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Figure A2.3.29. Calculation of the critical temperature Tc and the critical exponent y for the magnetic susceptibility of
Ising lattices in different dimensions from high-temperature expansions.

A2.3.10 Exact solutions to the Ising model

The Ising model has been solved exactly in one and two dimensions; Onsager's solution of the model in two
dimensions is only at zero field. Information about the Ising model in three dimensions comes from high- and
low-temperature expansions pioneered by Domb and Sykes (104) and others. We wil discuss the solution to
the ID Ising model in the presence of a magnetic field and the results of the solution to the 2D Ising model
at zero field.

A2.3.10.1 One dimension

We wil describe two cases: open and closed chains of N sites. For an open chain of N sites, the energy of a
spin configuration (sd is

N-I N
UN((SkD = -J L S;S;+1 - H LS;

;=1 ;=1 (A2.3.427)

and for a closed chain of N sites with periodic boundar conditions SN+I = SI

N H N
UN((sd) = -J L S¡S;+I - 2 L(s; + S;+I).

;=1 ;=1 (A2.3.428)

Both systems give the same results in the thermodynamic limit. We discuss the solution for the open chain at
zero field and the closed chain for the more general case of H -¡ O.
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(a) Open chain at zero field, i.e. H = 0

The PF

( N-I )
ZeN, 0, T) = S~I'" S~I exp ßJ 1; S¡S¡+I

( N-2 )= ~ ... L exp ßJ L S¡S¡+I L exp(ßJsN-iSN).s¡-:l1 sN-:l1 i-I sN-:l1
(A2.3.429)

Doing the last sum

ZeN, 0, T) = ZeN - 1,0, T)(exp(ßJsN-i) + exp(ßJsN-i))
= ZeN - 1,0, T)2cosh(ßJ) (A2.3.430)

since S N -I = :: i. Proceeding by iteration, staring from N = I, which has just two states with the spin up

or down

Z(1,O, T) = 2

Z (2, 0, T) = Z (1, 0, T)2 cosh(ß J) = 22 cosh(ß J)

Z(3, 0, T) = 23 cosh2(ßJ)
susceptibilty of

ZeN, 0, T) = 2N coshN-I(ßJ). (A2.3.431)

The free energy G in the thermodynamic limit (N -- 00) follows from

e model in two
from high- and
the solution to

:D Ising model

ßG 1
-- = lim -In ZeN, 0, T)
N N-oo N

(N - 1)
= In2 + lim - Incosh(ßJ) = In(2cosh(ßJ)).

N -00 N
(A2.3.432)

(b) Closed chain, H -¡ 0

The PF in this case is

the energy of a

Z(N,H,T)= L'" L eXP((ßJ'tSkSk+l) + 
ß; 

't(Sk+Sk+I)Jsl=:l1 sN=:l1 k=1 k=1
(A2.3.427)

= S~i'" S~IU eXPß(JSkSk+1 + ~ (Sk +Sk+I)J

= L'" L PS¡S2PS2S3'" PSNS1
sl=:l1 sN=:l1

(A2.3.433)

(A2.3.428)
where PS1S2 are the elements of a 2 x 2 matrix called the transfer matrix

.e open chain at

p = ( PiiP-ii
Pi_i) = (exp ß(J + H) exp( -ßJ) )
P-H exp( -ßJ) exp ß(f - H) (A2.3.434)
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with the property that LS2 PSIS2 PS2S3 = (P2)siS3' It follows for the closed chain that

ZeN, H, T) = L (pN)sisi = TrpN

sl=:l1
(A2.3.435)

where pN is also a 2 x 2 matrx.
The trace is evaluated by diagonalizing the matrx P using a similarty transformation S:

p' = S-I PS = (À+ 0)o L (A2.3.436)

where the diagonal elements of the matrix P' are the eigenvalues of P, and

piN = (Àg À~ ) .
(A2.3.437)

Noting that
piN = S-IPSS-IPS... S-lpS = S-lpNS

by virtue of the property that SS- i = I, where 1 is the identity matrix, we see that

Tr(plN) = Tr(S-lpNS) = Tr(S-ISpN) = Tr(pN)

which leads to
ZeN, H, T) = À~ +À::.

Assuming the eigenvalues are not degenerate and À+ :; À_,

(A2.3.438)

ZeN, H, T) = À~(i+ (L/À+)N).

In the thermodynamic limit of N -- 00,

-ßG
N

. 1
hm -In ZeN, H, T) = InÀ+.

N-;oo N (A2.3.439)

This is an important general result which relates the free energy per paricle to the largest eigenvalue of the
transfer matrix, and the problem reduces to determining this eigenvalue.

The eigenvalues of the transfer matrx are the solutions to

det IP - ÀII = o.

This leads to a quadratic equation whose solutions are

À:i = exp(ßJ)(cosh(ßH):: (sinh2(ßH) + exp( -4ßJ))1/2) (A2.3.440)

which confirms that the eigenvalues are not degenerate. The free energy per paricleßG .
-- = ßJ + In(cosh(ßH) + (sinh2(ßH) + exp( -4ßJ))1/2).

N (A2.3.441)

This reduces to the results for the free energy at zero field (H = 0)

-ßG
- = In(2cosh(ßJ))

N (A2.3.442)
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and the free energy of non-interacting magnets in an external field

(A2.3.435)
-ßG
- = In(2cosh(ßH))

N
(A2.3.443)

which were derived earlier. At finite T (i.e. T :; 0), À+ is analytic and there is no phase transition. However,
as T -- 0,

(A2.3.436)

À+ -- exp(K)(cosh(h) + (sinh2(h))I/2(1 + o (exp ( -4K))
= exp(K)(cosh(h) + Isinh(h)I(1 + o (exp ( -4K))

where K = ß1 and h = ßH. But cosh(h) + I sinh(h) I = exp Ihl, and it follows that

À+ -- exp(K + ¡hi)
(A2.3.437)

as T -- O. We see from this that as T -- 0

G
-- = kTlnÀ+ = kT(K + IhlJ = 1 + IHI

N
(A2.3.444)

and

m=~(aG) =f+1 H:;O
N aH T 1-1 H ~ 0

(A2.3.445)

(A2.3.438)
which implies a residual magnetization mo = :: 1 at zero field and a first-order phase transition at T = O. For
T -¡ 0, there is no discontinuity in m as H passes through zero from positive to negative values or vice versa,
and differentiation of G with respect to H at constant T provides the magnetization per site

sinh(ßH)m(H, T) = 2
(sinh (ßH) + exp( -4ß1)F/2

(A2.3.446)

which is an odd function of H with m -- 0 as H -- O. Note that this reduces to the result

(A2.3.439) m(H, T) = tanh(ßH) (A2.3.447)

ivalue of the
for non-interacting magnets.

As H -- 0, sinh(ß1) -- ß1, m(H, T) -- ßH exp(2ß1) and

XT(O) = (dmjdH)r = ß exp(2ß1) (A2.3.448)

which diverges exponentially as T -- 0, which is also characteristic of a phase transition at T = O.
The average energy (E) follows from the relation

(A2.3.440) (E)jN = -(1jN)(dlnZjdß)H,J = -(dlnÀ+jdß)H,J (A2.3.449)

and at zero field

(A2.3.441)

(E)H=OjN = -ltanh(ß1).

The specific heat at zero field follows easily,

(A2.3.450)

CH=O = - k~2 (a(~~H=O) = Nk(ß1)2 sech2(ß1) (A2.3.451)

(A2.3.442) and we note that it passes through a maximum as a function of T.
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The spin correlation functions and their dependence on the distance between sites and the coupling
between adjacent sites are of great interest in understanding the range of these correlations. In general, for a
closed chain

(S¡S¡+n) = ZeN, H, n-I L ... L S¡S¡+n exp ( L Ks¡s¡+1 + hS¡).

si=:li SN=:I )=1 (A2.3.452)

For nearest-neighbour spins

(SjSj+l) = (NZ(N, H, nrl(dZ(N, H, T)jdK)
and makng use of ZeN, H, T) = À~(1 + (LjÀ+)N) in the thermodynamic limit (N -- 00)

(S¡S¡+I) = (a InÀ+jaK)

2 exp( -4K) (sinh2 h + exp( -4K))-1/2= 1-
cosh h + (sinh2 h + exp( -4K)F/2

At zero field (H = 0), h = 0 and

(A2.3.453)

(A2.3.454)

(S¡S¡+I) = tanh K (A2.3.455)
which shows that the correlation between neighbouring sites approaches 1 as T -- O. The correlation between
non-nearest neighbours is easily calculated by assuming that the couplings (Ki, K2, K3, ..., KN) between
the sites are different, in which case a simple generalization of the results for equal couplings leads to the PF
at zero field

N-I
ZeN, 0, T) = 2N ri cosh Kj.

j=1
Repeating the earlier steps one finds, as expected, that the coupling K¡ between the spins at the sites i and
i + 1 determnes their correlation:

(A2.3.456)

(S¡S¡+I) = Z-I(dZ(N, H, T)jdK¡) = tanhK¡.

Now notice that since S?+I = 1,
(A2.3.457)

( a2 Z )
(S¡S¡+IS¡+IS¡+¡) = (S¡SI+2) = Z-I

aK¡aK¡+1

= tanh K¡ tanh K¡+i. (A2.3.458)
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In the limit K¡ = K¡+i = K,

(S¡S¡+2) = tanh2 K

and repeating this argument serially for the spin correlations between i and i + n sites

(s¡s¡+n) = tanhn K

(A2.3.459)

(A2.3.460)
so the correlation between non-neighbouring sites approaches 1 as T -- 0 since the spins are all aligned in
this limit.

The correlation length r follows from the above relation, since

(S¡S¡+j) = exp(j In tanh K) = exp(-j lncoth K) = exp(- jjl;

from which it follows that
(A2.3.461)

r = 1jlncoth(K). (A2.3.462)
As expected, -as T -- 0, K -- 00 and the correlation length r ~ exp(ß1)j2 -- 00, while in the opposite

limit, as T -- 00, r -- O.
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A2.3.1O.2 Two dimensions

Onsager's solution to the 2D Ising model in zero field (H = 0) is one of the most celebrated results in
theoretical chemistry (105); it is the first example of critical exponents. Also, the solution for the Ising model
can be mapped onto the lattice gas, binar alloy and a host of other systems that have Hamiltonians that are
isomorphic to the Ising model Hamiltonian.

By a deft application of the transfer matrix technique, Onsager showed that the free energy is given by

ßG 1 in (1+(1-K2sin2ip))1/2
-- = Incosh(2ß1) + - dijlnN 27r 0 2 (A2.3.463)

where
2sinh(2ß1)

K =
cosh2(2ß 1)

(A2.3.464)

which is zero at T = 0 and T = 00 and passes through a maximum of 1 when ß1e = 0.44069. This
corresponds to a critical temperature Te = 2.26911 k when a singularty occurs in the Gibbs free energy, since
(1 + (1 - K2 sin2 ij) 1/2) -- 0 as T -- Te and ij -- 7r 12. As T -- Te,

Sk 1 -I
CH=o ~ -- kTe In IT - Tel (A2.3.465)

so that the critical exponent a = Otog. The spontaneous magnetization

mO = i ~1 - sinh-\2ß1))1/8
T:; Te

T ~ Te
(A2.3.466)

and the critical exponent ß = 1 IS. This result was first written down by Onsager during a discussion at a
scientific meeting, but the details of his derivation were never published. Yang (107) gave the first published
proof of this remarkably simple result. The spin correlation functions at T = Te decay in a simple way as
shown by Kaufman and Onsager (106),

(S¡s¡+j)1Irlf4 (A2.3.467)

where r is the distance between the sites.

A2.3.1l Summary

We have described the statistical mechanics of strongly interacting systems. In paricular those of non-ideal
fluids, solids and alloys. For fluids, the virial coeffcients, the law of corresponding states, integral equation
approximations for the correlation functions and perturbation theories are treated in some detail, along with
applications to hard spheres, polar fluids, strong and weak electrolytes and inhomogeneous fluids. The use
of perturbation theory in computational studies of the free energy of ligand binding and other reactions
of biochemical interest is discussed. In treating solids and alloys, the Ising model and its equivalence to
the lattice gas model and a simple model of binar alloys, is emphasized. Mean-field approximations to
this model and the use of high- and low-temperature approximations are described. Solutions to the 1D
Ising model with an'd without a magnetic field are derived and Onsager's solution to the 2D case is briefly
discussed.
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