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WHEN ISflflz))=azZ+bz +c? 

R. E. RICE, B. SCHWEIZER, AND A. SKLAR 

1. Introduction. The surprising answer to the title question is: never. In this paper we prove 
this assertion and more: we prove that a quadratic polynomial defined on the entire complex 
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plane has no iterative roots whatever. 
To make this statement precise, we need a few definitions. Let E be a set and let f,g be 

functions mapping E into itself. The composite off and g is the function fog defined by 

(fog)(x)=f(g(x)), for al lxin E. 

The iterates off are the functions f" defined recursively by: 

P ( x )  =x, for all x in E, (1.2) 

f"+'=f.f", for any nonnegative integer n. (1.3) 

And, for any integer r >2, f is an iterative root of order r of g, or an rth iterative root of g, if 

f'=g. (1.4) 

We can now formally state our principal result as: 

THEOREM1. Let P be a polynomial of degree 2 defined on the entire complex plane C. l%en P 
has no iterative roots of any order whatever; i.e., for any integer r >2, there exists no function f 
whatever mapping C into itself such that f '= P. 

It must be emphasized that the phrase "no function f whatever" is to be taken literally and 
does not mean merely "no entire function" or "no continuous function," etc. From this it is to 
be expected that none of the usual methods of analysis or topology play a role in what follows. 
This is the case. The proof of Theorem 1 is, in essence, purely combinatorial. The necessary 
tools for this proof are developed in Sections 2 and 3. Iterative square roots are discussed in 
Section 4, which culminates in the answer to the title question. The proof of Theorem 1 is 
completed in Section 5. Section 6 contains supplementary material, stated without proof; in 
particular, the conclusion of Theorem 1 is contrasted to the quite different situation for real 
quadratic polynomials. 

Experience has shown that many mathematicians, analysts in particular, when confronted by 
the statement of Theorem 1, respond with the following instant "counterexample": 

"Take P(z)= z2, and let f be a branch, say the principal one, of the f i t h  power, i.e., let z #0 
be expressed in the form 

z =re i@, r>O, -n<B<n. (1.5) 
Define f :  C+ C by 

f(0) =0, f(z) =rfi e for z +0. (1.6) 

Then f(f(O))=O=d and for any z #0, 

Thus f is an iterative square root of P, contradicting the alleged Theorem 1." 
The flaw in this argument lies in the fact that the second equality in (1.7) fails when f(z), as 

defined in (1.6), is not in the same standard form as z in (1.5). Indeed, an explicit calculation, 
with proper attention paid to necessary details, yields: 



254 	 AND A. SKLARR. E. RICE,B. SCHWEIZER, 	 [April 

whence f2#P, since, e.g., f2(- l ) = e - ~ " ~  = -358216-i.513288#1= P(- 1). (The fact that f 2  

and P coincide on part of their common domain is irrelevant: equality of functions means 
equality everywhere.) 

(The same flaw has often affected the discussion of certain real quadratic polynomials, e.g., 
x2-2. See this MONTHLY,problem E984 [1951, 5641 and its treatment [1952, 252; 1976, 567; 
1977, 739; 1980, 3031.) 

On the other hand, the validity of statements such as Theorem 1 is heavily domain-depen- 
dent. On the real line, for example, the function f, defined by f,(x)= ~xl~" '  for any r > 2 is an 
iterative rth root of the polynomial P given by P(x) = x2. 

The problem of finding iterative roots of functions dates back at least to Abel [I] and 
Babbage [2] (see also [S], especially Chapters 4 and 7). Since then it has attracted the attention of 
many authors. A comprehensive survey of the theory of iteration of continuous real functions, 
together with an extensive bibliography, is given in [7]. Further references may be found in the 
papers [3]and [6]. 

2. 	 Orbits. Let E be a set, f a function from E into E, and --j the relation on E defined via: 

xwjy if and only if fm(x) =f"(y) (2.l) 
for some nonnegative integers m,n. It is immediate that is an equivalence relation. Each -f 

equivalence class of determines a directed graph, called an orbit off or f-orbit, whch is Nf 

constructed as follows: With each element x of an equivalence class, associate a point, called a 
uertex; and if f(x)=y, join the vertex representing x to the one representing y by an arc, called 
an edge, directed from x toy, thus: 

In view of (2.1), an f-orbit is connected. It is also maximal in the sense that no further vertices or 
edges can be added. Since f is a function, and thus single-valued by definition, it is clear that 
while a finite, countable, or uncountable number of edges can enter a given vertex, exactly one 
edge exits. (Note that a point on the conventional graph of a real function, since it has 
coordinates of the form (x, f(x)), corresponds to an edge of an f-orbit.) 

Orbits are divided into two types: cyclic (see Figs. 2 and 3) and acyclic (see Fig. 1). An f-orbit 
is cyclic if it contains a vertex x such that f"(x)=x for some n>O. The vertices 
X, f(x), . . . ,f"-'(x), f"(x) =x form a cycle. There is no "escape" from a cycle, whence an f-orbit 
cannot contain more than one cycle. The number of distinct vertices in the cycle of a cyclic orbit 
is the order of the cycle; a cycle of order n is called an n-cycle; and the orbit containing it, an 
n-cyclic orbit. Note that a 1-cycle corresponds to a fixed point of the function f and that the 
vertices of an n-cycle off correspond to fixed points of its nth iterate f". 

An orbit which is not cyclic is acyclic. An acyclic orbit must have at least countably many 
vertices whereas a cyclic orbit may have as few as one. 

Iteration of a function generally splits its orbits. For the second iterate f2, we have: 

LEMMA1. For any function f:  
(a) An acyclic f-orbit is the union of two acyclic f2-orbits (see Fig. I). 
(b) A cyclic f-orbit of even order, say 2m, is the union of two cyclic f2-orbits of order m (see 

Fig. 2). 
(c) A cyclic f-orbit of odd order, say 2m+ 1, is a cyclic f2-orbit of the same order. The graphs of 

these orbits are generally different (see Fig. 3). 

Proof. Suppose ywf x. Then there are non-negative integers m,n such that fm(x) =f"(y) .If m 
and n are both even or both odd, then y-px; otherwise y-pf(x). On the other hand, it is 



Acyclic f -o rb i t  

Acyclic f  2 -o rb i t r  

FIG.1 
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Cycl ic f  -o rb i t  (even order)  

Cyclic f 2 - o r b i t s  

FIG.2 
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C y c l i c  f - o r b i t  (odd order) 

L5 

Cyc l i c  f 2 -orb i t  

immediate that either ywfzx or y-,2 f(x) implies ywfx. It follows that the f-orbit containing x is 
the (set-theoretical) union of the f2-orbit containing x and the f2-orbit containing f(x). These 
two f2-orbits coincide if and only if ~-~zf(x) ,  i.e., if and only if there are nonnegative integers 
m,n such that 

f2,(x) =f2"+I(x). (2.2) 

Let p =min(2m, 2n +1) and q =12n+1-2ml. Note that q is odd, hence necessarily positive. Note 
also that p +q =max(2m, 2n + l), whence (2.2) is equivalent to 

fP(x) =fP+4(x). 

Hence upon setting w =P(x), we have 
f4(w) =fP+4(x) =fP(x) = W, 

which means that the f-orbit containing x is cyclic, and that its order, which must divide q, is 
odd. This proves (a), and, apart from the exact orders of the f2-cycles, (b) and (c) as well. 

To determine these orders, let x, be a vertex in the cycle of a cyclic f-orbit, and set xp =fP(xo) 
for every nonnegative integerp. If the order of the cyclic f-orbit is 2m, then it is easily seen that 
{x0,x2,...,xz,-~) is the cycle, of order m, of the f2-orbit containing x,, and {xl,x,, ...,x2,- ,) is 
the cycle, of order m, of the f2-orbit containing f(xo)=xl. If the order of the cyclic f-orbit is 
2m +1, then 

~ 2 m + 2 = f ~ ~ + ~ ( ~ O ) = f ( f ~ ~ + ~ ( ~ o ) ) = f ( ~ o ) = ~ 1 ,  

whence it follows that {xo,x2,. ..,x2,,x1,x, ,..., is the cycle, of order 2m +1, of the 
f2-orbit containing x,. This completes the proof. 

Note that in cases (a) and (b) each f2-orbit consists of "every other" vertex of the f-orbit. 
Note also that the property of being in or not in the cycle of a cyclic orbit is preserved under 
iteration. 

Lemma 1 shows that a cyclic f2-orbit of even order, say 2m, can only arise from the splitting 
of a cyclic f-orbit of order 4m. But since such an f-orbit splits into two f2-orbits, it follows that 
the number, if finite, of 2m-cyclic f2-orbits must be even. Hence we have: 



LEMMA2. Let g be a function. Then a necessary condition for g to have an iterative square root, 
i.e., for there to exist a function f such that f2=g,  is that for any positive even integer 2m the 
number (iffinite) of 2m-cyclic g-orbits is euen. 

The equivalence relation (2.1) was introduced by K. Kuratowski in a brief remark at the end 
of [12]. It was apparently G. T. Whyburn [14] (see also [IS, Chapter 12, 4 61) who extended the 
term orbit, already used in related connections, to cover Kuratowski's definition. In [6], a basic 
and beautiful paper which deserves to be much better known, R. Isaacs obtained conditions on 
orbits that are both necessary and sufficient for the existence of iterative square roots of 
arbitrary functions. (In contrast, our Lemma 2 only yields a necessary condition; but this is 
adequate for our purpose.) Recently G. Zirnmermann (nCe Riggert) has significantly extended 
Isaacs's results (see [ l l ]  and [16, 4 11). 

3. Conjugacy. Let g be a function mapping a set El into itself, and h a function mapping a 
set E2 into itself. We say that g and h are conjugate if there exists a one-to-one function f 
mapping El onto E2 such that 

fig=hof. (3.1) 

Equivalently, we could write either 

g=f-lohof or h=f.gof-l, ( 3 4  

where f - I  is the inverse of f. Clearly, conjugacy is an equivalence relation among functions. 
Furthermore, we have: 

THEOREM2. Let g be a function mapping a set El  into itself, and h a function mapping a set E2 
into itself. Then g and h are conjugate if and only if g and h are (orbit-) isomorphic, i.e., if and only 
if there exists a one-to-one function f mapping El onto E2 such that, for any x,y in El, and any 
nonnegative integers m,n we have 

gm(x)=gn(y) if and only ifhm(f(x))= hn(f(y)). (3.3) 

Proof. If g and h are conjugate, then an induction using (3.1) yields f igm=hmof for any 
nonnegative integer m. Hence f(gm(x))= f(gn(y)) if and only if hm(f(x))= hn(f(y)). But since f 
is one-to-one, f(gm(x)) =f(gn(y)) if and only if gm(x)=gn(y). Therefore g and h are (orbit-) 
isomorphic. 

In the other direction, if g and h are isomorphic, let x be any element of El and let y =g(x). 
Then, using (3.3) with m = 1 and n =0, we have 

h(f(x)) =f(y) =f(g(x)), 

which yields (3.1), since x is arbitrary. Note that Theorem 2 can be compactly summarized by 
the statement: "The diagram in Figure 4 commutes." 

x q(x) q 2 ( x )  g"x)
g-orbit  ---I= ----E 
h-orbit - -- ----


f(x) h ( f ( x ) )  h 2 ( f (ill h n ( f ( x ) )  

= f ( g ( x ) )  = f ( g 2 ( x ) 1  = f ( h n ( x ) )  


In other words, two functions are conjugate if and only if their orbit structures are identical. 
This result goes back at least to 1960: it appears, e.g., in [13, Chapter 6, 4 21, with orbits entering 
under the name "trees." 
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As an immediate consequence of Theorem 2 we have: 

LEMMA3. If g and h are conjugate, and r is any integer >2, then g has an iterative rth root if 
and only if h has an iterative rth root. 

Proof. Let g and h be conjugate via f and suppose that +'=g. Let #= fo+of-'. Then 
#'=fi+'of - 1  = f i g o f  -'=h. 

It follows from Theorem 2 and Lemma 3 that the existence or nonexistence of iterative roots 
of a function depends only on its orbit structure. 

Two functions f and g defined on the complex plane C are linearly conjugate if there exists a 
nonconstant linear function L such that 

Lof=goL. (3.4) 

Since any such function L is a one-to-one mapping of C onto itself, it is clear that linear 
conjugacy is a special case of conjugacy. 

We now turn our attention to quadratic polynomials P defined on C. Since we are interested 
in fixed points, i.e., roots of the equation P(z)= z,  we use the standard form 

where a,b,c are in C and a#O. For any such polynomial P we define A(P), the iterative 
discriminant of P, by 

A(P)  =b2-4ac. (3.6) 

We then have the following basic: 

LEMMA4. If P and Q are quadratic polynomials on C, then P and Q are linearly conjugate i f  
and only i f  A(P)=A(Q);  i.e., A is a complete invariant for linear conjugacy of quadratic 
polynomials. 

Proof. Let P(z)=az2+( b+ l ) z+c and Q(z)=a'z2+(b' + 1)z +c'. Then P and Q are linearly 
conjugate if and only if there exists a linear function L(z)= Az +B, with A # O ,  such that for all 
z in C, 

L ( P ( z ) )=Aaz2+A ( b  + l ) z  +Ac +B =Q ( L ( z ) )  

Now (3.7) holds for all z in C if and only if 

AU =A2a', 

A (b+ 1)=A(2Ba'+ b'+ I) ,  

Ac+ B=B2a'+B(b'+1)+c'. 

Solving (3.8) and (3.9) for A and B yields, 

A =a/a' and B =( b-bf) /2a ' ,  (3.11) 

whence the system (3.8), (3.9), (3.10) has a solution if and only if the substitution of A and B,  as 
given by (3.11), into (3.10), yields an identity-that is, upon simplification, if and only if 
b2-4ac =bf2-4afc' or, equivalently, A(P)=A(Q). 

Now consider the family { P A )of quadratic polynomials given by 

P A ( z ) = z 2 + ( 1 - h ) z = z ( z - h ) + z ,  (3.12) 

where h=p + iv is such that either p >0, or p =0 and v 0. We have A(PA)=h2,whence the 
family { P A )contains a single representative from each linear conjugacy class. Consequently, the 
problem of determining those quadratic polynomials which have iterative roots reduces at once 
to the problem of determining those values of A for which PA has iterative roots. 



4. Iterative square roots. To answer the question of the title, we begin with: 

LEMMA5. A quadratic polynomial P has at most one 2-cyclic orbit. 

Proof. The two vertices in the 2-cycle of any 2-cyclic P-orbit are distinct solutions of the 
equation 

PZ(z)=z. (4.1) 

But any fixed point of P is also a solution of (4.1), and by the Fundamental Theorem 
of Algebra, P has at least one fixed point. Thus if P had two or more 2-cyclic orbits then 
(4.1) would have 5 or more distinct solutions. But this is impossible since P2is a polynomial of 
degree 4. 

If P has one 2-cyclic orbit, then Lemma 2 shows that P has no iterative square roots. Hence 
the only quadratic polynomials which can conceivably have iterative square roots are those 
which have no 2-cyclic orbits. To find such polynomials, we consider the family {PA) defined in 
(3.12). A straightforward computation yields 

P:(z)=z(z-A)[z2+(2-A)z + (2-A)] +z. (4.2) 

The roots of the equation P:(z) =z are O,A, 

z 3 = ( h - 2 + W ) / 2  and z4=(h-2- -)/2. 

Now, 0 and h are the fixed points of PA.Thus, since P(z3) =z4 and P(z4) =z,, P has no 2-cyclic 
orbit if and only if z3 =z4; and this is the case if and only if A2 =4. Since A(PA) =A2, this yields: 

LEMMA6. If P is a quadratic polynomial defined on C and if A(P)#4, then P has exactly one 
2-cyclic orbit and hence no iterative square root. 

Lemma 6 shows that-up to linear conjugacy-there is exactly one complex quadratic 
polynomial which has no 2-cyclic orbit. This result is not new. Indeed, in [3] I. N. Baker has 
shown that, with the sole exception of P2, which lacks only a 2-cyclic orbit, all complex 
polynomials have cyclic orbits of all orders. Also, it should be remarked that R. Isaacs noted in 
[6] that P(z)=z2 has exactly one 2-cycle (the complex cube roots of unity) and hence no 
iterative square roots. 

For A(P)=4 we have A=2, P2(z)= z2 -z and z3 =z4=0. We now dispose of this one 
remaining case by proving: 

LEMMA7. If P is a complex quadratic polynomial with A(P)=4, then P has three 4-cyclic 
orbits. Hence by Lemma 2, P has no iterative square roots. 

Proof. If P is any complex quadratic polynomial, then P 4  is a polynomial of degree 24= 16. 
Since P has at least one fixed point, a counting argument similar to the one used in the proof of 
Lemma 5 shows that P has at most three Ccyclic orbits. Turning specifically to P2, we find after 
some computation that 

P;(z) =z3(z -2) Q(z) +z, 

where 

Thus the solutions of the equation P;(z) =z, i.e., the fixed points of P;, are 0, 2, and the roots of 
the equation Q(z) =0. Of these, 0 and 2 are the fixed points of P2, and direct evaluation shows 
that neither is a root of Q(z) =0. Consequently, since P2 has no 2-cycle, the roots of Q(z) =0 are 
precisely the vertices in the 4-cycles of P2.It remains to show that these roots are all distinct. 
Suppose they are not. Then Q and its derivative Q' have a common factor. Now 
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It is immediate that the roots of zZ(z -2) + 1=0 are not roots of Q(z) =0. Since we already know 
that 0 is not a root of Q(z)=O, it follows that any common factor of Q and Q' must be a 
common factor of Q and B, where 

B(z)=2z4-3z3+2z-2. 

But B is a polynomial of degree 4, and Q(z)=O has either 4, 8, or 12 distinct roots (since these 
roots, being the vertices in the 4-cycles of Pz, come in bunches of 4). Thus if Q and Q' have one 
common factor, then Q and Q' must have four distinct common factors, whence B must divide 
Q. However, by direct calculation we find that 

2 9 ~ ( z )=B(Z)D(Z)+R(z), (4.3) 
where 

D(z) =256z8 - 1 152z7+ 1344z6 +736z5 -2096z4 

+504z3+852z2-4 9 8 ~-275, 
and 

R(z) =527z3-3722' -446z +474. 

Thus B does not divide Q, the roots of Q(z)=O are all distinct, and Pz has three 4-cyclic orbits. 
Since the same conclusion holds for any P linearly conjugate to P2, the proof of Lemma 7 is 
complete. 

The long division indicated in (4.3) can be avoided by noting that Q and B are both primitive 
polynomials. If B divides Q, then Q(z)= B(z)A(z), where A has rational coefficients. By a 
variant of Gauss's Lemma (see e.g., [4, pp. 168-1691), it follows that A has integer coefficients. 
Consequently, the leading coefficient of B, namely, 2, divides the leading coefficient of Q, 
namely, 1, which is false. 

Combining Lemmas 6 and 7, we obtain: 

THEOREM3. Let P be a quadratic polynomial defned on the complex plane C. Then P has no 
iterative roots of order 2, i.e., there exists no function f whatever such that 

f( f(z)) =P(z) for all z in C.  

5. Proof of Theorem 1. For any vertex x of a cyclic f-orbit there is a smallest nonnegative 
integer m such that fm(x) is in the cycle of the orbit; t h s  integer is the f-height of x, written 
ht(f; x). An n-cyclic f-orbit contains exactly n vertices of f-height 0 (the vertices in the n-cycle) 
but for an arbitrary function f the only restriction on the number of vertices of any given 
positive f-height is the obvious one: if there is a vertex of f-height m >2, then for each positive 
integer k <m there must be at least one vertex of f-height k. 

The next lemma makes precise the fact that since f' strides toward the cycle in r-league boots 
it takes roughly l / r  as many steps as f to get there. 

LEMMA8. Let x be a vertex in a cyclic f-orbit and r an integer >2. Then 

where, for any real number a, 1a1 denotes the least integer >a. 

Proof. If ht(f; x) =0, then (5.1) is trivial. Otherwise, let ht(f; x)=p > 1. Then p / r  < r p / r ]  < 
(p/r)+ 1, whence r [ p / r l  >p. ~ h u s  f'rp/'l(x) is in the cycle of the f-orbit containing x, and so 
in the cycle of the f'-orbit containing x. Consequently ht(f';x) < rp / r l .  In the other direction, 
if q is a nonnegative integer less than 1p / r  1, then 



Since p is the least integer such that P (X)  is in the cycle of the f-orbit containing x, it follows 
that f'q(x) is not in this cycle and hence not in the cycle of the f'-orbit containing x. 

LEMMA9. Let r > 2 and let x be a vertex of a 1-cyclic f'-orbit. Then x is in a d-cyclic f-orbit 
where d is a divisor of r; and ifywfx, then y is in a 1-cyclic f'-orbit. 

Proof. Let z be the vertex in the 1-cycle of they-orbit containing x. Then f'(z)= z. Now let d 
be the least positive integer such that fd(z)=z. Then d <r, and there are integers p, q with p > 1 
and 0 < q <d- 1 such that r =pd+ q. Consequently, 

z =f(z) =f4+pd(z)=fQ( fPd(z)) =f q(z), 

whence q=O and d divides r. Next, if y-,x, then there is a positive integer m such that 
fmr(y)= w is in the d-cycle of the f-orbit containing x and y. Thus yWyw. Finally, w is a fixed 
point of f'since f'(w) =fpd(w)= W. 

LEMMA 10. If for some integer r > 2, there is a 1-cyclic f'-orbit containing a vertex x of 
f'-height 2, then the number of vertices of f'-height 1 in all the 1-cyclic f'-orbits is at least r. 

Proof. From (5.1) we obtain r <ht( f;  x) < 2r, whence ht(f; x) > r +  1. Thus with q =ht(f; x) -
r - 1 the r vertices fq+'(x), fq+2(~) ,  . . . ,f Q + r ( ~ )are all' distinct, have respective f-heights r,r -
1,.. . ,1, and consequently all have f'-height 1. These vertices need not be in the same f'-orbit; 
but by Lemma 9, the ?-orbits containing them are all 1-cyclic. 

A restatement of Lemma 10 yields: 

LEMMA11. Let g be a function and r an integer >2. Suppose g has a 1-cyclic orbit containing a 
vertex of g-height 2. Then a necessary condition for g to have an iterative rth root is that the 
number of vertices of g-height 1 in all the 1-cyclic g-orbits be at least r. 

We now apply these results to polynomials, beginning with: 

THEOREM4. Let P be a polynomial of degree d > 2 defined on the complex plane C, and let r be 
an integer > 2. If P has an iterative rth root, then r <d(d- 1). 

Proof. We shall show that: (a) P has at least 1 and not more than d 1-cyclic orbits; (b) at 
least one of the 1-cyclic P-orbits contains a vertex of P-height 2; (c) the total number of vertices 
of P-height 1 in all the 1-cyclic P-orbits is <d(d- 1). The conclusion of the theorem then 
follows immediately from Lemma 11. 

To prove (a), we need only observe that the number of 1-cyclic P-orbits is the same as the 
number of distinct solutions of the equation 

By the Fundamental Theorem of Algebra, (5.2) has at least 1, and not more than d, distinct 
solutions. (Both extremes are attained: any polynomial linearly conjugate to zd+  z has precisely 
one 1-cyclic orbit, while any polynomial linearly conjugate to zd has d 1-cyclic orbits.) 

Turning to (b), we first note that if a 1-cyclic P-orbit contains a vertex z, of P-height 1, then 
it contains a vertex of P-height 2. For the equation P(z)=zO has at least one solution 
(Fundamental Theorem of Algebra again!) which cannot be equal to z,, since z, is not a fixed 
point of P. Hence any such solution has P-height 2. Thus it remains to show that there is at least 
one 1-cyclic P-orbit which contains a vertex of P-height 1. Suppose the contrary, i.e., that there 
are no such vertices. 

Let z, be a fixed point of P. Then z1 is the only solution of the equation P(z)= z,. And this is 
the case if and only if 

for some a zO. But then 
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P ( z )-z = ( z  -~ l )  (5.4)Q(z ) ,  

where 
d-1-

Q ( z )=Q(Z-~ 1 )  1. (5.5) 
Since d >2, the degree o f  Q is greater than 0. Let z2 be a solution o f  the equation Q(z)  =O. By 
(5.4), P(z2)=z2, whence z2 belongs to a 1-cycle o f  P;  and by  (5.9,  z2 is distinct from z,. Thus 
using the same argument as for z,, 

P ( Z )=a f ( z-z2)d +z2, (5.6) 
for some af#O. Equating coefficients o f  z d  in (5.3) and (5.6) yields a= a'; and then equating 
coefficients o f  zd-I yields z1 =z2, which is a contradiction. This proves (b). 

As for (c), let zo be a fixed point o f  P. Then the 1-cyclic orbit containing zo cannot contain 
more than d -  1 vertices o f  P-height 1 ,  since every such vertex, as well as z, itself, is a solution o f  
the equation P(z) =zo, and this equation cannot have more than d solutions. Since (as we have 
already seen) there are no more than d 1-cyclic P-orbits, the total number o f  vertices o f  P-height 
1 in all the 1-cyclic P-orbits cannot exceed d(d-  l ) ,  which proves (c) and completes the proof o f  
the theorem. 

When  d=2, the upper bound in Theorem 4 is 2. Thus an immediate consequence is: 

THEOREM5. If P is a quadratic polynomial defined on the complex plane C ,  then P has no 
iterative roots of order > 3. 

Combining Theorems 3 and 5 yields Theorem 1.  

6. Epilogue. As  pointed out in the introduction, the validity o f  results like Theorem 1 is a 
domain-dependent phenomenon. In the proof o f  Theorem 1 this domain dependence enters 
through unrestricted appeals to the Fundamental Theorem o f  Algebra (which implies, inciden- 
tally, that Theorem 1 holds in any algebraically closed field o f  characteristic 0). This domain 
dependence is further brought out by  the following results, which show that the iterative root 
situation for real quadratic polynomials contrasts sharply with that for complex quadratic 
polynomials. 

First a definition: Let E be a nonempty set. A 1-sided flow on E is a family { L J t  2 0 )  o f  
functions each mapping E into E such that 

f , ( J ( x ) )  =f ,+,(x)  for all x in E and all real s, t >0. (6.1) 
A 2-sided flow on E is a similar family o f  functions in which the index t ranges over all real 
numbers. 

Clearly, any function which is embeddable in a flow o f  either type has iterative roots o f  all 
orders. 

THEOREM6. Let R be the real line. Let g be a real quadratic polynomial, so that 

g ( x )=ax2+ ( b  + 1)x+c, 

for all real x ,  where a#O, b,c are in R. As in the complex case, set A(g)= b2-4ac. If A(g)> 1 ,  
then g has no iterative roots of any order whatever. If A(g) = 1 ,  then g can be embedded in a 2-sided 
flow on R ,  all of whose members are continuous functions. If A(g) < 1 ,  then g can be embedded in a 
1-sidedflow on R ,  all of whose members are continuous functions; but g cannot be embedded in any 
2-sided flow on R. 

Lemmas 1 and 9 can be extended to: 

LEMMA 12. Let f be a function and r be an integer >2. Then any acyclic f-orbit is, as a set, the 
union of r acyclic f -orbits. Correspondingly, any m-cyclic f-orbit is the union of d (m/d)-cyclic 
f-orbits, where d is the greatest common divisor of m and r. 

The notion o f  an iterative discriminant can be extended from quadratic polynomials to all 



polynomials defined on the complex plane as follows: 
For any polynomial P of degree d >2, let z,,.. . ,zdbe the d fixed points of P, i.e., the d (not 

necessarily distinct) roots of the equation P(z) =z.Set 

where a#O is the leading coefficient of P. A routine calculation shows that (6.2) reduces to (3.5) 
when d =  2. We then have the following analog of Lemma 4: 

LEMMA13. Let P and Q be polynomials on C, each of degree >2. If P and Q are linearly 
conjugate, then P and Q have the same degree and A(P) =A(Q). 

Theorem 4 was announced in [8] and proved in [9]. In some cases the upper bound d(d- 1) 
for the order of an iterative root of a dth degree polynomial in Theorem 4 can be considerably 
lowered. For example, G. Zimmermann has shown (cf. [16,§ 31) that d[d/2] is an upper bound 
for polynomials linearly conjugate to the teby$ev polynomial of degree d, where [d/2] is the 
greatest integer <d/2. Also, Theorems 1 and 3 extend to certain nonquadratic Ceby$ev 
polynomials: see 1101 and [16,O 31. 
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33. In the beginning, let me as distinctly as possible announce-not the theorem which I 
hope to demonstrate-for, whatever the mathematicians may assert, there is, in this world at 
least, no such thing as demonstration-but the ruling idea . . . which I shall be continually 
endeavoring to suggest. 

-Edgar Allan Poe, Eureka, p. 1 (vol. 16, p. 185 of the 
Harrison edition of Poe's Works, New York, 1902). 


