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Abstract. Discrete sequential systems, such as sampled data systems, discrete Markov 
processes, linear shift register generators, computer programs, sequential code generators, 
and prefixed comma-free codes, can be represented and studied in a uniform manner by directed 
graphs and their generating functions. In this paper the properties of the generating functions 
are examined from certain connectivity considerations of these graphs. 

1. Introduction 

This paper is a generMization and extension of the writer's earlier paper [9], 
a~d some of the results are reviewed here for the sake of continuity. Certain theo- 
retical results are developed that pertain to the existence of strongly connected 
graphs, disconnected graphs, and reverse graphs, based on their generating and 
characteristic functions. Also, certain algorithms are developed that (i) test the 
"well-formation" of the graph with respect to a set of initial and terminal nodes, 
(ii) determine the inessential nodes, (iii) enumerate and determine all maximal 
strongly connected subgraphs, (iv) determine the entries and exits of all the maxi- 
m'tl strongly connected subgraphs, (v) determine all the link subgr~phs, and (vi) 
partition the graph into its component disjoint subgraphs. 

All these algorithms are based on the connectivity matrix of the graph and have 
been devised with digitM computer mechanization in mind; thus such operations 
as permutation of rows and columns of a matrix are carefully avoided. The con- 
neetivity of directed graphs has been considered in [L~6]. Since our approach is 
based on the generating functions of graphs, the results and methods in most cases 
are distinct and different, and this makes many physical applications meaningful. 
Since the generating function is based on a set of starting and terminating points, 
it provides a direct analog to computer programs and electrical circuits, which are 
characterized by entry and exit points, and sources and sinks, respectively. Thus 
the approach here relates the connectivity considerations of directed graphs to the 
quantitative aspects of physical systems represented by weighted graphs [7-14]. 
In the parts of this paper relating to the tests, the notion of essential nodes is due to 
[4], but no explicit tests for determining them were reported there. The method 
of enumeration and determination of strongly connected subgraphs in this paper 
is somewhat different from those of others. Our procedures for the determination 
of entries and exits to these subgraphs, the concept of link subgraphs and the tests 
to locate them in a connectivity matrix, and our method of partitioning a graph into 
unconnected subgraphs appear to be original. 

2. Generating Function 

A weighted directed graph is a set of nodes (vertices) connected by directed 
branches (edges) such that a complex number called a branch transmission is 
t~ttached to each branch. Thus a graph of n nodes can be represented by a n X n 
branch transmission matrix T, whose ijth element tq is the branch transmission 
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from node i to node j [7, 8]. In m a n y  instances, the actual value t~j is not importa~t; 
it is merely important whether or not it is nonzero. One can define C as the connec. 
tivity matrix of a graph whose branch transmission matrix is T such that  its ijth 
element c,.~. = 1 if and only if its corresponding branching transmission t~j is n0n~ 
zero; otherwise cq = 0. That  is, co- = 1 (or 0) if a branch exists (or does not exist) 
from node i to node j .  

Given directed graphs, whether representing sequential processes, signal flows, 
or eonnectivities, there arises a need to know the translnission from one subset of 
nodes to another subset as a function of the number of branches traversed in series 
(path lengths). Such a function is called the generating function of the given graph 
between the given subsets of nodes, and one can get many interesting properties d 
the system by certain operations [7, 8]. 

3. Determination of Generating Function 

Given the branch transmission matrix T of a graph, the generating function 
oo m 

G~k(z) = ~,,~o g~z from node i (called the starting node) to node k (called the 
end node) is given explicitly by G~e(z) = Ak~/I A I, where A = (I  - Tz), A~ is 
the cofactor of the kith element of A, I A I is the determinant of A and is nonsingular, 
and z is a separator variable [7, 8]. I is an identity matrix. Thus, g~, the coefficient 
of z m, is the total transmission from node i to node k, obtained by traversing exactly 
m branches in series. I t  can be shown that  G~(z) can also be obtained by signal flow 
graph methods [7, 8, 14]. The function [I - Tz] is called the characteristic function 
of the weighted graph and does not  depend on the choice of the starting or the end 
nodes. When A is singular, the weighted directed graph representation is not valid 
[7]. The concepts of directed graphs and their generating functions have been gen- 
eralized in [7-14], so that  they are applicable to electric networks, discrete Mark0v 
processes, simultaneous linear equations, shift register sequences, sequential symbol 
generators, path enumeration problems, and comma-free codes. 

4. Definitians 
A path is a sequence of directed branches 1 connected in series between two nodes. 

A loop is a sequence of nodes (1, 2, 3, • -. , k, 1) such that  a path exists from node 
1 to itself. A subgraph of given graph of branch transmission matrix T is defined as 
consisting of a subset of nodes with all branches between these nodes retained. A 
node j is said to be reachable from node i if there is at least one directed path from 
node i to node j.  Equivalently, one may say the G~i(z) ~ 0. A node p is essential 
with respect to G~j(z), if (a) it  is reachable from node i, and (b) it can reach the 
terminal node j. A graph consisting of a set of nodes and branches is said to be 
strongly connected if and only if any node is reachable from any other. 

If G~j(z) ~ 0, the starting node i and the end node j are also considered to be 
essential. Nodes that  are not essential are redundant (inessential). 

The largest strongly connected subgraph that  contains a given node is defined as a 
maximal strongly connected subgraph (M.S.C.) on the graph. I t  is unique for any 
given node in its set. 

1 Specified directed branches. 

J 
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THEOREM 1. T h e  generating function G<k( Z ) from node i to node ]c can be obtained 
bj considering only its essential nodes. 

PROOF. Only a ske t ch  of the proof is presented here. For the sake of simplicity, 
i~¢erpret G<k(z) as  t h e  generating function of path enumeration [7, 8], Consider 
Figure 1, where a,  b, c, d are redundant nodes. 

(a) Consider t h e  ease where redundant nodes a and b are not reachable from i 
but can reach end n o d e  lc. They  cannot influence the number of ways of reaching 

node k from i. 
(b) Consider t h e  case where redundant nodes c and d are reachable from node i, 

but cannot reach n o d e  k. Their presence (or absence) does not influence the number 
of ways of reaching node  j from i. 

LEM~.L~. G~k(z) = 0 i f  and only i f  there is no path from node i to node k. 
THEOREm[ 2. T h e  largest exponent n in GsE(z) = ~$=og~z ~ is a finite integer i f  

and only if there are no  loops in the graphs; otherwise, n is infinite. 
['ROOF [8]. If  t h e r e  are no loops, the characteristic function is a constant. 
TUEORE~[ 3. I f  GzE(z) and GEs(z) are not equal to zero, then nodes E and S are 

members of the ~.ame strongly connected subgraph. 
TUEORE~I 4. I f  G,s,( z ) and GEs( z ) exist ( ~ 0), then any node essential (redundant) 

for G.~(z) is also essential (redundant) for GE~(z). 
PROOF. Let i b e  an  essential node for G~E(z). Then i is reachable from S and 

it can reach E. S ince  G~s(Z) ~ O, there is at least one path from E to S. If i is on 
this path it is essent ia l .  If not, let P ~  be a path from E to S. Then i is reachable 
from E because o n e  can  go from E to S (via P ~ )  and S to i. Thus i can reach S by  
route i to E and E t o  S. By definition, i is an essential node of GEs(z). 

5. Graph "Well-Formation" 

When a sequent ia l  process is represented by its state diagram and is specified by  
its connectivity m a t r i x ,  one would like to test whether there are any structural 
flaws in it. Two t y p e s  of flaws can be detected: (a) there may not be a path from 
the initial or s t a r t i n g  node to the terminal or end node, or (b) there may be re- 
dundant nodes in t h e  graph with respect to the given set of starting and end nodes. 
We consider a d i r e c t e d  graph to be well formed if (a) there exists a path from the 
starting node S t o  t h e  end node E, i.e., Gs~(z) ~ O, and (b) there are no inessential 
nodes in the graph .  

6. Test to Determine GsE(z) ~ 0 

Let C and C ~ b e  t he  connectivity matrix of the given graph and its transpose, 
respectively. Let  S and  E be the starting and the end nodes, respectively. Then 

FIG. 1. A graph with inessential nodes 
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label the rows and columns of these matrices by  node numbers 1 through n. S and 
E are among these nodes. 

Step 1. Let Rs be a row vector of dimension n such that  it is initially equal t~ 
C,s, the row element of C corresponding to the starting node S, i.e., Rs = C~. 

Step 2. Examine the column elements of R , .  Let (Rs)~ be its i th column ele- 
ment, which is nonzero and not previously examined. Update Rs by performing a 
componentwise logical addition to the ith row of C, i.e., Ra (new) = C~ U Rs (old). 

Step 3. Repeat  step 2 above until no more changes take place in Rs .  
Step 4. Examine the Eth  column of R•s. If  it is nonzero, there is at least one 

path from S to E, which implies that  GzE(z) ~ O. 
Let us define the final row vector Rs as the reachability vector of node S [2, 4], 

since a one in its kth column implies tha t  node k is reachable from S. Thus Re gives 
all nodes reachable from S. One can construct the reachability matrix R so that its 
kth row is the reachability vector of node k. Thus G~k(z) exists if and only if the 
ikth element of R is nonzero. This algorithm for obtaining R is equivalent to the 
older method [6], R = limN~ (C + I)  ~. The new algorithm is efficient because 
i t  only involves logical addition operations between row vectors, rather than re- 
peated matrix multiplication. 

7. Determination of Essential Nodes 

First, R s ,  the reachability vector of node S, is found by steps 1-4 of Section 6. 
I f  G,~E(z) ~ O, go to step 5 below. Let  T~ be a row vector of dimension n such tht~t 
its kth column is nonzero if there is at least one path that  can reach node E from 
node k. Designating T~ as the reaching vector of node E, T~ is found as follows: 

Step 5. Find the reachability vector of node E for the graph whose connectivity 
matrix is given by C r. This is TE.  

Step 6. Perform a componentwise logical multiplication between vectors Rs 
and TE,  i.e., Rs N rl~ . Let the resulting row vector be Ls,E • The set of essentittl 
nodes are those that  correspond to nonzero components of Ls,E together with nodes 
S and E. The rest are inessential. One can construct the reaching matrix T by 
finding the reaching vector for each node. 

THEOREM 5. The reaching matrix T is the transpose of reachability matrix R, 

i.e., T = R ~. 
Proof of "Well-Formation." The reachability vector Rs contains all nodes 

reachable from S. If  its E th  component is nonzero, then there exists a path C,~. C~. 
• • • C~B = 1 for some i, k, • • • , r. Similarly T~ gives all nodes reaching E. Thus if 
the i th  column of Ls~ = Rs n TE is not zero, this implies there is a path from 
S to i and another from i to E.  Thus i is an essential node. This proves the algorithm. 
I t  could have been computationally simpler if after step 4, all rows and columns of C 
corresponding to zeros in Rs had been deleted and the transpose of the reduced 
connectivity matrix had been used to find TE together with nodes S and E. 

Example. Let Figure 2 2a be the connectivity matrix of a graph, Figure 2b. 
Let  the starting node be 1 and the end node be 11. Test  for well-formation and 
determine all inessential nodes. The diagram (graph) is shown for convenience 0nly- 

Underscored letter symbols in figures are s~me as boldface letters in text. 
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I 2 :5 4 5 6 7 8 9 10 II 12 15 

C : I  0 0  0 O' 0 0 I 0 0 0 0  0 0  

2 0 0 1 I 0 0 0 0 0 0 0 0 0  

5 0 0 0 0 0 0 0 0  I 0 0 0 0  

.4. 0 0  O' 0 0 0 0 0  0 0 I 0 I 

5 0 0  0 0 0 I 0 1  0 0 0 0 0  

6 0 I I 0 0 0 0 0 0 0 0  0 I 

7 0 0  0 0 I 0 0 I 0 0 0  0 0  / " ~  

8 0 0  0 1 0 0 0 0 - 0  I 0 0 0  

9 0 0  0 0 O. I 0 0  0 0 0 0 0  

I 0 0 0  0 0 0 0 I 0 0 0 0  0 0  

,I 0 0  0 , 0 0 0  0 0 0 0  0 0  \ 

12 I 0 0 0 0 0 0 0  I - 0 0  0 0  ~ / 2 . 2 . ~ - ~  

15 '0  0 0 0 0 0 0 0  0 0 0 0 0  l 

/ 

b 

Fro. 2a. Commet iv i ty  mat r ix  
C o r r e c t i o n :  The element in the 5th row, 13th column should be 1. 

FIG. 2b. A given graph 

[,et~ 

R~ ° )=  Cl = 0 0 0 0 0 0 1 0 0 0 0 0 0 .  

Si~ce the 7th e l e m e n t  of R1 is nonzero, logical-add C7 ; i.e., 

R~ 1) = R~ °) U CT = 0 0 0 0 1 0 1 1 0 0 0 0 0 ,  . . . , e t c . ,  

R~(fin~d) = R e a c h a b i l i t y V e c t o r o f l  = 0 1 1 1 1 1 1 1 1 1 1 0 1 .  

Siace the l l t h  c o l u m n  of R1 ~ 0, GLu(z) ~ O. Similarly, 

T(O) 11 = C~1 = 0 0 0 1 0 0 0 0 0 0 0 0 0 .  

The 4th column is nonzero; thus 
T(1) ,~,(0) ll = , l l  U C 4  r = 0 1 0 1 0 0 0 1 0 0 1 0 0 ,  . . . , e t c . ,  

T~(fin~d) -- R e a c h i n g  Vector of 11 = 1 1 1 1 1 1 1 1 1 1 1 1 0 ,  

L L u =  R ~ C I T l t  = ( 0 1 1 1 1 1 1 1 1 1 1 0 1 )  f] ( 1 1 1 1 1 1 1 1 1 1 1 1 0 )  

= ( 0 1 1 1 1 1 1 1 1 1 1 0 0 ) .  

The essential n o d e s  are nodes  1 and 11 together with those corresponding to the 
nonzero columns o f  Lm~, i.e., nodes 2 through 10. The inessential nodes are 12 and 
13. 

8. Strongly Connected Graphs 

THEORE~I 6. A graph is strongly connected "if and only if G~j(z) ~ 0 for all i 
and j. 
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PROOF. G~j(z) # 0 for all i and j if and only if i can reach j and vice versa. 
THEOREi\I 7. A graph is strongly connected if  and only i f  there exists a node i 

such that G,(z) # 0 and all nodes are essential with respect to G,(z). 
PROOF. (a) Assume G,(z) # 0 and all nodes are essential with respect to 

G,(z).  Starting at any  node k, any other node m is reachable froIn k via node i. 
(b) Assume a graph is strongly connected. Therefore, node i can be reached in 

one or more steps. Therefore, G,(z) ~ O. In addition, all nodes can reach node i 
and can be reached from it. Hence, all nodes are irredundant with respect to G,(z). 

The last theorem is important,  since it provides a test for strong connectivity. 
In addition, it can be used to find the largest subgraph that  is strongly connected 
and that  includes a given node (Section 9). The size of the graph is measured here 
by the number of nodes. 

G~j(z) # 0 if and only if nodej  is reachable from node i, which can be tested quite 
simply in the first part  of the test in Section 6. The essential nodes again are de- 
termined by the algorithm in Section 9; thus the identification of the largest strongly 
connected subgraph tha t  includes a particular node is quite simple. Theorem 8 
below immediately follows from Theorem 7. 

THEOREm[ 8. A directed graph is strongly connected i f  and only if, for every node i, 
G,(z) # 0 and all other nodes are essential with respect to G,(z). 

9. Test for Strong Connectivity 

Since, by Theorem 6, a directed graph is stongly connected if and only if, for 
any node i in it, G,(z)  ~ 0 and all nodes are essential with respect to G,(z), 
one can pick any node i in the graph and apply the well-formation test from node 
i to itself. If node i is reachable from itself, and if all other nodes are essential 
with respect to G,(z) ,  then the diagram is strongly connected. In a nonstrongly 
connected graph, one can use the above test repetitively with respect to different 
nodes and determine all M.S.C. subgraphs. All iV[.S.C, subgraphs are nonintersect- 
ing; i.e., they do not have any common nodes. An equivalent test of strong connec- 
tivity of a graph will be to find the reachability matrix R; if every element in it is a 
one, then it is strongly connected. 

Example. Let us determine an M.S.C. subgraph tha t  includes node 6 for the 
given graph of Figure 2b from its connectivity matrix. The starting and end node 
in this case is 6. Hereafter redundant nodes 12 and 13 are excluded from considera- 
tion. The connectivity matrix will be an 11 X 11 matrix. 

By the well-formation test of Section 6, steps 1-4 yield the reachability vector of 
node 6, R6 = ( 0 1 1  1 0 1 0 0 1 0 1 ) .  Since the 6th column of R6 is a one, the 
presence of a loop on the node is confirmed. Performing steps 5 and 6 with respect 
to end node 6, we get T6 = (1 1 10 1 1 1 1 1 10).  Thus the set of essential nodes 
with respect to G66(z) is given by the columns corresponding to the ones in (R~ n T6) 
= (R6 [7 R6r), i.e., nodes 2, 3, 6, and 9, which is also the M.S.C. subgraph contain- 
ing node 6. 

10. Detection of Loops on a Given Node 

The first part of the  test detects the presence of loops on a node. If node S is 
reachable from itself in at least one step, the presence of a loop is indicated. In 
that  case, the teachabili ty vector R~ will have a one in its Sth column. 
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THEOREM 14. M ,  ~ 0 i f  and only i f  M~ ~ 0. Thus M ,  = 0 if and only if 
M~ = 0 (row vector of all zeros). This implies node i is not a member of an 
M.S.C. subgraph. 

THEOREM 15. The graph is loop-free i f  and only i f  i~¢! = O, or equivalently R ,  = 0 
for all i. 

THEOREM 16. M~j ~ 0 i f  and only i f  M~ = Mj ~ O, which implies i and j belo'ng 
to the same M.S.C. subgraph. 

14. Reverse Graphs 

The reverse of a directed graph is obtained by transposing its transmission 
(connectivity) matrix. The reaching and reaehability matrices interchange their 
roles. Schematically, this implies the change of direction of the directed branches of 
the graph. The process of reversal leaves the loops intact. The characteristic fu~e- 
tion of the original graph is invariant under reversal. 

THEOREM 17. For any directed graph Gs~(z) = G~s(z), where G and G a~'e 
generating functions of the original graph and its reverse. 

- 
I A I '  

- 
I A ' t '  

Thus, 

where A = [ I - - T z ] ,  

where A' = I - -  TVz, 

A' = [I r - -  T~'z] = [ I - -  Wz] ~' = A ~. 

~ s ( z )  - As~ _ AEs _ GsR(z). 
IA l IAi  

15. Unconnected Graphs 

Let N = {nl ,n~,  . . .  ,nR} and M = {ml,m~,  . . .  ,mE} be two sets of nodes in 
graph. N and M are said to be unconnected (disconnected, disjoint) subgraphs if n0 
node from N can reach a node in M, and vice versa. 

THEOaEM 18. The subgraphs M and N are unconnected i f  and only i f  G,~.~(z) = 
G,~,,,,(z) = 0 for all m C M and n ~ N. 

16. An Algorithm for Partitioning a Given Graph Into Its Unconnected Subgraphs 

When a directed graph is specified by its connectivity matrix C, it is possible to 
partit ion it into its unconnected subgraphs rapidly by  the following algorithm. 

Step 1. For any Cij = 1 in the graph make C~ = 1. Call this new connectivity 
matrix C p, which is a symmetric matrix. This step makes each disjoint subgraph 
strongly connected within itself. 

Step 2. Pick any node k. Find all the nodes that  are reachable from it using the 
matrix C' and applying steps 1-4 of Section 6. Let the set of nodes be $1. 

Step 3. Pick a node from the remaining nodes. Repeat  step 2 above and find 
another set of nodes $2. 
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I 2 3 4  5 6  7 8 9 I 2. 5 4 5  6 7  8 9  

I 0 0 0  I 0 0  0 0 0  1 0 0  0 I 0 0 0 0 0  

2 0 0 0  0 0 0  0 1 0 2 0 0  I 0 I O 0  I 0 

3 0  I I 0 0 0 0 0  0 5 0  1 I 0 0 0 0  O 0  

4 0 0 0 0 0  I 0 0  0 4 I 0 0 0 0  I 0 0  I 

5 0  I 0 0 0 0 0 0  0 5 0 I 0 0 0  O 0  I 0 

6 0 0 0 0 0 0 0 0 0  6 0 0 0 1 0 0 0 0 0  

7 0 0 0 0 0 0 0 0 0  7 0 0 0 0 0 0 0 0 0  

8 0 0  0 0  I 0 O 0  0 8 0 I 0 0  I O 0 0 0  

9 0 0 0  I 0 0  O 0  0 9 0 0 0  I 0 0 0 0 0  

b c 

FIc,. 3tL A givert graph 
A given connectivity matrix = C FIG. 3b. 

FIG. 3c. IVlodified symmetric connectivity matrix = C' 

Repeat step 3 until  all nodes of the graph are taken care of. Then the subsets of 
nodes $1, S,2, • • • , form subgraphs of the given graph that are mutually unconnected. 

Example. Partition the directed graph shown in Figure 3a into unconnected 
subgraphs. The connectivity matrix is given in Figure 3b. 

Step 1. Set C~ = C~ = 1 if Cj~ = 1. The matrix shown in Figure 3c is obtained. 
Step 2. Pick node 1; all nodes strongly connected with it are (from C') equM to 

S~ = {1, 4, 6, 9}. 
Step 3. Pick node 2;S~ = {2, 3, 5, 8}. 
Step 4. Pick node 7; S~ = {7}. 
The given graph = {{7}, {1, 4, 6, 9}, {2, 3, 5, 8}}, i.e., the disjoint subgraphs are 

{7}, {1, 4, 6, 9}, and {2, 3, 5, S}. 

17. Entries and Exits of S.C. Subgraphs and Their Relation to Directed Cut-Sets 

A directed cut-set can be defined as a set of those branches whose removal leaves 
the graph in disconnected subgraphs, stmh that  these branches have their initial 
nodes in one subgraph and their terminal nodes in another, and such that no proper 
subset of these branches has this property [1]. 

It is of interest to determine the directed Cut-sets of S.C. subgraphs in a given 
graph, which translates itself to the problem of finding all the entries or exits to 

~[.S.C. subgraphs. 
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18. Determination of Entries and Exits of M.S.C. Subgraphs 

(a) Algorithm to determine the entries: 
Step 1. Compute matrix M. (See Section 12.) 
Step 2. Compute matrix S = M 17 C. 
Step 3. Let J = j l ,  j2 ,  • • • , j~ be nodes that  are not members of any M.S.C. 

subgraph. These correspond to all-zero rows of M. Set columns of S corresponding 
to set J to zero. The residual matrix S ~ is the matrix of entries to S.C. subgraphs, 
i.e., S~ = 1 if the branch (i, j )  enters the M.S.C. subgraph containingj.  

(b) Algorithm to determine the exits: 
Step 1. Compute the matrix M. 
Step 2. Compute the matrix S = ~I 17 C. 
Step 3. Find set J as in step 3 in part (a).  Set rows of S corresponding to nodes 

J to zero. The resulting matrix S x is the matrix of exits such that  S~ = 1 if and only 
if the branch (i, j )  exits from the S.C. subgraph containing node i. 

PROOF OF THE ALGORITHMS. S = ~I 17 C is a matrix such that  S~j = 1 if and 
only if (a) branch (i, j)  exists, and (b) it either enters or exits from an M.S.C. 
subgraph or it either enters or exits from nodes that  are not members of any S.C. 
subgraph, viz., {J}. 

By setting column elements corresponding to set {J} to zero, we have selected all 
branches (i, j )  such that  either nodes i and j are members of two different S.C. 
subgraphs, or i is an element of {J} and j is an element of some S.C. subgraph. This 
proves the entry algorithm. The proof of the exit determination algorithm is 
similar. 

Example. In the determination of the entries and exits of all S.C. subgraphs of 
the graph whose connectivity matrix is given in Figure 2, excluding nodes 12 and 
13, it is found tha t  J = {1}. Branches entering the S.C. subgraphs are those S~;~ 
whosej 's  are not elements o f J  = (1, 7), (5, 6), (2, 4), and (8, 4). 

Branches going out of S.C. subgraphs are equal to 

S , f , ,  where i $ {J}, or 

(2, 4), (s, 4), and (5, 6). 

19. Linlc Subgraphs 
A linlc subgraph of an M.S.C. subgraph G1 is a set of all nonstrongly connected 

(N.S.C.) nodes such that there exists at least one path through them that  emanates 
from G1 and terminates in another M.S.C. subgraph. 

In Figure 4 the subgraph containing the nodes 2, 3, 4, 5 is a link subgraph. When 
the source node ( the end node) is not strongly connected, it can be assumed that 
there is a directed branch reaching (emanating from) it from (into) an M.S.C. 
subgraph. From these principles we note that  the sequential flow from the start 
node to the end node goes from one 5/[.S.C. subgraph to another either directly or 
via a link subgraph. 

20. Determination of the Link Subgraphs 

Step 1. Determine the set of all the N.S.C. nodes. 
Step 2. Derive their reachability matrix R N's'c" from their connectivity matrix 

C'~.8,C. 
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FIG. 4. A given graph 

NSC. 
RN'SC 0 2 .3 C = 0 2 5 4 5 9  

0 0 0 0 0 0 0  0 I 0 0  

2 0 0  I 0 0 0  2 0 1  I 

5 0 0 0  I 1 O 5 0 0  I 

4 0 0 0 0 0 0  4 0 0 0  

5 0 0 0 0 0 0  5 0 0 0  
9 0 0  I 0 0 0  9 0 0  I 

a b 
Fro. 5 a .  N.S.C. connec t iv i ty  matr ix  

FIe .  5b. R ~'s'c" 

4- 5 

0 0 

I I 0 

I I 0 

I 0 0 

0 0 
I I 

R ow 

9 Wr. 

0 I 

4- 

3 

I 

I 

4 

Step 3. Make R~ "s'c" = 1 for all i. 
Step 4. Count the number of ones in each row. Find the row R~ "s'c" with the 

largest weight. The nonzero columns of R~ "s'c" are the nodes in the link subgraph 
that starts at node i. 

Step 5. Ignore all rows corresponding to nodes selected in step 4. Find from the 
remaining rows another row R~ "s'c" with the largest row weight. Its nonzero columns 
are the nodes in a link subgraph that starts at node j. Repeat step 5 until all rows 
are selected in R ~'s'c'. 

The proof of this algorithm is simple. The branching paths in a link subgraph 
of a given M.S.C. subgraph are given by its component N.S.C. node whose row 
weight in the N.S.C. connectivity matrix exceeds one. 

Example. Find all the link subgraphs from the connectivity matrix of Figure 4. 
Using the previous tests, the N.S.C. nodes are 0, 2, 3, 4, 5, and 9. The connectivity 
matrix of N.S.C. nodes is given in Figure 5a. 

The teachability matrix R n's'c" (Figure 5b) is derived from C N's'c'. Also, R~ "sc" 
has been made equal to 1. 
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] ~ e f e r r i n g  to F igure  5b, select  row 2 of R x's'c" to  ge t  the  l ink subg raph  {2, 3, 4, 5} 
e m a n a t i n g  f rom M.S .C .  subg raph  {1}. Select  row 9 to ge t  the  l ink subgraph 
{3, 4, 5 ,  9} e m a n a t i n g  f rom M.S.C.  s u b g r a p h  {10}. F ina l ly ,  row 0 gives the link 
s u b g r a p h  {0}. 
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