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The Distribution of Sums of Certain I.I.D.
Pareto Variates

COLIN M. RAMSAY

Department of Finance, University of Nebraska–Lincoln, Lincoln,
Nebraska, USA

Though the Pareto distribution is important to actuaries and economists, an exact
expression for the distribution of the sum of n i.i.d. Pareto variates has been
difficult to obtain in general. This article considers Pareto random variables with
common probability density function �pdf� f�x� = ��/���1+ x/���+1 for x > 0,
where � = 1� 2� � � � and � > 0 is a scale parameter. To date, explicit expressions
are known only for a few special cases: (i) �= 1 and n= 1� 2� 3; (ii) 0<�< 1
and n = 1� 2� � � � ; and (iii) 1 < � < 2 and n = 1� 2� � � � . New expressions are
provided for the more general case where � > 0, and � and n are positive integers.
Laplace transforms and generalized exponential integrals are used to derive these
expressions, which involve integrals of real valued functions on the positive real
line. An important attribute of these expressions is that the integrands involved are
non oscillating.

Keywords Contour integration; Convolution; Exponential integral; Laplace
transform; Pareto distribution.

Mathematics Subject Classification Primary 44A10, 65R10; Secondary 44A35.

1. Introduction

1.1. A Problem from Actuarial Risk Theory

The Pareto distribution is an important statistical distribution to economists and
actuaries. In economics the Pareto distribution is used traditionally to model the
income distribution of populations; see, for example, Arnold (1983, Ch. 1 and 2),
Johnson and Kotz (1970, Ch. 19), Lambert (1993), and Mandelbrot (1960, 1963).
Actuaries use the Pareto distribution to model catastrophic losses in an insurance
portfolio; see, for example, Hogg and Klugman (1984) or Daykin et al. (1994, Ch.
3.3.7). The convolution of Pareto distributions may then be needed to determine the
tail behavior of the distribution of aggregate claims, or the probability of ruin of the
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396 Ramsay

portfolio. For example, the risk surplus process of the classical compound Poisson
risk model of actuarial risk theory, U�t�, is defined as:

U�t� = u+ ct −
N�t�∑
i=1

Xi

where u ≥ 0 is the initial risk surplus at t = 0, N�t� is a time homogenous Poisson
process with intensity �, and the Xi’s are claim sizes that are independent and
identically distributed non negative random variables with cumulative distribution
function (cdf) FX�x�, finite mean �X = �	Xi
, and c = �1+ ����X is the premium
rate with loading � ≥ 0. The probability of ultimate non ruin given an initial surplus
of u ≥ 0 is ��u� where

��u� = Pr	U�t� ≥ 0 for all t > 0 �U�0� = u
�

It is well known that ��u� satisfies the following equation:

��u� =
�∑
k=0

(
�

1+ �

)(
�

1+ �

)k

F ∗k
e �u� (1)

where F ∗k
e �y� is the kth convolution of Fe�y� and

Fe�y� =
1
�X

∫ y

0
�1− FX�x��dx�

which is sometimes called the equilibrium cdf. Now, if the claims are Pareto, i.e.,
FX�x� is a Pareto cdf, then Fe�x� is also a Pareto cdf. Thus Eq. (1) requires the
computation of the convolution of Pareto variates. See, for example, Bowers et al.
(1997, Ch. 13.6) or Klugman et al. (2004, Ch. 8.4) for more details of this approach
to solving the ruin problem. An alternative approach to deriving ��u� when FX�x�
is a Pareto cdf is given by Ramsay (2003).

1.2. Some Known Results

There are two equivalent ways of defining a Pareto pdf:

f�x� = �

�

(
�

x + �

)�+1

for x > 0 and �� � > 0 (2)

g�x� = �

�

(
�

x

)�+1

for x > � and �� � > 0� (3)

In each case � is a scale parameter. Clearly, if X and Y have pdfs given by f�x�
and g�x�, respectively, then Y = X + �. Similarly, if �Xi� and �Yi� are sequences of
independent and identically distributed (i.i.d.) Pareto random variables with pdf f�x�
and g�x�, respectively, then, for fixed n,

Pr
[ n∑

i=1

Yi ≤ x

]
= Pr

[ n∑
i=1

Xi ≤ x − n�

]
�
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Distribution of Sums of Pareto Variates 397

Hence one can choose either f�x� or g�x� to study the distribution of the sum of
i.i.d. Pareto variates.

Though the Pareto distribution itself is mathematically simple, it is difficult to
determine the distribution of the sum of two or more i.i.d. Pareto random variables.
What is generally known is that the distribution of sums of Pareto random variables
behaves like a Pareto distribution in the tail. Specifically, Feller (1971, Ch. 8,
pp. 268–272) has shown that as x → �,

Pr
[ n∑

i=1

Xi > x

]
∼ n

(
1+ x

�

)−�

L�x�

where L�x� is a slowly varying function at infinity.1 Roehner and Winiwarter (1985)
gave expressions for the asymptotic behavior of a finite sum of non i.i.d. Pareto
random variables, and the limiting density of the “renormalized” sum of n i.i.d.
Pareto random variables as n → �, i.e., the asymptotic density of

X1 + X2 + · · · + Xn

an

− bn ∼
1
��

∫ �

0
e−au cos�u1/�s + bu�u�1/��−1du

where a = −x�0���−�� cos���/2� and b = x�0���−�� sin���/2� provided the coeffi-
cients an and bn are chosen so that an = n1/� and bn = nE	X1
 if 1 < � < 2, and
an = n1/� and bn = 0 if 0 < � < 1 in Eq. (3).

Explicit results are known about the distribution of sums of Pareto random
variables in certain special cases. Hagstroem (1960) used � = � = 1 in Eq. (3),
i.e., g�x� = 1/x2 and derived exact results for the case where n = 2 and n = 3.
In particular, Hagstroem showed that if sn�x� = Pr	

∑n
i=1 Yi > x
, with x > n, then

s1�x� =
1
x

for x > 1

s2�x� =
2
x
+ 2 log�x − 1�

x2
for x > 2

and

s3�x� =
3
x
+ 6�x − 2� log�x − 2�

x3�x − 1�
+ 4

x3
log�x − 1� log�x − 2�

+ 2
x3

[
�log�x − 1��2 − �log 2�2

]

− 4
x3

{
L1�0

(
1

�x − 1�
�

1
�x − 1�

)
+ L1�0

(
1

�x − 1�
�
1
2

)}
for x > 3�

where, for 0 ≤ a� b�≤ 1,

Lq�r�a� b� =
∫ 1−a

b

− log v
�1− v�qvr

dv�

1L�x� is said to be slowly varying at infinity if, for fixed t > 0, L�tx�/L�x� → 1 as
x → �.
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398 Ramsay

Brennan et al. (1968) and Blum (1970) obtain a series expansion of the
probability density function of

∑n
i=1 Yi for the case of � = 1, 0 < � < 2 and � �= 1 in

Eq. (3). They proved that the pdf of
∑n

i=1 Yi is gn�x� (i.e., the n-fold convolution of
g�x�), which is given by

gn�x� =
−1
�

n∑
j=1

(
n

j

)
�−��1− ���j sin���j�

�∑
m=0

Cn−j�m

��m+ �j + 1�
xm+�j+1

(4)

where Ck�m is the mth coefficient in the series expansion of the kth power of the
confluent hypergeometric function

1F1�−�� 1− �� t� =
�∑
j=0

( −�

j − �

)
1
j! t

j�

i.e.,

�∑
m=0

Ck�mt
m = �1F1�−�� 1− �� t��k�

Blum cautions that computational difficulties may arise in attempts to use Eq. (4)
to compute gn�x� for large values of n and certain ranges of x and �.

1.3. Objectives

As was pointed out above, the only known exact expressions for the pdf of the sum
(convolution) of n i.i.d. Pareto random variables are those given by Brennan et al.
(1968) and Blum (1970) given in Eq. (4). However, their results are valid only for
a small range of values of �, namely, 0 < � < 1 and 1 < � < 2. To date, no exact
expression is known for the case where (i) � is a positive integer (� = 1� 2� � � � ) or
(ii) � ≥ 2.

This article provides an exact expression for the pdf and the cdf in case (i) where
� is a positive integer. The approach used is to invert the Laplace transform of
the convolution equation using the complex inversion formula, i.e., the Bromwich
integral. An attractive feature of this approach is the expressions for the pdf and
cdf involve a single real integral along the positive real line and the integral is not
of an oscillating kind.

Note that, in general, one could obtain the pdf and cdf of the nth convolution of
i.i.d. random variables with common pdf f�x� by repeated application of a numerical
integration scheme to the well-known recursive convolution equation:

fk�x� =
∫ x

0
fk−1�x − u�f�u�du

and

Fk�x� =
∫ x

0
Fk−1�x − u�f�u�du

for k = 2� 3� � � � , where fk and Fk�x� denotes the kth convolution, and f1�x� ≡
f�x� and F1�x� ≡ F�x�. This recursive approach may yield good results but can
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Distribution of Sums of Pareto Variates 399

be relatively slow, especially if n and x are large or many values of n and x are
needed. This is because one must compute values of the intervening pdfs and cdfs
for n = 1� 2� � � � � m− 1 and appropriate values of y ≤ x, depending on the numerical
integration scheme. The result provided in this article, however, yields the value of
fn∗�x� and Fn∗�x� directly without computing any values of the intervening pdfs or
cdfs.

Because of the traditional notation for complex variables is z = x + iy, to avoid
confusion, the function f�t� is used to denote the pdf rather than f�x�.

2. Main Results

Consider the Pareto pdf in Eq. (2) with integral parameter � = m, i.e.,

f�t� = m

�

(
1+ t

�

)−�m+1�

for t > 0 and m = 1� 2� � � � �

For complex z and Re�z� > 0, define the Laplace transform of fn�t� as

f ∗
n �z� =

∫ �

0
e−ztfn�t�dt = �f ∗�z��n�

It can easily be proved that f ∗�z� can be written as

f ∗�z� = me�zEm+1��z�� (5)

where Em�z� is the generalized exponential integral. For m = 1� 2� � � � and Re�z� > 0,
Em�z� is defined by

Em�z� =
∫ �

1

e−zt

tm
dt

and by analytic continuation elsewhere. (The exponential integral is related to the
incomplete gamma function. See Abramowitz and Stegun, 1964, Ch. 5 for more on
exponential integrals.) It follows that

f ∗
n �z� = �me�zEm+1��z��

n� (6)

The inversion of f ∗
n �z� is obtained as the Bromwich integral

fn�t� =
1
2�i

∫ c+i�

c−i�
etzf ∗

n �z�dz� t > 0

where c > 0 is an arbitrary constant large enough so that all of the singularities of
f ∗
n �z� lie to the left of the vertical line Re�z� = c. As Em�z� has a logarithmic branch
cut along the negative real axis and a branch point at the origin, the Bromwich
integral can be evaluated as a part of the integral in the counter-clockwise direction
around the deformed contour �. Specifically, � is the positively oriented closed
path consisting of (i) the vertical line z�u� = c + iu where u goes from −y to y, (ii)
the large semi-circle CR centered at the origin and with radius R lying to the left of
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Figure 1. First 5 convolutions of the Pareto pdf f�t� = �1+ t�−2.

Figure 2. First 5 convolutions of the Pareto pdf f�t� = 5�1+ t�−6.
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Distribution of Sums of Pareto Variates 401

the vertical line and passing through the points c ± iy, (iii) the line −R to −r lying
above the branch cut along the negative real axis, (iv) the small (almost) circle, Cr ,
about the origin with radius r, and (v) the line −r to −R lying below the branch cut.

However, as me�zEm+1��z� is analytic in �, it follows immediately that

1
2�i

∫
�
etz�me�zEm+1��z��

ndz = 0

as r → 0 and R → �. Also, as ezEm�z� = O�1/z� as �z� → �, the contribution from
the large circle CR is zero as R → �. Likewise, the contribution from the circle
around the origin �Cr� is easily seen to be zero as r → 0. Hence, as R → � and
r → 0,

fn�t� =
1
2�i

∫ �

0
e−tx�f ∗

n �xe
−i��− f ∗

n �xe
i���dx� (7)

The definitions provided by Abramowitz and Stegun (1964, Ch. 5, Eqs. (5.1.7)
and (5.1.12)) are generalized so that, for x > 0 and m = 1� 2� 3� � � � ,

Em�xe
±i�� = −Eim�x�∓ i�

xm−1

�m− 1�! (8)

where

Eim�x� =
xm−1

�m− 1�!
[
�+ ln x −

m−1∑
r=1

1
r

]
+

�∑
r=0

r �=m−1

xr

�r −m+ 1�r! (9)

and � = 0�5772156649 � � � is the Euler constant. Substituting Eq. (8) into Eq. (6),
and Eq. (6) into Eq. (7), and using the change of variable v = �x yields

fn�t� =
�−m�n

2�i�

∫ �

0
e−�1+ t

n� �nv

[(
Eim+1�v�− �i

�v�m

m!
)n

−
(
Eim+1�v�+ �i

�v�m

m!
)n]

dv�

(10)

But for real a and b,

�a− ib�n − �a+ ib�n = −2i
��n−1�/2�∑

r=0

�−1�r
(

n

2r + 1

)
an−2r−1b2r+1 (11)

where �x� denotes the greatest integer less than or equal to x, hence

fn�t� =
1
n�

∫ �

0
e−�1+ t

n� �v�m�n�v/n�dv (12)

where, for v > 0, �m�n�v� is defined as:

�m�n�v� = �−1�n+1mn
��n−1�/2�∑

r=0

�−�2�r
(

n

2r + 1

)
�Eim+1�v��

n−2r−1

(
vm

m!
)2r+1

� (13)
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Finally, the cdf is determined via integration of fn�t� as

Fn�t� =
∫ t

0
fn�s�ds =

∫ �

0

1
v
�1− e−

tv
� �e−nv�m�n�v�dv� (14)

3. Numerical Results

Using Eqs. (12) and (14) present no real difficulties because Eim+1�x� can be easily
computed via Eq. (9) or by the asymptotic expansion

Eim�x� ∼
ex

x

(
1+ m

x
+ m�m+ 1�

x2
+ m�m+ 1��m+ 2�

x3
+ · · ·

)
as x → �� (15)

However, care must be taken to avoid excessive roundoff errors. The author’s
approach is to compute e−xEim�x� as a series expansion or asymptotically and then
compute e−nv�m�n�v� as

e−nv�m�n�v� = �−1�n+1mn
��n−1�/2�∑

r=0

�−�2�r
(

n

2r + 1

)
�e−vEim+1�v��

n−2r−1

(
e−vvm

m!
)2r+1

�

(16)

As � is a scale parameter, we can, without loss of generality, set � = 1 and use
the pdf

f�t� = m�1+ t�−m−1� m = 1� 2� � � � � (17)

Figures 1 and 2 display the results of the first five convolutions of the pdf given
in Equation (17) with m = 1 and m = 2 respectively. Tables 1 and 2 display the
results of the second through fifth convolutions of the cdf given in Equation (14)
along with convolutions obtained via simulation for the case m = 1 and m = 5,
respectively.
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