 4.2 (Semi-Random Transpositions). For any sequence r = (rl-)‘fo, ri € {l,...,n},
the r-semi-random transposition Markov chain is the chain associated with the sequence (K;){°
where K; (x, y) = pi(x~1y), x, y € S,, with p; = qr;. We let p(’)’k = p1*- - % pi be distribution
of this chain after k steps, starting from the identity element.

Our main result about semi-random transpositions is the following.
Theorem 4.3. For any n and any r = (r,')‘l’o, ri €{1,...,n}, we have

do(ph g 1) < do(g®, 7)
for all k. In particular,

dr(ply . ) < V2e7°
forall k > n(logn +c), ¢ > 0.
Proof. By Theorem 3.5, we have

nl—1 k

dry (P < Y [Jomt@)*.

m=1i=1
As 0,(qr;) = om(g) for all m, i, the last inequality together with (4.1) gives

n!—1

k
(P <Y omqD)* = da(qV, 1)

m=1

This and Theorem 4.1 yield the desired results. [

Remark. Mossel et al. [20] prove that dv( p67 4 77) tends to 0 if k > Cinlogn and n tends to
infinity. Theorem 4.3 is stronger in that it gives an L? bound (we always have 2dtvy (i, 1) <
dr (e, )) and it gives C; = 1. By Theorem 4.1, this is optimal in the case of transposing top
and random. They also prove a very interesting lower bound of order nlogn for the case of
cyclic semi-random transpositions, that is, for the case where 7; 4, = i forall 1 <i < n and
k=0,1,....

Set

1/n  ifx =id,
q(x) =132/n® ifx = (i, j) forsomei, j, 1 <i < j <n,
0 otherwise.
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This is the measure driving the random transposition shuffle studied by Diaconis and
Shahshahani in [11]. For completeness, we record the following simple result relating the average
behavior of semi-random transpositions to the behavior of random transpositions.

Proposition 4.4. Let E be the expectation over independent uniform random choices of the
entriesri € {1,...,n}of r = (r,')i’o. Then, for any n,

E(d(phy.m) = do(q® . 7m),  Edv(phy. 1) > drvig®, m)
where q denotes the random transposition measure.

Proof. Observe that E(p; ,(x)) = g™ (x) and use the Minkovski inequality to move the
expectation inside the norms. [

Remark. Let k,, be such that (2k, — nlogn)/n tends to —oco as n tends to infinity. By [7, p.
43-44], for any € € (0, 1), there exists N (¢€) such that dTV(q(k”), m) > 1—eforn > N(€). Thus
E(dTV(p(r).kn, 7)) > 1 — € forn > N(¢). It follows that

P((r s 1 —drv(ply,. m) = n)) < €/n.

This gives P({r : drv(py Ky w) > 1—n}) =1 —€/n. Thus, “most” semi-random transposition
schemes take at least k,, steps to mix up a deck of n cards.

4.2. Semi-random insertions

Keeping the notation of the previous section, let ¢; ; be the permutation corresponding to
picking the card in position i and inserting it so that its new position is j, that is,
id ifi =j
ci,j=1G.j—L...,i+1Li) ifl<i<j=<n
(G, j+1,...,i—1i) ifl<j<i<n

Note that ¢; ]1 =cj;and ¢; j = cj; if and only if | j — i| < 1. The random insertion measure on
S, is defined by

1/n ifx =id,
2/n* ifx =c¢;j forsomei, j,1 <i#j<n,|i—jl=1
1/n2 ifx =c¢;jforsomei, j,1 <i#j<n,|i—jl>1
0 otherwise.

q(x) =

Note that another description of this measure is that g is the image of the uniform measure on
{1, ..., n}? under the map (i, j) = ¢ij.

Theorem 4.5 (Diaconis and Saloff-Coste [8]). Let q denote the random insertion measure on
Sn-
1. Foralln > 28 and all k > 2n(logn + ¢), ¢ > 2, we have
dy(G®, ) < 2e772.
2. For any sequence k, such that (2k, — nlogn)/n tends to —oo as n tends to infinity, we have

lim do(@*, 7) = o0, lim dpv(@*), 7) = 1.
n—>0oo n—>oo
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This result is proved (in a slightly less precise form) in [8] using comparison with random
transpositions. For the present version, see [24]. The lower bounds come from the work of
Uyemura-Reyes in [26].

Foreachi € {1, ..., n}, set
~ « |J1/n ifx =c¢; jforsome j,1<j<n,
4i(x) = {0 otherwise.

This measure is associated with the shuffling scheme “insert the card in position i at random”. In
particular, g is the well known “top in at random”. The measures g; are not symmetric and hence
7 is not reversible for these chains. It also must be emphasized that there is no automorphism of
the symmetric group conjugating g; to g; for j & {i, n — i}. On the one hand, the probabilistic
techniques used to study top in at random such as coupling and strong stationary time (see [7,
Chap. 4]) do not seem to easily apply for i ¢ {1, n}. On the other hand, the adjoint g} of ; is
given by ¢ (x) = g; (x~!) and can be described as “insert a uniformly chosen card in position
i”. From this description it is obvious that

T xq =7, 4.2)
that is, “random to i” followed by “i in at random” is exactly “random insertion”. The next

statement gathers results concerning these shuffles. The upper bound follows from the present
argument. The lower bound is obtained as for top to random in [7]. See also [24].

Theorem 4.6. On the symmetric group S,, let q; denote the i in at random measure, i €
{1, ..., n}, and let q be the random insertion measure.
1. Foralli € {1,...,n}and j =0, ...,n! — 1, we have 0;(g;) = 0;(§)'/>.
2. Foralli e {1,...,n}andk=0,1, ...,
b@G . m) <GP, 7).
In particular, for alln > 28, ¢ > 2 and k > 4n(logn + c), we have
dyG" 7wy <2e7D.

3. For any sequence k,, such that (2k,, — nlogn)/n tends to —oo as n tends to infinity, we have

lim d>(@*, 7) = oo, lim dry (@, ) = 1.
n— oo n—oo
Definition 4.7 (Semi-Random Insertions). For any sequence r = (r;){°, r; € {1,...,n}, the

r-semi-random insertion Markov chain is the chain associated with the sequence (K;)7® where
Ki(x,y) = pi(x~y), x,y € Sy, with p; = G,,. We let Py = D1 * - pi be the distribution
of this chain after k steps, starting from the identity element.

Our main result about semi-random insertions is the following.

Theorem 4.8. For any n and any r = (r; ?o, ri €{1,...,n}, we have

dr (P o 1) < do @V, 1)
for all k. Moreover, for alln > 28, ¢ > 2 and k > 4n(logn + ¢),
dy (P g ) <2772,

This follows directly from Theorems 4.5 and 4.6.
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Remark. The techniques used here are robust and can be used to treat many other problems. To
mention one example, consider a process for which each step is either transpose i to random or
insert i in at random (i varying between 1 and n). This process will converge to uniform in order
nlogn.

4.3. Variable mixing times

In the examples of the last two sections, the individual steps forming the time inhomogeneous
chain of interest all had the same mixing time. In this section, we show how to deal with examples
of time inhomogeneous chains for which individual steps have possibly different mixing times.

Let G be a finite group equipped with its uniform measure w. Consider a sequence of
probability measures (p;){° on G. We are interested in the convergence of the k step measure

DOk = P1% - % Dp.

Fix B € (0, 00). Let pf denote either p; * p or pf * p; whichever is more convenient (for
each i, independently). These are the so called multiplicative reversibilizations of p;. We assume
that we are given the following data concerning each individual step p;:

(D1) For each i, we have an upper bound g; € [0, 1] on o1(p;), that is,
o1(pi) < Bi.

Note that this upper bound is trivial if g; = 1.
(D2) For each i, we have an upper bound N; € [1, 4+00] on the number k of steps needed to
insure that dz([p?](k), ) < B, that is,

inflk : da([pf1®. 7) < B} < Ni.
Roughly speaking, N; estimates the mixing time of the time homogeneous chain pf. Note

that this upper bound is trivial if N; = +o0.

Theorem 4.9. Fix B > 0. Referring to the notation (D1)—(D2) above, let

m
N=inf{m:Zl/N,- 32}.
i=1
For k > N, let Iy be any subset of {1, ..., k} such that Zlk 1/N; > 2. Then
dr(pos.m) < B[ [ Bi
K
where I, = {1, ..., k}\ I .

Proof. By Theorem 3.5, we have
IGl-1 &k

dr(pos-m)* < > [[eoip)*

j=1 i=1

Because of the definition of N, for each k > N there is a least one Iy C {l,..., k} such that
Z,k Nfl > 2. Fix such a subset I; and choose reals #; such that Z,k tfl = landt > 2N;,
i € I. Then by the generalized Holder inequality

[1#4] =TT D yu=1,
1 1 1

1
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we have

IGl-1

dr(pos. ) < | [[or)* | D [oiwn)?
ka Iy

j=1

A

IA
—]
2
S
=

|G]—1 1/t
I1 ( > Uj(Pi)Zti>

Ilf I j=1
1Gl=1 1
< ([T ] ( > a,-(pi)‘wf)
I Iy j=1
< B*[[o1(p)?
I

To obtain the last inequality we have used (D2) which gives
IG|-1
> o) = da(1pf1™, 1)* < B
1
and the fact that ) ; 1/t; = 1.

Before illustrating Theorem 4.9 with some examples, let us emphasize some of its main
features. The point of Theorem 4.9 is to estimate for the mixing time of a time inhomogeneous
random walk based only on information on each individual step and not on any knowledge of
how the different steps interact. To be more precise, define

r(ph) = inf{k Lo (P10, ) < 1}
to be the L? mixing time of the random walk driven by p? and let
T =inf |k : da(pos, ) < 1}

be the L? mixing time of the time inhomogeneous random walk driven by (pi){°. Then
Theorem 4.9 asserts that

T < inf{m : Zl/t(p,#) > 2}.

1
It is useful and interesting that this result does not require knowledge of the singular values of
each individual step beyond the “global” information contained in 7 ( pl#). Assume for instance
that all individual steps p; are drawn from a finite set Q = {q1, ..., g5} and that ¢; appears with
frequency f;, Y| fi = 1 (by this we mean that for m large enough the number of steps driven
by g; in the first m steps is very close to mf;). Then t is controlled by

-1
N
2 (Z ﬁ-/r(q,#)) :
1
i.e., twice the harmonic mean (with weights f;) of the t( p?). O

Example 1. Let G be the symmetric group S,. Let g be the random transposition measure and
q; be the transpose j with random measure. Let (p;) be a sequence of probability measure on
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Sy, such p; = g ifi = 0 (mod 5), p; € {q1,...g,}if i = 2,3 (mod 5), and p; is arbitrary
otherwise. In this case we have t(q#) =1(9)/2 = (%nlogn)(l + 0(1)), t(qf) =1(qi)/2 =
(%n logn)(1 + o(1)). Theorem 4.9 yields

dry(pox,m) <1
for k > (3nlogn)(1 + o(1)) where 5/4 = 2/(41 + 2% +0%).

Example 2. Let G be the Heisenberg group (mod p), p > 2 prime, i.e.,

1
G = 0
0

O = =

b4
yl|:ix,y,z€Z/pZ
1

Let X (resp. Y) be the matrix withx = 1,y = z = 0 (resp. y = 1, x = z = 0) and, for any
ne{l,...,p—1},set

S)’l = {I’ Xn’ X_n5 Yn’ Y_n}

where I denotes the identity matrix. Then S, is a generating set. Let g,(g) = |S,| "' if g € S,
and O otherwise. Let w be the uniform measure on G. Then [10, Theorem 1.1] yields constants
c1, ¢ such that, for all n, o1(gx) < 1 — ¢1/p? and da(q, ) < 1 for k > ¢, p. In this case,
the most efficient way to see that the constants cc; are independent of 7 is to observe that the
different ¢,,’s are images of each other under some group automorphisms. Now, Theorem 4.9
shows that, for any sequence (p;){° with p; € {g1 ..., gp—1}, we have

dr(pog, ) < e~am/P’ for any k > 02p2 + m.

This is sharp without further hypotheses on the sequence (p;). However, for the sequence that
goes cyclically through g1, ... ¢p—1, one expects a much faster convergence. In fact, in view of
Example 2 in Section 3.3, we conjecture that the cyclic sequence above converges in order p2/3,
up to a logarithmic factor. To prove this seems to be an interesting and possibly quite challenging

open problem.
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