
2
5
6
 
1
2
,
 
P
h
a
s
e
 
T
r
a
n
s
i
t
i
o
n
s
 
a
n
d
 
C
r
i
t
i
c
a
l
 
P
h
e
n
o
m
e
n
a
:
C
l
a
s
s
i
c
a
l
 
T
h
e
o
r
i
e
s

(d) W
hat is the asym

ptotic expression of the curve of coexistence
of phases in the im

m
ediate vicinity of the critical point?

(e) U
se your results to obtain the critical exponents ß, ì, 8, and a.

5
.
 
C
o
n
s
i
d
e
r
 
t
h
e
 
C
u
r
i
e
-
W
e
i
s
s
 
e
q
u
a
t
i
o
n
 
f
o
r
 
f
e
r
r
o
m
a
g
n
e
t
i
s
m
,

m
 
=
 
t
a
n
h
(
ß
H
 
+
 
ß
À
m
)
 

,

O
btain an asym

ptotic expression for the isotherm
al susceptibility,

X
 
(
T
,
 
H
)
,
 
a
t
 
T
 
=
 
T
c
 
f
o
r
 
H
 
-
-
 
O
.
 
O
b
t
a
i
n
 
a
s
y
m
p
t
o
t
i
c
 
e
x
p
r
e
s
s
i
o
n
s
 
f
o
r

the spontaneous m
agnetization for T

 .:.: T
c (that is, for T

 -- 0) and
T
 
;
:
 
T
c
 
(
t
h
a
t
 
i
s
,
 
f
o
r
 
t
 
-
-
 
0
-
)
.

.~~ I~J'
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13T
he Ising M

odel

M
ost of the experim

ents in the neighborhood of critical points indicate that
critical exponents assum

e the sam
e universal values, far from

 the predic-
tions of the "classical theories" (as represented by L

andau's phenom
enol-

ogy, for exam
ple). W

e now
 recognize that the universal values of the critical

exponents depend on a just few
 ingredients:

(i) T
he dim

ension of physical system
s. U

sual three-dim
ensional system

s
are associated w

ith a certain class of critical exponents. T
here are

experim
ental realizations of tw

o-dim
ensional system

s, w
hose critical

behavior is characterized by another class of distinct and w
ell-defined

critical exponents.

(ii) T
he dim

ension of the order param
eter. For sim

ple fluids and uniaxial
ferrom

agnets, the order param
eter is a scalar num

ber. For an isotropic
ferrom

agnet, the critical param
eter is a three-dim

ensional vector.

(iii) T
he range of the m

icroscopic interactions. For m
ost system

s of phys-
ical interest, the m

icroscopic interactions are of short range. W
e w

il
see that statistical system

s w
ith long-range m

icroscopic interactions
lead to the set of classical critical exponents.

O
w

ing to the universal behavior of critical exponents, it is enough to ana-
lyze very sim

ple (but nontrivial) m
odels in order to construct a m

icroscopic
theory of the critical behavior. T

he Ising m
odel, including short-range in-

teractions betw
een spin variables on the sites of a d-dim

ensional lattice,
plays the role of a prototypical system

. T
he Ising spin H

am
iltonian is given
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by
In one dim

ension, it is relatively easy to obtain an expression for this free
energy. W

e w
il use the technique of the transfer m

atrices, w
hich can also

be w
ritten in higher dim

ensions, to obtain a solution for the Ising chain.
H

ow
ever, as show

n by Ising in 1925, tils one-dim
ensional solution is quite

deceptive, since the free energy is an analytic function of T
 and H

 (ex-
c
e
p
t
 
a
t
 
t
h
e
 
t
r
i
v
i
a
l
 
p
o
i
n
t
 
T
 
=
 
H
 
=
 
0
)
,
 
w
h
i
c
h
 
p
r
e
c
l
u
d
e
s
 
t
h
e
 
e
x
i
s
t
e
n
c
e
 
o
f
 
a

spontaneous m
agnetization (and of any phase transition).

Several approxim
ate techniques have been developed to solve the Ising

m
odel in tw

o and three dim
ensions. Som

e of them
 are quite sim

ple and
useful, and m

ay lead to reasonable qualitative results for the phase dia-
gram

s (besides providing useful tools to investigate m
ore com

plex m
odel

system
s). H

ow
ever, as pointed out before, phase transitions are associated

w
ith a nonanalytic behavior of the free energy in the therm

odynam
ic lim

it.
A

s a consequence, w
e should be w

arned against any truncations or pertur-
bative expansions around the critical point. Indeed, m

ost of the approxi-
m

ate schem
es can be w

ritten as a Landau expansion, leading to classical
critical exponents.

In a m
athem

atical "tour de force," L
ars O

nsager, in 1944, obtained an
analytical solution for the Ising m

odel on a square lattice, w
ith nearest-

neighbor interactions, in the absence of an external field. For T
 -7 T

e, the
specific heat diverges according to a logarithm

ic asym
ptotic form

,

:~i:.
;:i~o.
1.,.~.J

,!i.--
i:i.i:
¡;\::~
'(:i

!iie)
1:1(' ,
1:1...

:.~--
!,t-
iië7-5

,;c:r
¡iloL

l
'~I:t~

it~il"

:~:)
¡L

r..i

1.,.-
~r'

¡~,.~::

P')
F".

i r)

N

1í =
 -f2':aiaj - H

L
ai,

(
i
j
)
 
i
=
l

w
here ai is a random

 variable assum
ing the values :f1 on the sites i =

1,2, ..., N
 of ad-dim

ensional hypercubic lattice. T
he first term

, w
here the

sum
 is over pairs of nearest-neighbor sites, represents the interaction ener-

gies introduced to bring about ~n ordered ferrom
agnetic state (if J ~ 0).

T
he second term

, involving the interaction betw
een the applied field H

and
the spin system

, is of a purely param
agnetic character (as w

e have already
seen in previous chapters of this book). Since it w

as proposed by L
enz and

solved in one dim
ension by E

rnst Ising in 1925, the Ising m
odel has gone

through a long history ¡see, for exam
ple, the paper by S. G

. B
rush, in R

ev.
M

od. Phys. 39, 883 (1967)J.
T

he Ising m
odel can represent the m

ain features of distinct physical
system

s. In the usual m
agnetic interpretation, the Ising spin variables are

taken as spin com
ponents (that m

ay be pointing either up or dow
n, along

the direction of the applied field) of crystalline m
agnetic ions. W

e m
ay also

consider a binary alloy of type A
B

. In this case, the spin variables indicate
w

hether a certain site on the crystalline lattice is occupied by an atom
 of

e
i
t
h
e
r
 
t
y
p
e
 
A
 
o
r
 
t
y
p
e
 
B
 
(
n
e
i
g
h
b
o
r
s
 
o
f
 
t
h
e
 
s
a
m
e
 
t
y
p
e
 
c
o
n
t
r
i
b
u
t
e
 
w
i
t
h
 
a
n

energy -J; neighbors of different types, contribute w
ith +

J). A
s another

exam
ple, take the :f1 spin variables to indicate either the presence (+

 1) or
the absence (-1) of a m

olecule in a certain cell of a "lattice gas" (w
hich is a

useful m
odel for the critical behavior of a fluid system

). T
his m

ultiplicity of
interpretations is com

patible w
ith the ability of the Ising m

odel to represent
the m

ain features of the critical behavior of m
any different physical system

s.
From

 the point of view
 of m

agnetism
, the Ising H

am
iltonian m

ay be
regarded as a kind of approxim

ation for the H
eisenberg H

am
iltonian, asso-

ciated w
ith a highly anisotropic spin-1/2 m

agnetic insulator. T
he energy J

is interpreted as the quantum
 exchange param

eter of electrostatic origin.
In this chapter, w

e take advantage of the m
ore intuitive language of this

m
agnetic analogy to derive som

e properties of the Ising m
odeL.

I
n
 
o
r
d
e
r
 
t
o
 
s
o
l
v
e
 
t
h
e
 
I
s
i
n
g
 
p
r
o
b
l
e
m
,
 
w
e
 
h
a
v
e
 
t
o
 
o
b
t
a
i
n
 
t
h
e
 
c
a
n
o
n
i
c
a
l

p
a
r
t
i
t
i
o
n
 
f
u
n
c
t
i
o
n

w
i
t
h
 
a
 
w
e
l
l
-
d
e
f
i
n
e
d
 
c
r
i
t
i
c
a
l
 
t
e
m
p
e
r
a
t
u
r
e
,
 
k
B
T
e
f
J
 
=
 
2
1
 

In (1 +
 J2). T

here-
fore, the free energy is not analytic at T

e, and cannot be w
ritten as a

Landau expansion. T
he O

nsager solution has been reproduced and con-
firm

ed by different techniques on m
any planar lattices (w

ith first-neighbor
interactions). It represents a true m

ilestone in the developm
ent of the m

od-
ern theories of critical phenom

ena, B
y the first tim

e, it w
as show

n that a
m

icroscopic m
odel leads to nonanalytic behavior w

ithin the fram
ew

ork of
equilibrium

 statistical m
echanics. T

he origins of this nonanalyticity w
ere

later explained, under m
uch m

ore general grounds, by the Y
ang and L

ee
t
h
e
o
r
y
 
o
f
 

phase transitions (see C
hapter 7), including the rem

arkable "circle
theorem

" about the zeros of the partition function in the therm
odynam

ic
lim

it. In the 1950s, C
. N

. Y
ang checked a result of O

nsager for the spon-
taneous m

agnetization of the Ising ferrom
agnet on the square lattice to

obtain the exponent ß =
 1/8, in sharp contrast w

ith the classical value.
N

ow
adays, although there are no exact solutions in a field, w

e m
ay be sure

t
h
a
t
,
 
=
 
7
1
4
 
i
n
 
t
w
o
 
d
i
m
e
n
s
i
o
n
s
.
 
A
l
l
 
p
l
a
n
a
r
 
l
a
t
t
i
c
e
s
,
 
w
i
t
h
 
s
h
o
r
t
-
r
a
n
g
e
 
i
n
-

teractions, lead to the sam
e set of critical exponents (a =

 0, ß =
 1/8,

,
 
=
 
7
/
4
)
,
 
w
h
i
c
h
 
a
r
e
 
f
a
r
 
f
r
o
m
 
t
h
e
 
e
x
p
e
r
i
m
e
n
t
a
l
 
v
a
l
u
e
s
 
f
o
r
 
t
h
r
e
e
-
d
i
m
e
n
s
i
o
n
a
l

system
s, and far as w

ell from
 the classical L

andau results.
T

he solution of the Ising m
odel in three dim

ensions rem
ains an open (and

probably im
possible) problem

. H
ow

ever, w
e can use an argum

ent due to

(13.1)

C
H
=
O
 
r
-
 
I
n
 
I
T
 
-
 
T
e
l
,

(13.4)

Z
N

=
Z

(T
,H

,N
)=

 L
exp(-ß1í),

fU
iì

w
here the sum

 is over all configurations of spin variables, and the H
am

il-
t
o
n
i
a
n
 
i
s
 
g
i
v
e
n
 
b
y
 
e
q
u
a
t
i
o
n
 
(
1
3
.
1
)
.
 
F
r
o
m
 
t
i
l
s
 
p
a
r
t
i
t
i
o
n
 
f
u
n
c
t
i
o
n
,
 
w
e
 
h
a
v
e

the m
agnetic free energy per site,

(13.2)

9 =
 9 (T

, H
) =

 lim
 (-.ß1 inZ

N
).

N
-
.
o
o
 
N

(13.3)
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Peierls to prove the existence of spontaneous m
agnetization at suffciently

low
 tem

peratures. A
lso, since the 1960s there have been m

any efforts to
obtain quite long series expansions (at high as w

ell as low
 tem

peratures)
for several therm

odynam
ic quantities associated w

ith the three-dim
ensional

Ising m
odeL

. From
 refined asym

ptotic analyses of these series, w
e obtain a

range of values for the critical exponents in agreem
ent w

ith experim
ental

m
easurem

ents (ß ~ 5/16, 'Y
 ~ 5/4, æ

 ~ 1/8). A
lso, m

ore recent, and
m

uch m
ore sophisticated, renorm

alization-group techniques lead to sim
ilar

results, In the table below
, w

e give the values of som
e usual therm

odynam
ic

critical exponents.

L
andau

I
s
i
n
g
 
(
d
 
=
 
2
)

I
s
i
n
g
 
(
d
 
=
 
3
)

E
xperim

ents
ß

1/2
1/8

~
 
5
/
1
6

0
.
3
 
-
 
0
.
3
5

'Y
1

7/4
~
 
5
/
4

1
.
2
 
-
 
1
.
4

8
3

15
~
 
5

4
,
2
 
-
 
4
.
8

æ
0

o (log)
~
 
1
/
8

~O

1
3
.
1
 
E
x
a
c
t
 
s
o
l
u
t
i
o
n
 
i
n
 
o
n
e
 
d
i
m
e
n
s
i
o
n

In one dim
ension (d =

 1), the Ising H
am

iltonian is w
ritten as

N
 
N

H
 =

 -JL
O

"iO
"i+

l - H
L

O
"i'

i
=
1
 
i
=
1

(13.5)

T
he canonical partition function is given by

¡ N
 L

N
 J

Z
N

 =
 L exp K

 L: O
"iO

"i+
l +

 "2 L (O
"i +

 O
"i+

l) ,
t
a
d
 
i
=
1
 
i
=
1

(13.6)

w
here K

 =
 ßJ, L

 =
 ßH

, and the second term
 has been rearranged to take

advantage of a m
ore sym

m
etric form

. A
s a m

atter of convenience, w
e adopt

periodic boundary conditions, O
"N

+
l =

 0"1. N
ow

 it is interesting to w
rite

t
h
e
 
p
a
r
t
i
t
i
o
n
 
f
u
n
c
t
i
o
n
 
a
s

N
Z

N
=

 L IIT
(O

"i,O
"i+

l),
U
i
,
U
2
,
"
"
'
,
O
'
N
 
i
=
l

(13.7)

w
here

T
 (O

"i, O
"i+

l) =
 exp (K

 O
"iO

iH
 +

 ~
 (O

"i +
 O

"i+
i) J '

T
his last expression can also be w

ritten as a standard 2 x 2 m
atrix, w

hose
indices are the spin variables, O

"i =
 :l1 and O

"i+
l =

 :l1. W
e then define a

(13.8)

13.1 E
xact solution in one dim

ension
261

transfer m
atrix,

T
=

 (T
(+

,+
)

T
(-,+

)
T

 ( +
, -) ) _ ( exp (K

 +
 L

) exp ( - K
) )

T
(
-
,
-
)
 
-
 
e
x
p
(
-
K
)
 
e
x
p
(
K
-
L
)
 
,(13.9)

and use the m
atrix form

alism
 to see that equation (13.7) for the canonical

partition function is a trace of a product of N
 identical transfer m

atrices,

Z
N
 
=
 
T
r
(
T
)
N
.

(13.10)

Furtherm
ore, the transfer m

atrix (13.9) is sym
m

etric, and can thus be
d
i
a
g
o
n
a
l
i
z
e
d
 
b
y
 
a
 
u
n
i
t
a
r
y
 
t
r
a
n
s
f
o
r
m
a
t
i
o
n
,

U
T

U
-1 =

 D
, w

ith U
-1 =

 ut,
(13.11)

w
here D

 is a diagonal m
atrix. T

herefore, the canonical partition function
can be w

ritten in term
s of the eigenvalues of the transfer m

atrix,

Z
N

 =
 T

r (U
-1D

U
t =

 T
r (D

)N
 =

 À
t +

 À
!J,

(13.12)

w
here

À
1,2 =

 eK
 cosh L

:l (e2K
 cosh2 L

 - 2 sinh (2K
)) 1/2 ,

(13.13)

are given by the roots of the secular equation, det (T
 - À

I) =
 O

. It is easy
to see that these eigenvalues are alw

ays positive, and that À
1 / À

2 (except
a
t
 
t
h
e
 
t
r
i
v
i
a
l
 
p
o
i
n
t
 
T
 
=
 
H
 
=
 
0
)
,
 
I
n
 
z
e
r
o
 
f
i
e
l
d
,
 
w
e
 
h
a
v
e
,

À
1
 
=
 
2
 

cosh 
K
 
2
:
 
À
2
 
=
 
2
 

sinh 
K

,
(13.14)

w
ith a degeneracy (À

1 =
 À

2) in the lim
it K

 -7 00 (that is, for T
 -7 0),

T
o obtain the free energy in the therm

odynam
ic lim

it, it is convenient
to w

rite

Z
N

 =
 À

t ¡ 1 +
 (~~) N

J '
(13.15)

Since À
2 -: À

1, w
e have the lim

it

9 (T
, H

) =
 )~oo (- ß~ InZ

N
 J =

 -~ InÀ
1,

(13.16)

that is,

9
 
(
T
,
 
H
)
 
=
 
-
~
 
I
n
 
t
 
e
ß
J
 
c
o
s
h
 
(
ß
H
)
 
+
 
(
e
2
ß
J
 
c
o
s
h
 
2
 
(
ß
H
)
 
-
 
2
 

sinh (2ßJ)) 1/21,

(13.17)
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t
t

t
t
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l
l

FIG
U

R
E

 13.1. Ising chain w
ith six sites and tw

o different dom
ains (at left and

a
t
 
r
i
g
h
t
 
o
f
 
a
 
p
o
i
n
t
 
w
a
l
l
)
.

w
hich is an analytic function of T

 and H
, from

 w
hich w

e derive all the
therm

odynam
ic properties of the one-dim

ensional system
.

T
he m

agnetization per spin is given by

m
 
(
T
,
 
H
)
 
=
 
-
 
(
i
~
 
)
 
T

sinh (ßH
)

1/2 .
(sinh2 (ßH

) +
 exp (-4ßJ))

W
e then see that, as m

 (T
, H

 =
 0) =

 0, this m
odel is unable to explain

ferrom
agnetism

. From
 the entropy per spin, s =

 s (T
, H

) =
 - (åg/åT

)H
'

w
e can calculate the specific heat at constant field. In zero field, w

e have

C
H
=
O
 
=
 
k
:
~
2
 
(
s
e
c
h
 
(
k
:
T
 
)
 
J
 
2
 
,
 
(
1
3
.
1
9
)

w
hich is a w

ell-behaved function, displaying just a broad m
axim

um
 as a

function of tem
perature,

A
ccording to an argum

ent attributed to L
andau, w

e can show
 that there

is no ordered state (therefore, no phase transition) in a one-dim
ensional sys-

tem
 w

ith short-range interactions. C
onsider the ground staté of the Ising

chain, in the absence of an external field, w
ith all spins pointing up, T

o
create tw

o distinct dom
ains, it is enough to reverse the sign of just a single

spin (see figure 13.1).T
his costs an am

ount of energy ljU
 =

 2J :; O
. H

ow
-

ever, there is an enorm
ous increase of entropy, ljS

 =
 k B

 In N
, since there

are N
 distinct positions to locate the separating w

all betw
een dom

ains (for
a chain w

ith N
 +

 1 sites). A
t finite tem

peratures, the free energy of this
one-dim

ensional m
odel undergoes a change

(13.18)

:1:1
.::J

,i...
, ,.:
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:i:i
,10
¡o',i;,:i

"i:t-
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'K

O
¡,n:'
itL

J
:;~2:
i~~~

:::)
,L

1:.l

ii,,,.
i I": a:
j-..-
ti')

ljG
 =

 2J - kB
T

lnN
,

w
hich becom

es negative for su.ffciently large values of N
. T

herefore, as the
free energy decreases, there is a tendency to create m

ore and m
ore dom

ains,
w

hich precludes the stabilty of any ordered phase. It is not diffcult to check
t
h
a
t
 
s
i
m
i
l
a
r
 
a
r
g
u
e
n
t
s
 
d
o
 
n
o
t
 
w
o
r
k
 
i
n
 
t
w
o
 
d
i
m
e
n
s
i
o
n
s
,
 
s
i
n
c
e
 
t
h
e
 
d
o
m
a
i
n

w
alls are not so sim

ple, and both ljU
 and ljS are m

uch m
ore com

plicated.
U

sing the technique of the transfer m
atrices, w

e can calculate the spin--
spin correlations,

~
 
1

(
G
'
k
G
'
l
)
 
N
 
=
 
z
 
L
 
G
'
k
G
'
1
 
e
x
p
 
(
-
ß
7
-
)
 

,

~ad
(13.20)
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ation for the Ising m
odel
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F
or L :; k, and a fair am

ount of algebra, it is possible to show
 that

)
.
N
-
(
I
-
k
)
 
(
I
 
k
)

(
G
'
k
G
'
l
)
 
N
 
=
 
1
 
)
.
2
 
-
 
+
 
)
.
~
I
-
k
)
 
)
.
~
-
(
I
-
k
)

).~ +
).l

(13.21 )

T
hus, in the therm

odynam
ic lim

it, w
e have

(
)
.
 
)
(
I
-
k
)

(
G
'
k
G
'
l
)
 
=
 
l
i
m
 
(
G
'
k
G
'
l
)
 
N
 
=
 
\
2
 
,

N
-+

oo /\1
(13.22)

w
h
i
c
h
 
s
t
i
l
 
w
o
r
k
s
 

f
o
r
 
L
 
-
:
 
k
,
 
i
f
 
w
e
 
r
e
p
l
a
c
e
 
t
h
e
 
d
i
f
f
e
r
e
n
c
e
 
(
l
 
-
 
k
)
 
b
y
 
i
t
s
 
a
b
s
o
l
u
t
e

v
a
l
u
e
,
 
I
l
 
-
 
k
i
 
I
n
 
z
e
r
o
 
f
i
e
l
d
,
 
w
e
 
w
r
i
t
e
 
t
h
e
 
p
a
i
r
 
c
o
r
r
e
l
a
t
i
o
n
,

(
G
'
k
G
'
I
)
H
=
O
 
=
 
(
t
a
n
h
K
f
,

(13.23)

w
here r =

 Il - kl is the distance betw
een sites k and l. T

his expression can
also be w

ritten as

(
G
'
k
G
'
l
)
 
H
=
O
 
=
 
e
x
p
 
r
r
l
n
 
(
t
a
n
h
K
n
 
=
 
e
x
p
 
(
 
-
~
)
 
,

(13.24)

f
r
o
m
 
w
h
i
c
h
 
w
e
 
d
e
f
i
n
e
 
t
h
e
 
c
o
r
r
e
l
a
t
i
o
n
 
l
e
n
g
t
h
,

ç=
~

- -, . .
(13.25)

N
ow

, w
e see that ç diverges for K

 ~ 00 (that is, at the trivial critical
p
o
i
n
t
,
 
T
 
=
 
0
)
.
 
F
o
r
 
T
 
f
=
 
0
,
 
c
o
r
r
e
l
a
t
i
o
n
s
 
d
e
c
a
y
 
e
x
p
o
n
e
n
t
i
a
l
l
y
,
 
w
i
t
h
 
t
h
e
 
c
h
a
r
-

a
c
t
e
r
i
s
t
i
c
 
l
e
n
g
t
h
 
ç
.
 
F
o
r
 
t
h
e
 
I
s
i
n
g
 

m
odel in tw

o dim
ensions, at T

 f=
 T

e, and
for large enough distances, it can be exactly show

n that correlations decay
exponentially, w

ith a correlation length of the form
 ç '" \tl-II, w

here II =
 1

and t =
 (T

 - T
e) /T

e ~
 O

. A
t the critical point (T

e =
 H

 =
 0), spin-spin

correlations decay asym
ptotically as a pow

er law
,

1
(
G
'
k
G
'
l
)
e
r
 
'
"
 
r
d
-
2
+
1
)
'

w
h
e
r
e
 
r
¡
 
=
 
1
/
4
,
 
f
o
r
 
d
 
=
 
2
 
a
n
d
 
r
 
~
 
0
0
.
 
F
r
o
m
 
t
h
e
 
c
l
a
s
s
i
c
a
l
 
O
r
n
s
t
e
i
n
 
a
n
d

Z
ernike theory for the decay of the critical correlations, w

e obtain the
(classical) critical exponents II =

 1/2 and r¡ =
 O

.

13.2 M
ean-field approxim

ation for the Ising m
odel

T
he standard m

ean-field approxim
ation, also know

n as the B
ragg-W

illam
s

m
ethod, can be obtained in the canonical form

alism
 if w

e suppose that,
besides the constraints of fied tem

perature and external m
agnetic field,
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there is an additional internal constraint that fies the m
agnetization per

spin.
F

or a spin-1j2 m
odel, w

e w
rite

N
+

 +
 N

_ =
 N

(13.26)

and

N
+

 - N
_ =

 N
m

,
(13.27)

w
here N

+
 (N

_) is the num
ber of spins up (dow

n), N
 is the total num

ber
o
f
 
s
p
i
n
s
,
 
a
n
d
 
m
 
i
s
 
t
h
e
 
d
i
m
e
n
s
i
o
n
l
e
s
s
 
m
a
g
n
e
t
i
z
a
t
i
o
n
 
p
e
r
 
s
p
i
n
.
 

G
iven N

+
 and

N
_ (that is, N

and m
), w

e can w
rite the total entropy,

N
!
 
N
!

S =
 kB

 In N
+

!N
_! =

 kB
 In (N

+
rm

)! (N
-rm

)!
(13.28)

N
ow

, if w
e take into account the translational sym

m
etry of tiie H

am
ilto-

nian, the internal energy of a nearest-neighbor Ising m
odel on ad-dim

ensional
hypercubic lattice is given by

U
 =

 (H
) =

 -JdN
 (aiO

j) - H
N

m
.

(13.29)

T
herefore, w

ith the additional constraint of fied m
agnetization, the m

ag-
netic free energy per spin is given by

1- (U
 - T

S) =
 -Jd (aiaj) - H

m
N_
 
k
B
T
 
I
n
 
N
!

N
 (N

+
2N

m
)! (N

-rm
)!

U
p to this point there are no approxim

ations. T
he diffcult problem

 is the
calculation of the pair correlations in term

s of T
, H

, and m
.

T
he B

ragg-W
iliam

s approxim
ation consists in neglecting fluctuations in

the correlation functions. W
e then assum

e the approxim
ation

g(T
,H

;m
)

(13.30)

:i:n
(:J
,!i.~
:i...
:?:r:i

1110

¡¡¡o
¡
.
 
~

;1("
;1.=
,;(,0
,p::'
¡IL

.L

¡F':~;l.
-~-

I..~~

::::~")

(
a
i
a
j
)
 
~
 
(
a
i
)
 
(
a
j
)
 
=
 
m
2
,

(13.31 )

Introducing a Stirling expansion to take care of the factorials, using the
approxim

ate form
 of the spin-spin correlations, and taking the therm

ody-
nam

ic lim
it, w

e can w
rite the follow

ing B
ragg-W

iliam
s free energy per

spin,gB
w

(T
,H

;m
)

2
 
1

-Jdm
 - H

 m
 - - In 2

ß
1

+
 2ß

 ¡(1 +
 m

) In (1 +
 m

) +
 (1 - m

) In (1 - m
)J '

(13.32)
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T
o rem

ove the internal constraint of fied m
agnetization, w

e m
inim

ize gB
W

w
ith respect to m

. H
ence, w

e obtain

1
 
1
 
+
 
m
 
=
 
0
,

8
g
B
W
 
=
-
2
J
d
m
-
H
+
2
ß
l
n
1
_
m

8m
(13.33)

from
 w

hich the C
urie-W

eiss equation follow
s,

m
 =

 tanh (ß2Jdm
 +

 ßH
),

(13.34)

w
here the phenom

enological param
eter À

 is identified as the product 2dJ.
In this approxim

ation, the critical tem
perature is given by kB

T
c =

 2dJ,
and there is a transition even in one dim

ension. A
lthough this result is

com
pletely w

rong, especially at low
 dim

ensions, w
e anticipate that m

ean-
field approxim

ations becom
e m

uch better as the dim
ension increases.

T
he B

ragg-W
iliam

s free energy, given by equation (13.32), can also be
w
r
i
t
t
e
n
 
a
s

1 1 f
gB

W
 (T

, H
; m

) =
 -Jdm

2 - H
m

 - ß
 In2 +

 ß
 (tanh -1m

) dm
, (13.35)

w
hich leads to an identification w

ith the function g (T
, H

; m
), as obtained

in the last chapter from
 the phenom

enological equation of C
urie-W

eiss. W
e

thus recover all of the classical results for the critical behavior.

T
he m

ean-field approxim
ation can also be obtained from

 an elegant vari-
ational form

alism
 based on the P

eierls-B
ogoliubov inequality, com

ing from
convexity argum

ents, already know
n by G

ibbs him
self ¡see, for exam

ple, H
.

Falk, A
m

. J. Phys. 38, 858 (1970)J. For all classical system
s (in fact, also

for quantum
 system

s), w
e can w

rite the inequality

G
 (H

) :: G
o (H

o) +
 (H

 -H
o) 0 =

 lP,
(13.36)

w
here G

 (H
) and G

o (H
o) are free energies associated w

ith tw
o different

system
s given by the H

am
iltonians H

and H
o, respectively, and the therm

al
a
v
e
r
a
g
e
 
i
s
 
t
a
k
e
n
 
w
i
t
h
 
r
e
s
p
e
c
t
 
t
o
 
a
 
c
a
n
o
n
i
c
a
l
 
d
i
s
t
r
i
b
u
t
i
o
n
 
a
s
s
o
c
i
a
t
e
d
 
w
i
t
h

H
o' If w

e choose a noninteracting (trial) H
am

iltonian,
N

H
o
 
=
 
-
r
¡
 
L
a
i
,

i=
1

(13.37)

w
here r¡ is a param

eter, w
e have

Z
o =

 L
 exp (-ßH

o) =
 (2coshßr¡t '

ia;J
(13.38)

T
hus

N
G
o
 
=
 
-
ß
 
I
n
 
¡
2
c
o
s
h
ß
r
¡
J

(13.39)
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(13.40)

T
he canonical partition function associated w

ith the C
urie-W

eiss m
odel

is given by

1 +
¡=

 L (ß
J)1/2 N

 N
 J

~
 y7 _=

 dxexp _x2 +
 2 2N

 x t;O
"i +

 ß
H

t;O
"i

+
=

J; 1 dxexp (_x2) \ 2cm
h l2 (:~r x +

 ßH
J f(1347)

1
 
1

9
 
(
T
,
 
H
;
 
m
)
 
=
 
2
J
m
2
 
-
 
ß
 
I
n
 
¡
2
 
c
o
s
h
 
(
ß
J
m
 
+
 
ß
H
)
J
 
'

In order to obtain the free energy per spin in the therm
odynam

ic lim
it,

w
e use L

aplace's m
ethod to calculate the asym

ptotic form
, as N

 -- 00, of
the integral (13.49). W

e thus have

and

(
?
t
 
-
?
t
o
)
o
 
=
 
-
J
d
N
 
(
O
"
i
O
"
j
)
o
 
-
 
H
N
 
(
O
"
i
)
o
 
+
 
r
¡
N
 
(
O
"
i
)
o
'

z~
 ttex (:~

 (t,d')' +
ß

H
t,d').

w
ith

(
O
"
i
O
"
j
)
o
 
=
 
(
O
"
i
)
~
 
=
 
(
t
a
n
h
 

ß
r¡)2 and (O

"i)o~
=

 tanhß
r¡.

(13.41)

H
ence, w

e have
N

ow
 w

e use the G
aussian identity,

1
 
1
 
1
 
1

N
 if =

 N
 if (T

, H
, N

; r¡) =
 -ß In2 - ß In (coshßr¡)

-
J
d
 
(
t
a
n
h
 

ß
r¡)2 - H

 tanhß
r¡ +

 r¡ tanhß
r¡, (13.42)

+
=¡ exp (_x2 +

 2ax) dx =
 V

1exp (a2) ,
-=

to calculate the sum
 over the spin variables in equation (13.45),

T
his expression is just an upper bound for the free energy of the Ising

system
 under consideration. In the (m

ean-field) approxim
ation, the free

energy per spin w
il be given by the m

inim
um

 of if (T
, H

, N
; r¡) w

ith respect
to the field param

eter r¡,gM
F

 =
 ~

 m
Jn if (T

, H
, N

j r¡) ,

Z

(13.43)

w
h
i
c
h
 
c
o
r
r
e
s
p
o
n
d
s
 
t
o
 
t
h
e
 
s
m
a
l
l
e
r
 
u
p
p
e
r
 
b
o
u
n
d
 
t
h
a
t
 
c
o
m
e
s
 
f
r
o
m
 
B
o
g
o
l
i
-

u
b
o
v
'
s
 
i
n
e
q
u
a
l
i
t
y
 
w
i
t
h
 
a
 
f
r
e
e
 
t
r
i
a
l
 
H
a
m
i
l
t
o
n
i
a
n
,
 
I
t
 
s
h
o
u
l
d
 
b
e
 
n
o
t
e
d
 
t
h
a
t
 
r
¡

depends on m
 through the relation m

 =
 tanhß

r¡, from
 w

hich w
e recover

the previous results of the B
ragg-W

iliam
s approxim

ation.

Introducing the change of variables

2 (ßJ)1/2
2N

 x =
 ßJm

,

1
3
.
3
 
T
h
e
 
C
u
r
i
e
-
W
e
i
s
s
 
m
o
d
e
l

w
e have

(
 
N
 
1
/
2
 
+
=

Z
 
=
 
2
7
r
ß
J
)
 
¡
 
d
m
e
x
p
 

¡-N
ßg 

(T
,H

;m
)J ,

-=
Instead of w

orking w
ith an approxim

ate solution on a B
ravais lattice, it m

ay
be interesting to introduce a (sim

plifying) m
odification in the very defini-

tion of the statistical m
odeL

. W
ith a suitable m

odification, som
e physical

features are not lost, and the new
 problem

 can be exactly solved. A
ccord-

ing to this strategy, a deform
ation of the interaction term

 of the nearest-
neighbor Ising H

anltonian leads to the C
urie-W

eiss m
odel,

J N
 N

 N
?
t
e
w
 
=
 
-
-
 
'
"
 
'
"
 
O
"
~
O
"
 
~
 
-
 
H
 
'
"
 
0
"
'

2
N
 
~
 
~
 
i
 
J
 
~
 
i
,

i=
1 j=

1 i=
1

w
here

(13.44)

in w
hich each spin interacts w

ith all neighbors. T
he interactions are long

ranged (indeed, of infinite range), but very w
eak, of the order 11N

, to
preserve the existence of the therm

odynam
ic lim

it. In zero field, the ground-
state energy per spin of this C

urie- W
eiss m

odel is given by U
 ew

 IN
 =

 - J 12
, w

hich should be com
pared w

ith the corresponding result for a nearest-
n
e
i
g
h
b
o
r
 
I
s
i
n
g
 
f
e
r
r
o
m
a
g
n
e
t
 
o
n
 
a
 
h
y
p
e
r
 

cubic d-dim
ensionallattice, U

 1 N
 =

-Jd.

9 (T
, H

) =
 N

li!?=
 ~

 - ß
~

 InZ
 J =

 m
J,n rg (T

, H
; m

)l,

H
ence,

8g (T
, H

; m
) =

 Jm
 _ Jtanh (ß

Jm
 +

 ß
H

) =
 0,

8m

(13.45)

(13.46)

(13.48)

(13.49)

(13.50)

(13.51)

(13.52)
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0'2
H

am
iltonian of this cluster is given by

H
e =

 -Jao (a1 +
 ". +

 aq) - H
ao - H

e (a1 +
 '" +

 aq).
(13.54)

T
hus, w

e w
rite the canonical partition function of the cluster,

0'0
0'1

Z
e
 
=
 
L
 
e
x
p
 
(
-
(
3
H
e
)
 
=
 
L
 
e
x
p
 
(
(
3
H
a
o
)
 
¡
2
c
o
s
h
 
(
(
3
J
a
o
 
+
 
(
3
H
e
W
.
 
(
1
3
.
5
5
)

t
a
i
l
 
a
o

0'3

From
 this expression, w

e calculate the spin m
agnetization of the central

site,

0'4

1
 
å

m
o =

 ß åH
 InZ

e,

and the spin m
agnetization of one of the surrounding sites,

(13.56)

FIG
U

R
E

 13,2. Spin cluster w
ith a central site and four surrounding sites,

m
 =

 tanh ((3Jm
 +

 (3H
) ,

(13.53)

1
 
å

m
p =

 (3q åH
e In Z

e'

A
fter som

e algebraic m
anipulations, equation (13.56) m

ay be w
ritten as

(13.57)

from
 w

hich w
e have the ( C

urie-W
eiss) equation of state,

m
o =

 tanh ((3H
 +

 qtanh -1 (tanh(3Jtanh(3H
e)) .

(13.58)
w
h
i
c
h
 
i
s
 
t
h
e
 
t
r
a
d
e
m
a
r
k
 
o
f
 
t
h
e
 
m
e
a
n
-
f
i
e
l
d
 
a
p
p
r
o
x
i
m
a
t
i
o
n
 
f
o
r
 
t
h
e
 
I
s
i
n
g
 
m
o
d
e
L
.

I
t
 
i
s
 
e
a
s
y
 
t
o
 
c
h
e
c
k
 
t
h
a
t
 
t
h
i
s
 
m
o
d
e
l
 
w
i
t
h
 
i
n
f
i
n
i
t
e
-
r
a
n
g
e
 
i
n
t
e
r
a
c
t
i
o
n
s
 
l
e
a
d
s

to the sam
e classical results of the B

ragg-W
iliam

s approxim
ation for the

Ising m
odel on a B

ravais lattice, A
s in the phenom

enological treatm
ent of

L
andau, the expansion of the "functional" 9 (T

, H
; m

) in pow
ers of m

 gives
r
i
s
e
 
t
o
 
a
 
(
r
i
g
o
r
o
u
s
)
 
a
n
a
l
y
s
i
s
 
o
f
 
t
h
e
 
t
r
a
n
s
i
t
i
o
n
 
i
n
 
t
h
e
 
C
u
r
i
e
-
W
e
i
s
s
 
m
o
d
e
L
.

A
lthough the coeffcients of the various pow

ers of m
 are different from

 the
corresponding term

s in the expansion of the B
ragg-W

iliam
s "functional,"

all the critical param
eters are exactly the sam

e ¡see, for exam
ple, C

. E
. i.

C
a
r
n
e
i
r
o
,
 
V
.
 
B
.
 
H
e
n
r
i
q
u
e
s
,
 
a
n
d
 
S
.
 
R
.
 
S
a
l
i
n
a
s
,
 
P
h
y
s
i
c
a
 
A
1
6
2
,
 
8
8
 
(
1
9
8
9
)
J
.

A
lso, it is not diffcult to w

rite equation (13.57) in the m
ore convenient

formm
p

(
1
 
-
 
t
a
n
h
 
2
(
3
J
)
 
t
a
n
h
 

(3 H
e +

 m
o (1 - tanh 2(3H

e) tanh(3J

1
-
 
(
t
a
n
h
(
3
J
t
a
n
h
(
3
H
e
)
2

tanh ((3H
e +

 (3J) +
 tanh ((3H

e - (3J) exp (-2 tanh -1m
o)

1 +
 exp (-2 tanh -1m

o)
(13.59)
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T
he self-consistent condition, from

 w
hich w

e elim
inate the effective field,

is given by

13.4 T
he B

ethe-P
eierls approxim

ation
m
o
 
=
 
m
p
 
=
 
m
,

(13.60)

T
here are som

e self-consistent approxim
ations for the Ising m

odel on a
B

ravais lattice, usually correct in one dim
ension, w

hich do take into ac-
count som

e short-range fluctuations, and are thus capable of displaying
som

e features of the phase diagram
s that are not show

n by the standard
m

ean-field approxim
ations (although critical exponents keep their classical

values). T
he B

ethe-Peierls approxim
ation is very representative of these

s
e
l
f
-
c
o
n
s
i
s
t
e
n
t
 
c
a
l
c
u
l
a
t
i
o
n
s
.

C
onsider a cluster 6f a central spin ao, in an external field H

, and q
surrounding spins, in an effective field H

e, w
ruch is supposed to m

im
ic

the effects of the rem
aining crystallne lattice (see figue 13.2). T

he spin

w
h
i
c
h
 
l
e
a
d
s
 
t
o
 
t
h
e
 
e
q
u
a
t
i
o
n
 
o
f
 
s
t
a
t
e
 
o
f
 
t
h
e
 
B
e
t
h
e
-
P
e
i
e
r
l
s
 
a
p
p
r
o
x
i
m
a
t
i
o
n
,

m
 
=
m
(
T
,
H
)
.

I
n
 
z
e
r
o
 
f
i
e
l
d
 
(
H
 
=
 
0
)
,
 
a
n
d
 
i
n
 
t
h
e
 
n
e
i
g
h
b
o
r
h
o
o
d
 
o
f
 

the critical tem
perature,

m
 and H

e are very sm
all. T

herefore, w
e can w

rite expansions for equations
(13.58) and (13.59),

m
 
=
 
q
 
(
t
a
n
h
(
3
J
)
 
t
a
n
h
 

(3 H
e +

 ." ,
(13.61)

m
-
 
1

-
 
c
o
s
h
2
(
3
J
(
3
H
e
+
m
t
a
n
h
(
3
J
+
.
.
.
.

(13.62)
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From
 these expansions, it is easy to check that the critical tem

perature, in
this B

ethe-P
eierls approxim

ation, w
il be given by

k
B
T
c
 
=
 
2
 
(
I
n
 
i
-
J
 
-
1
 
(
1
3
.
6
3
)

J
 
q
-
 
2

In one dim
ension (that is, for q =

 2), there is no phase transition (T
c =

 0).
For q =

 4 (w
hich corresponds to a square lattice), kB

T
c/ J =

 2/ In 2 =
2,885,.., sm

aller than the critical tem
perature from

 the B
ragg-W

iliam
s

a
p
p
r
o
x
i
m
a
t
i
o
n
,
 
k
B
T
c
/
 
J
 
=
 
4
,
 
b
u
t
 
s
t
i
l
 

l
a
r
g
e
r
 
t
h
a
n
 
t
h
e
 
e
x
a
c
t
 
O
n
s
a
g
e
r
 
v
a
l
u
e
,

kB
T

c/ J =
 2/ In (1 +

 J2) =
 2.269....

A
pproxim

ations of the B
ethe-Peierls type, based on self-consistent cal-

culations for a sm
all cluster of spins, give an equation of state, but do not

lead to an expression for the free energy of the system
 (in general, it is

inconsistent to w
rite the free energy from

 the canonical partition function
Z
c
 
o
f
 
t
h
e
 
c
l
u
s
t
e
r
)
.
 
I
n
 
o
r
d
e
r
 
t
o
 
o
b
t
a
i
n
 
a
 
c
o
n
s
i
s
t
e
n
t
 
f
r
e
e
 
e
n
e
r
g
y
 
f
r
o
m
 
t
h
e

equation of state, w
e w

rite

and

2
ß
a
H
 
_
 
q
 
-
 
1
 
1
 
z

a
x
 
-
 
-
-
 
-
 
z
 
-
 
x
 
-
 
z
x
 
-
 
1
 
'

(13.70)

w
i
t
h
 
z
 
=
 
e
x
p
 
(
2
ß
J
)
.
 
N
o
w
,
 
w
e
 
p
e
r
f
o
r
m
 
s
o
m
e
 
a
d
d
i
t
i
o
n
a
l
 
a
l
g
e
b
r
a
i
c
 
m
a
n
i
p
u
l
a
-

tions to show
 thatq

-
1
 
1
 
1

9 =
 --Inx+

 -In(z -x) +
 -In(zx-1)

2
ß
 
2
ß
 
2
ß

q
 
-
 
2

+
2ß In (zx2 - 2x +

 z) +
 90 (T

),
(13.71)

9 =
 - J m

 (T
, H

) dH
 +

 90 (T
) ,

w
here 90 (T

) is a w
ell-behaved function of tem

perature (w
hich m

ay be
found, for exam

ple, from
 a com

parison w
ith the high-tem

perature lim
it

of the exact free energy). For the Ising ferrom
agnet, w

e can go through
som

e algebraic m
anipulations to calculate this integral. Initially, note that

equation (13.58) m
ay be w

ritten as

(13.64)

w
hich is the free energy associated w

ith the B
ethe-Peierls approxim

ation.

Finally, it is interesting to rem
ark that the results of the B

ethe-Peierls
approxim

ation can be recovered from
 an exact solution of the Ising m

odel i
on a C

ayley tree. T
his graph is a peculiar layered structure, in w

hich the
spins belonging to a certain generation interact w

ith q other spins belonging
t
o
 
t
h
e
 
n
e
x
t
 
g
e
n
e
r
a
t
i
o
n
,
 
s
u
c
h
 
t
h
a
t
 
t
h
e
r
e
 
a
r
e
 
n
o
 
c
l
o
s
e
d
 
c
y
c
l
e
s
.
 
I
n
d
e
e
d
,
 
t
h
e

correspondence betw
een the approxim

ate and exact solutions w
orks in the

central part of the lim
it of a large C

ayley tree (w
hich is then called a B

ethe
lattice). T

he interested reader m
ay check the w

orks of C
. J. T

hom
pson, J.

S
t
a
t
.
 
P
h
y
s
.
 
2
7
,
 
4
4
1
 
(
1
9
8
2
)
,
 
a
n
d
 
o
f
 
M
.
 
J
.
 
O
l
i
v
e
i
r
a
 
a
n
d
 
S
.
 
R
.
 
S
a
l
i
n
a
s
,
 
R
e
v
.

B
r
a
s
.
 
F
i
s
.
 
1
5
,
 
1
8
9
 
(
1
9
8
5
)
,

m
 =

 exp (2ß
H

) - xq
exp (2ßH

) +
 xq ,

(13.65)
13.5 E

xact results on the square lattice

J
 
a
H

9
 
=
 
-
 
m
 
a
x
 
d
x
 
+
 
9
0
 
(
T
)
 
,

(13.68)

T
he discussion of the O

nsager solution (and of its several alternatives) is
certainly beyond the scope of this book. T

he interested reader, w
ith plenty

of spare tim
e, should check the w

ork of T
, D

, Schultz, D
. C

. M
attis, and

E
. H

. L
ieb, R

ev. M
od. Phys. 36, 856 (1964), w

here the technique of the
t
r
a
n
s
f
e
r
 
m
a
t
r
i
x
 
i
s
 
u
s
e
d
 
t
o
 
r
e
d
u
c
e
 
t
h
e
 
c
a
l
c
u
l
a
t
i
o
n
 
o
f
 
t
h
e
 
e
i
g
e
n
v
a
l
u
e
s
 
t
o
 
t
h
e

problem
 of diagonalizing the H

am
iltonian of a system

 of free ferm
ions. T

he
transfer m

atrix is w
ritten in term

s of Pauli spin operators, w
hich are then

changed into ferm
ions through the ingenious Jordan-W

igner transform
a-

tion. W
e shall lim

it our considerations to a m
ere listing of som

e of the
O

nsager results.
In the therm

odynam
ic lim

it, the free energy of the Ising m
odel (on

a square lattice, w
ith nearest-neighbor interactions, in zero field) m

ay be
w

ritten as a double integral,

w
here

1;1

:p......
.n:?
:',i:i

1118

i!! .

iiP"'

~ilt-
!I~--
'c/)
(:C

'

li~~
,';t~.
,i::,
;f....

!~i:~

1
 
-
 
t
a
n
h
 

ßJ 
tanh 

ßH
e

x--
 
1
 
+
 
t
a
n
h
ß
J
 

tanh 
ßH

e .

W
e can now

 use equation (13.59) to w
rite

(2ßH
) q-l exp (2ßJ) - x

exp =
 x

x
 
e
x
p
 
(
2
ß
J
)
 
-
 
1

(13.66)

(13.67)

T
herefore, the m

agnetization m
 and the field H

 can be expressed in term
s

of the new
 variable x. H

ence, from
 equation (13.64), w

e have

-
z
x
2
 
+
 
z

m
 =

 zx2 _ 2x +
 z

(13.69)

7
r
 
7
r

-
ß
9
 
(
T
)
 
=
 
I
n
2
 
+
 
2
~
2
 
J
 
J
 
I
n
 
(
c
o
s
h
2
 
2
K
 
-
 
s
i
n
h
 
2
K
 
(
c
o
s
e
i
 
+
 
c
o
s
e
2
)
)
 
d
e
i
d
e
2
,

o
 
0

(13.72)

w
here
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w
here K

 =
 ßJ (in the original solution, O

nsager already considered differ-
ent interactions along the tw

o directions of the square lattice). T
herefore,

w
e have the internal energy

u
 
=

_
 
J
 
(
1
 
+
 
s
i
n
h
2
 
2
K
 
-
:
 
1

tanh K
 7l2

n n id(Ji d()2
x
 
¡
 
¡
 
c
o
s
h
2
 
2
K
 
-
 
s
i
n
h
2
K
 
(
C
O
S
(
)
1
 
+
 
C
O
S
(
)
2
)

o
 
0

w
here B

 is a constant and K
 ~ K

e.
From

 equation (13.73), w
e can w

rite an analytic expression for the inter-
nal energy in term

s of an ellptic integral of the first kind,

u
 
=
 
J
 
_
 
_
 
(
1
 
+
 
(
2
 
t
a
n
h
 
2
2
K
 
-
 
1
)
 
~
 
K
 
(
k
1
)
 
J
 
'

(13.81)

w
here

(13,73)

1 kB
T

e 2 =
 2,269....

K
- - _.
---

e
 
-
 
J

(13,76)

k1 =
 2 sinh (2K

)
cosh 22K

 '

and K
 (ki) is a com

plete ellptic integral of the first kind,

n/2

K
 (k1) =

 ¡ (1 - kf sin2 ()J -1/2 d(),
o

T
he specific heat can also be w

ritten in term
s of com

plete ellptic integrals
(of first and second kind). U

nfortunately, how
ever, w

e do not have gener-
alizations of these results for either three dim

ensions or in the presence of
an external field!

(13.82)

T
he integral in this expression logarithm

ically diverges for

cosh 22K
 =

 2 sinh 2K
,

(13.74)

that is,
(13.83)

sinh2K
 =

 1,
(13.75)

w
hich gives the O

nsager critical tem
perature,

In the neighborhood of the critical tem
perature, it is convenient to in-

t
r
o
d
u
c
e
 
a
 
(
s
m
a
l
l
)
 
p
a
r
a
m
e
t
e
r
,

E
xercises

8 =
 (sinh2K

 - 1)2.
(13.77)

1. C
onsider a one-dim

ensional spin-l m
odel, given by the H

am
iltonian

N
 
N

1- =
 -J¿SiSi+

1 +
 D

 ¿ST
,

i
=
1
 
i
=
1

F
o
r
 
8
 
~
 
0
,
 
w
e
 
w
r
i
t
e

¡
n
 
¡
n
 
d
(
)
1
d
(
)
2
 
¡
 
¡
 
d
(
)
1
d
(
)
2

c
o
s
h
 
2
2
K
 
-
 
s
i
n
h
 
2
K
 
(
c
o
s
 
(
)
1
 
+
 
c
o
s
 
(
)
2
)
 
r
v
 
8
 
+
 
!
 
s
i
n
h
 
2
K
 
(
(
)
î
 
+
 
(
)
~
)

o
 
0
 
0
 
0

¡ rdr
=
 
2
7
l
 
8
 
1
 
2
 
.
 
r
v
 
-
2
7
l
l
n
8
,

+
 
2
r
 
s
i
n
h
 
2
K

o

w
here w

e have kept the leading term
 only (and used polar coordinates to

sim
plify the integral in the interm

ediate step). From
 this asym

ptotic form
,

w
e have the internal energy in the neighborhood of the critical tem

perature,

(13.78)

w
h
e
r
e
 
J
?
 
0
,
 
D
 
?
 
0
,
 
a
n
d
 
S
i
 
=
 
-
1
,
0
,
 
+
1
,
 
f
o
r
 
a
l
l
 

l
a
t
t
i
c
e
 
s
i
t
e
s
.

(a) A
ssum

ing periodic boundary conditions, calculate the eigenval-
ues of the transfer m

atrix.

(b) O
btain expressions for the internal energy and the entropy per

SpIl.

(c) W
hat is the ground state of this m

odel (T
 =

 0) as a function
of the param

eter d =
 D

 / 17 O
btain the asym

ptotic form
 of the

e
i
g
e
n
v
a
l
u
e
s
 
o
f
 
t
h
e
 
t
r
a
n
s
f
e
r
 
m
a
t
r
i
x
,
 
f
o
r
 
T
 
~
 
0
,
 
i
n
 
t
h
e
 
c
h
a
r
a
c
t
e
r
-

istic regim
es of the param

eter d.
J

u rv - hK
 ¡i +

 A
(K

 - K
e)lnlK

 - K
ell,

t
a
n
 
e

(13.79)
2. T

he one-dim
ensional Ising ferrom

agnet is given by the H
am

iltonian

N
 
N

1- =
 -J¿O

"iO
"i+

1 - H
¿O

"i,
i
=
1
 
i
=
1

w
here A

 is a constant. T
aking the derivative w

ith respect to tem
perature,

w
e have the fam

ous asym
ptotic form

ula for the zero-field specific heat,

C
H
=
O
 
r
v
 
B
I
n
 
I
K
 
-
 
K
e
l
,

(13.80)
w
i
t
h
 
J
 
?
 
0
 
a
n
d
 
O
"
i
 
=
 
:
1
1
 
f
o
r
 
a
l
l
 

l
a
t
t
i
c
e
 
s
i
t
e
s
.
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(a) In zero field (H
 =

 0), show
 that

(IJkIJI) =
 (tanhß

J)lk-11 .

w
here the first sum

 is over nearest-neighbor sites, all param
eters are

p
o
s
i
t
i
v
e
,
 
a
n
d
 
S
i
 
=
 
-
1
,
0
,
+
1
 
f
o
r
 
i
 
=
 
1
,
2
,
.
.
"
N
.
 
U
s
e
 
t
h
e
 
B
o
g
o
l
i
u
b
o
v
-

Peierls variational principle, w
ith a trial H

am
ltonian of the form

N
 
N

1
1
0
 
=
 
+
D
 
¿
:
S
¡
 
-
 
r
¡
 
¿
:
S
i
,

i
=
l
 
i
=
l

(b) C
onsider the fluctuations of the m

agnetization in the canonical
e
n
s
e
m
b
l
e
 
t
o
 
s
h
o
w
 
t
h
a
t

X
 (T

, H
)

(
~
;
)
 
=
~
(
,
t
I
J
i
I
J
j
)

ß
 i,)=

l N
-
 
~
 
(
t
I
J
i
)
 
(
t
I
J
j
)

i
=
l
 
N
 
)
=
1
 
N

w
here r¡ is a variational param

eter, to obtai an approxim
ate solution

for the free energy of this system
,

gapprox (T
, H

) =
 m

in rg (T
, H

i m
) ì ,

1)

(c) U
se the previous results to obtain an expression for the m

agnetic
susceptibility in zero field, X

o =
 X

 (T
, h -7 0). S

ketch a graph of
X

o versus tem
perature.

(d) O
btain an expression, in zero field, for the four-spin correlation

f
u
n
c
t
i
o
n
,
 
(
I
J
i
I
J
j
I
J
k
I
J
I
)
,
 
w
i
t
h
 
1
 
:
:
 
i
 
:
:
 
j
 
:
:
 
k
 
:
:
 
L
 
:
:
 
N
.

(e) S
how

 that the specific heat in zero field m
ay be w

ritten as a sum
o
v
e
r
 
f
o
u
r
-
s
p
i
n
 
c
o
r
r
e
l
a
t
i
o
n
 
f
u
n
c
t
i
o
n
s
.

w
here m

 is a function of r¡ that corresponds to the m
agnetization per

spin. In zero field (H
 =

 0), obtain the coeffcients of the expansion

g (T
, H

 =
 0; m

) =
 A

 +
 B

m
2 +

 C
m

4 +
 D

m
6 +

 . .. .

N
ow

 consider the phase diagram
 in zero field (in the d =

 D
 j J versus

t =
 kB

T
jJ plane, for H

 =
 0). O

btain an expression for the line of
second-order transitions (?, line), given by B

 =
 0 w

ith C
 ~ 0, and

locate the tricritical point (B
 =

 C
 =

 0, w
ith D

 ~ 0). W
hat happens

in the region of the phase diagram
 w

here C
 -c O

? W
hat happens at

T
 
=
 
O
?

3. F
or a w

ell-behaved convex function ø
 (x) of a random

 variable x, show
that

(Ø
(x))~Ø

((x)),

5. S
ketch a graph of the specific heat in zero field as a function of tem

per-
ature for the Ising ferrom

agnet in the C
urie-W

eiss version. O
btain an

expression for the m
agnetic susceptibility X

 (T
, H

). Sketch the quali-
tative form

 of X
 versus the m

agnetic field H
 for three typical values

of tem
perature (T

1 -c T
e, T

2 =
 T

e, and T
3 ~

 T
e).

6. T
he C

urie-W
eiss version of the B

lum
e-C

apel m
odel, w

ith a ferro-
m

agnetic ground state, is given by the spin H
am

iltonian

Ø
(x) ~

 Ø
((x)) +

 (x - (x))Ø
' (x).

T
aking the average w

ith respect to a positive m
easure, show

 that

w
hich is know

n, for ø (x) =
 exp (x), as Jensen's inequality. Show

 that
w

e obtain the classical version of the Peierls-B
ogoliubov inequality if

w
e assum

e that

1

(
-
.
.
)
 
=
 
-
T
r
¡
e
x
p
(
-
ß
1
1
)
 

("')1
Z

o

( N
)2 N

 N
11=

 -2~ ~Si +
D

~S¡ -H
~Si'

w
here the param

eters are positive, and S
i =

 +
 1,0, - 1 for all sites.

and that
(a) Show

 that the free energy per spin m
ay be w

ritten as

ø
 
(
x
)
 
=
 
e
x
p
 
¡
ß
 
(
1
1
o
-
1
1
)
J
.

g (t, d, h) =
 m

in rg (t, d, h; yn ,
y

N
 
N

1
1
 
=
 
-
J
¿
:
S
i
S
j
 
+
 
D
 
¿
:
S
¡
 
-
 
H
¿
:
S
i
,

(
i
j
)
 
i
=
l
 
i
=
l

w
h
e
r
e
 
t
 
=
 
k
B
T
j
J
,
 
d
 
=
 
D
j
J
,
 
a
n
d
 
h
 
=
 
H
j
J
,
 
O
b
t
a
i
n
 
a
n
 

expression
for g (t, d, h; y).

(b) F
rom

 an expansion of g (t, d, h; y) in pow
ers of y, obtain expres-

s
i
o
n
s
 
f
o
r
 
t
h
e
 
c
r
i
t
i
c
a
l
 

line and the tiIcritical point (com
pare w

ith
the results of problem

 3).

4. T
he B

lum
e-C

apel m
odel on a lattice of coordination q is given by

the spin H
arrltonian



276 13. T
he Ising M

odel

(c) Sketch the phase diagram
 in the d - t plane (for h =

 0).

(
d
)
 
S
k
e
t
c
h
 
g
r
a
p
h
s
 
o
f
 
t
h
e
 
s
p
o
n
t
a
n
e
o
u
s
 
m
a
g
n
e
t
i
z
a
t
i
o
n
 
v
e
r
s
u
s
 
d
 
f
o
r

som
e characteristic values of t.

14

7. U
se the B

ethe-P
eierls approxim

ation for the ferrom
agnetic Ising m

odel
i
n
 
t
h
e
 
a
b
s
e
n
c
e
 
o
f
 
a
n
 
e
x
t
e
r
n
a
l
 
f
i
e
l
d
 
t
o
 
o
b
t
a
i
n
 
a
n
 
e
x
p
r
e
s
s
i
o
n
 
f
o
r
 
t
h
e
 
e
x
-

pected value (a o(1), w
here a 0 is the cèntral spin of the cluster and a1

is the spin on a surrounding site. S
ketch a qualitative graph of (a o(1)

versus tem
perature. S

ketch a graph of the specific heat in zero field
versus tem

perature (com
pare w

ith the result for the C
urie-W

eiss ver-
sion of the Ising m

odel).

S
caling T

heories and the
R

enorm
alization G

roup
!..

It is too strong to assum
e that the free energy of a m

odel system
 in the criti-

cal region can be expanded as a pow
er series of the order param

eter. T
he di-

vergent specific heat of the O
nsager exact solution for the tw

o-dim
ensional

Ising m
odel precludes an expansion w

hose coeffcients are analytic func-
tions of tem

perature. In the 1960s, there appeared a num
ber of (w

eaker)
scaling hypotheses, based on som

e general assum
ptions about the form

 of
the therm

odynam
ic potentials. A

lthough these scaling hypotheses do not
lead to a m

icroscopic treatm
ent of critical phenom

ena, they do provide a
w

ay of going beyond the phenom
enological equations of van der W

aals and
C

urie-W
eiss. T

he m
icroscopic justification of these ideas, as w

ell as a real
possibility of calculating values for the critical exponents to com

pare w
ith

experim
ental data and theoretical predictions, w

ere provided by the advent
of the m

odern renorm
alization-group techniques.

i 4. i Scaling theory of the therm
odynam

ic
potentials

In the neighborhood of a critical point, w
e assum

e that the free energy
per spin 9 (T

, H
) of a sim

ple uniaxial ferrom
agnet can be w

ritten as the
sum

 of a regular, and less interesting part, 90 (T
, H

), and a singular part,
98 (T

, H
), w

hich contains all of the anom
alies of the critical behavior. It is

convenient to w
rite the singular part of this therm

odynam
ic potential in

term
s of the reduced variables t =

 (T
 - T

c) jT
c and H

, w
hich vanish at the


