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Abstract. Discrete sequential systems, such as sampled data systems, discrete Markov
processes, linear shift register generators, computer programs, sequentisl code generators,
and prefixed comma-free codes, can be represented and studied in a uniform manner by directed
graphs and their generating functions. In this paper the properties of the generating funetions
are examined from certain connectivity considerations of these graphs.

1. Introduction

This paper is a generalization and extension of the writer’s earlier paper [9],
and some of the results are reviewed here for the sake of continuity. Certain theo-
retical results are developed that pertain to the existence of strongly connected
graphs, disconnected graphs, and reverse graphs, based on their generating and
characteristic functions. Also, certain algorithms are developed that (i) test the
“well-formation” of the graph with respect to a set of initial and terminal nodes,
(i1) determine the inessential nodes, (iii) enumerate and determine all maximal
strongly connected subgraphs, (iv) determine the entries and exits of all the maxi-
mal strongly connected subgraphs, (v) determine all the link subgraphs, and (vi)
partition the graph into its component disjoint subgraphs.

All these algorithms are based on the connectivity matrix of the graph and have
been devised with digital computer mechanization in mind; thus such operations
as permutation of rows and columns of a matrix are carefully avoided. The con-
nectivity of directed graphs has been considered in [1-6]. Since our approach is
based on the generating functions of graphs, the results and methods in most cases
are distinct and different, and this makes many physical applications meaningful.
Since the generating function is based on a set of starting and terminating points,
it provides a direct analog to computer programs and electrical circuits, which are
characterized by entry and exit points, and sources and sinks, respectively. Thus
the approach here relates the connectivity considerations of directed graphs to the
quantitative aspects of physical systems represented by weighted graphs [7-14].
In the parts of this paper relating to the tests, the notion of essential nodes is due to
[4], but no explicit tests for determining them were reported there. The method
of enumeration and determination of strongly conneeted subgraphs in this paper
is somewhat different from those of others. Our procedures for the determination
of entries and exits to these subgraphs, the concept of link subgraphs and the tests
to locate them in a connectivity matrix, and our method of partitioning a graph into
unconnected subgraphs appear to be original.

2. Generating Function

A weighted directed graph is a set of nodes (vertices) connected by directed
branches (edges) such that a complex number called a branch transmission is
attached to each branch. Thus a graph of n nodes can be represented by an X n
branch transmission matrix T, whose ¢jth element ¢; is the branch transmission
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l.from node ¢ to node j (7, 8]. In many instances, the actual value ¢;; is not importan;.
it is merely important whether or not it is nonzero. One can define C as the conneci
twity matriz of a graph whose branch transmission matrix is T such that its #jth
element ¢;; = 1 if and only if its corresponding branching transmission &; is nop.
zero; otherwise ¢;; = 0. That is, ¢;; = 1 (or 0) if a branch exists (or does not exist)
from node 7 to node j.

Given directed graphs, whether representing sequential processes, signal flows
or connectivities, there arises a need to know the transmission from one subset o%
nodes to another subset as a function of the number of branches traversed in series
(path lengths). Such a function is called the generating funciion of the given graph
between the given subsets of nodes, and one can get many interesting properties of
the system by certain operations [7, 8].

3. Determination of Generating Functzon

Given the branch transmission matrix T of a graph, the generating function
Gu(z) = ZZ=0 gnz" from node ¢ (called the starting node) to node k (called the
end node) is given explicitly by Gi(2) = Aw:/| 4 |, where A = (I — Tz), Ay is
the cofactor of the kith element of A, | A | is the determinant of A and is nonsingular,
and z is a separator variable [7, 8]. 1 is an identity matrix. Thus, g , the coefficient
of 2", is the total transmission from node ¢ to node %, obtained by traversing exactly
m branches in series. It can be shown that G..(z) can also be obtained by signal flow
graph methods {7, 8, 14]. The function [I — T2] is called the characteristic function
of the weighted graph and does not depend on the choice of the starting or the end
nodes. When A is singular, the weighted directed graph representation is not valid
[7]. The concepts of directed graphs and their generating functions have been gen-
eralized in [7-14], so that they are applicable to electric networks, discrete Markov
processes, simultaneous linear equations, shift register sequences, sequential symbol
generators, path enumeration problems, and comma-free codes.

4. Definitions

A path is a sequence of directed branches' connected in series between two nodes.
A loop is a sequence of nodes (1, 2, 3, - -+ , k, 1) such that a path exists from node
1 to itself. A subgraph of given graph of branch transmission matrix T is defined a5
consisting of a subset of nodes with all branches between these nodes retained. A
node 7 is said to be reachable from node ¢ if there is af least one directed path from
node 7 to node 7. Equivalently, one may say the Gi;(2) # 0. A node p is essential
with respect to Gi;(2), if (a) it is reachable from node ¢, and (b) it can reach the
terminal node §. A graph consisting of a set of nodes and branches is said to be
strongly connected if and only if any node is reachable from any other.

If G.;(z) # 0, the starting node % and the end node j are also considered to be
essential. Nodes that are not essential are redundant (inessential).

The largest strongly connected subgraph that contains a given node is defined asa
mazvimal strongly connected subgraph (M.S.C.) on the graph. It is unique for any
given node in its set.

1 Spectfied directed branches.
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Tumorey 1. The generaling function G:1(z) from node 2 to node k can be obtained
by considering only s essential nodes.

"Proor. Only a sketch of the proof is presented here. For the sake of simplicity,
interpret G:x(2) as the generating function of path enumeration [7, 8]. Consider
Figure 1, where a, b, ¢, d are redundant nodes.

(a) Consider the case Where redundant nodes @ and b are not reachable from 4
but can reach end node k. They cannot influence the number of ways of reaching
node k from <.

(b) Consider the case where redundant nodes ¢ and d are reachable from node 1,
but cannot reach node k. Their presence (or absence) does not influence the number
of ways of reaching node j from 7.

Leuva. Gu(z) = 01if and only if there is no path from node i to node k.

TueoreM 2. The largest exponent n in Gse(z) = Z?:o gz’ is a finite inleger if
and only if there are no loops in the graphs; otherwise, n is infinite.

Proor [8]. If there are no loops, the characteristic function is a constant.

TuroreM 3. If Gexlz) and Ggs(2) are not equal to zero, then nodes E and S are
members of the same strongly connected subgraph.

TuroreMm 4. If Gsu(2) and Ges(2) exist (# 0), then any node essential (redundant)
for Gsp(z) 1s also essential (redundant) for Gus(z).

Proor. Let ¢ be an essential node for Gsz(z). Then 7 is reachable from S and
it can reach E. Since Ggs(z) # 0, there is at least one path from E to S. If 7 is on
this path it is essential. If not, let Pgs be a path from E to S. Then ¢ is reachable
from I because one can go from F to S (via Pgs) and S to <. Thus ¢ can reach S by
route ¢ to I and & to S. By definition, 7 is an essential node of Ggs(z).

5. Graph “Well-Formation”

When a sequential process is represented by its state diagram and is specified by
its connectivity matrix, one would like to test whether there are any structural
flaws in it. Two types of flaws can be detected: (a) there may not be a path from
the initial or starting node to the terminal or end node, or (b) there may be re-
dundant nodes in the graph with respect to the given set of starting and end nodes.
We consider a directed graph to be well formed if (a) there exists a path from the
starting node .S to the end node E, i.e., Gsg(2) 5 0, and (b) there are no inessential
nodes in the graph. '

6. Test to Determine Ggg(z) = 0

Let C and C' be the connectivity matrix of the given graph and its transpose,
respectively. Let S and E be the starting and the end nodes, respectively. Then

Jo
()

Fic. 1. A graph with inessential nodes



214 C. V. RAMAMOORTHY

label the rows and columns of these matrices by node numbers 1 through n. § angd
E are among these nodes.

Step 1. Let Rg be a row vector of dimension n such that it is initially equal to
Cs, the row element of C corresponding to the starting node S, i.e., Rs = Cs.

Step 2. Examine the column elements of Bs. Let (Rg), be its 7th column ele-
ment, which is nonzero and not previously examined. Update Rs by performing a
componentwise logical addition to the ith row of C, i.e., Rs (new) = C; U Rs (old).

Step 3. Repeat step 2 above until no more changes take place in Ry .

Step 4. Examine the Fth column of Ry . If it is nonzero, there is at least one
path from S to E, which implies that Gsz(2) # 0.

Let us define the final row vector Ry as the reachability vector of node S [2, 4,
since a one in its kth column implies that node k is reachable from S. Thus Rg gives
all nodes reachable from S. One can construct the reachability matrix R so that its
kth row is the reachability vector of node k. Thus Gu(2) exists if and only if the
ikth element of R is nonzero. This algorithm for obtaining R is equivalent to the
older method [6], R = limy-» (C + I)". The new algorithm is efficient because
it only involves logical addition operations between row vectors, rather than re-
peated matrix multiplication.

7. Determination of Essential Nodes

First, Rg, the reachability vector of node S, is found by steps 1-4 of Section 6.
If Gse(z) 5 0, go to step 5 below. Let T be a row vector of dimension » such that
its kth column is nonzero if there is at least one path that can reach node E from
node k. Designating T as the reaching vector of node E, Ty is found as follows:

Step 5. Find the reachability vector of node E for the graph whose connectivity
matrix is given by C”. This is Tz .

Step 6. Perform a componentwise logical multiplication between vectors Rs
and Tz, ie., Rs N Ts . Let the resulting row vector be Ly z . The set of essential
nodes are those that correspond to nonzero components of Ls x together with nodes
S and E. The rest are inessential. One can construct the reaching matrix T by
finding the reaching vector for each node.

TurorEM 5. The reaching matrix T s the transpose of reachability matriz R,
ie, T =R"

Proof of “Well-Formation.” The reachability vector R, contains all nodes
reachable from S. If its Eth component is nonzero, then there exists a path Cu- Gt
... Cg = 1forsomes,k, --- ,r. Similarly Tg gives all nodes reaching E. Thus if
the ith column of Lsz = R N T5 is not zero, this implies there is a path from
S to0 7 and another from 4 to E. Thus 4 is an essential node. This proves the algorithm.
Tt could have been computationally simpler if after step 4, all rows and columns of C
corresponding to zeros in Ry had been deleted and the transpose of the reduced
connectivity matrix had been used to find Tx together with nodes Sand E.

Ezample. Let Figure2 2a be the connectivity matrix of a graph, Figure 2b.
Let the starting node be 1 and the end node be 11. Test for well-formation and
determine all inessential nodes. The diagram (graph) is shown for convenience only-

? Underscored letter symbols in figures are same as boldface letters in text.
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‘23456789|O|l1213

c-c1 000 0001 000000O0

"2 001 1 O00000000

3000 000001 0000

4000 000000GO0 | O |
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601 1 O0O000O0O0OO |

70000 1 001000 0O

8000 1 000001 000
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ooo0o QO 001 0000 O0C
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2100 O 0000 1-0000

i3'°0 00 0 O 000000 O0CO0

a
Fie. 2a. Connectivity matrix
Correction: The element in the 5th row, 13th column should be 1.
F1a. 2b. A given graph

Let

R = C | =0000001000000.
Since the 7th element of R, is nonzero, logical-add C; ; i.e.,

R’ = R” U ¢ © =0000101100000, ---, etc.,

R\(final) = Reachability Vectorof 1 =0111111111101.

Since the 11th column of Ry # 0, Gy,1,(2) 0. Similarly,
T = Ci 0001000000000.

The 4th column is nonzero; thus
™ =T U ¢~ 0101000100100, ---, ete.,
Ty(final) = Reaching Vector of 11 1111111111110,
Lu=RNOT,; =@©111111111101)N(1111111111110)

=(0111111111100).

The essential nodes are nodes.1 and 11 fogether with. those corresponding to the
nonzero columns of I, 4 , i.e., hodes 2 through 10. The inessential nodes are 12 and
13.

it

8. Strongly Connected Graphs

g#EOREM 6. A graph is strongly connected if and only if Gi;(z) = O for all i
and j. .



216 C. V. RAMAMOORTHY

Proor. Gi;(z) # O for all ¢ and j if and only if 7 can reach j and vice versa,

TuporeM 7. A graph is strongly connected if and only if there exists a node ;
such that Gii(z) ¥ 0 and all nodes are essential with respect to Gii(2).

Proor. (a) Assume (ii(z) 5% 0 and all nodes are cssential with respect to
G.i(2). Starting at any node k, any other node m is reachable from & via node ;,

(b) Assume a graph is strongly connected. Therefore, node ¢ can be reached iy
one or more steps. Therefore, Gii(z) # 0. In addition, all nodes can reach node ;
and can be reached from it. Hence, all nodes are irredundant with respect to Giil2).

The last theorem is important, since it provides a test for strong connectivity.
In addition, it can be used to find the largest subgraph that is strongly connected
and that includes a given node (Section 9). The size of the graph is measured here
by the number of nodes.

(:;(2) s 0if and only if node j is reachable from node %, which can be tested quite
simply in the first part of the test in Section 6. The essential nodes again are de-
termined by the algorithm in Section 9; thus the identification of the largest strongly
connected subgraph that includes a particular node is quite simple. Theorem §
below immediately follows from Theorem 7.

THEOREM 8. A directed graph is strongly connected if and only <f, for every node i,
G.i(2) # 0 and all other nodes are essential with respect to G (2).

9. Test for Strong Connectivity

Since, by Theorem 6, a directed graph is stongly connected if and only if, for
any node ¢ in it, G::(2) # 0 and all nodes are essential with respect to Gii(z),
one can pick any node 7 in the graph and apply the well-formation test from node
1 to itself. If node ¢ is reachable from itself, and if all other nodes are essential
with respect to G:.(z), then the diagram is strongly connected. In a nonstrongly
connected graph, one can use the above test repetitively with respect to different
nodes and determine all M.8.C. subgraphs. All M..8.C. subgraphs are nonintersect-
ing; i.e., they do not have any common nodes. An equivalent test of strong connec-
tivity of a graph will be to find the reachability matrix R; if every element in it is a
one, then it is strongly connected.

Example. Let us determine an M.S.C. subgraph that includes node 6 for the
given graph of Figure 2b from its connectivity matrix. The starting and end node
in this case is 6. Hereafter redundant nodes 12 and 13 are excluded from considera-
tion. The connectivity matrix will be an 11 X 11 matrix.

By the well-formation test of Section 6, steps 1~4 yield the reachability vector of
node 6, Re = (01110100101). Since the 6th column of R; is a one, the
presence of a loop on the node is confirmed. Performing steps 5 and 6 with respect
to end node 6, we get Tg = (11101111110). Thus the set of essential nodes
with respect to Gie(2) is given by the columns corresponding to the ones in (R¢ 1 Ts)
= (Re N Rs"), i.e., nodes 2, 3, 6, and 9, which is also the M.S.C. subgraph contain-
ing node 6.

10. Detection of Loops on a Given Node

The first part of the test detects the presence of loops on a node. If node S is
reachable from itself in at least one step, the presence of a loop is indicated. In
that case, the reachability vector R will have a one in its Sth column.
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vt Dterminafion of Strongly Connecled (S0 Subgraphs

srep 1. Compute the reachabilisy matrix R
p2 1 any element in its main diagonal is nonzero, the presence of o fonp
the cor i“wv“hi{eélﬁ’ wui ¢ is confirmed. Utherwise, there are no loops. An equiva-
- graph i given by Mari-

v Determanalion of A Mavimal Sirongly Connected (3.8.0) Subgraphs

Atep 1. Construel the reachability matrix B for the given graph.
v 2. Construet the reaching matrix T by either taking the trangpose of R or
rrsining the reachability matris of G

Construet M = ROT = R TR The number of M.3.C. subgraphs is
s the muwmber of distinet nonzern row vectors of ML 1T M, # 0, o vector of
gwt then the nodes of the ALE.C. subgraph correspond 1o the nonzero eolumns
olf distinet nonzero row vectors are treated in a similar way, the member-
¢ of every ML can be determined, The proof of the above algorithm s

mple.  Determine all the MB.C, subgraphs for the z’*{mnmt?zim mnirix

yin Figare 2o, { MNote that nodes 12 and 13 have been excluded.) The reacha-
¥ mnatrix B oand the M matrix sre oblained using procedures in b(f{i‘é(m 8,
Bow 0111111111 s ROT = RNAR = 00000000000
1110100101 01100100100
HH()HEZ)MH 01100100100
GOOIODD000Y DOOINDOO0GT
priiiriiin 0‘(}0(}“}511()}(}
B1310100101 01100100100
Briyiiiraag ()(3(,%01%)1'1()11(3
Giritiiiiiad 0001011010
F1101060101 G1L100100100
giii1v11111 G0001011010
DODLI0000001 00010000001

The number of distinet nonzero rows, and henee the number of M, Qi C. subgraphs,
il to 3. The nodes of these M.B.C. subgraphs are {2, 3,6, 91, 15,7, 8, 10}, and
Losode 1 s not strongly conneeted

Wi Some Properties of M and R Matrices

Taronem 9. An S.C. graph hos an R matriz of all mmes.

1 the dth row {column) of R is all ones, then it can reach (can be reached from)
all pwles ‘é’,zw mi ing itself. Ry = 1 implies that there exists an M.B.C. subgraph that

1] the main diagonal elements of R are all zero, the graph is loopless.

If any row of R and its corresponding cohwmm are all ones, then the
P 44 ﬂtwii y connecied.
£"mwm« 22 The matriz M = R OV R” 48 symmetric,

Tugn ’i"fw number of M.8.C. subgraphs in g graph is given by the number
1
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TuporeM 14. My ## 0 4f and only 4f M. # 0. Thus Mi; = 0 if and only i
M: = 0 (row vector of all zeros). This implies node ¢ is not a member of g
M.S.C. subgraph.

TueorEM 15.  The graph is loop-free if and only if M = 0, or equivalently Ri; = ¢
for all <.

TueEOREM 16. M., 2 04f and only of M = M; £ 0, which tmplies ¢ and j belong
to the same M .8.C. subgraph. '

14. Reverse Graphs

The reverse of a directed graph is obtained by transposing its transmission
(econnectivity) matrix, The reaching and reachability matrices interchange their
roles. Schematically, this implies the change of direction of the directed branches of
the graph. The process of reversal leaves the loops iutact. The characteristic fune-
tion of the original graph is invariant under reversal.

TurorEM 17. For any directed graph Ggg(z) = Gs(z), where G and @ gre
generating functions of the original graph and its reverse.

Ags
A}

Ges(z) = f:fl, where A’ =1 — Tz,

Al=I"=T2=[10~T, =A"

Gse(2) = where A = [I — T¢],

Thus,

15. Unconnected Graphs

Let N = {ny,ng, -+ ,nef and M = {my,ma, --- , mz} be two sets of nodes ina
graph. N and M are said to be unconnected (disconnected, disjoint) subgraphs if no
node from N can reach a node in M, and vice versa.

TuroreM 18. The subgraphs M and N are unconnected if and only if Gua(z) =
Gum(2) = 0 forallm € M andn € N.

16. An Algorithm for Partilioning a Given Graph Into Its Unconnected Subgraphs

When a directed graph is specified by its connectivity matrix C, it is possible to
partition it into its unconnected subgraphs rapidly by the following algorithm.

Step 1. For any Ci; = 1 in the graph make C;i = 1. Call this new connectivity
matrix C’, which is a symmetric matrix. This step makes each disjoint subgraph
strongly connected within itself.

Step 2. Pick any node k. Find all the nodes that are reachable from it using the
matrix C’ and applying steps 1~4 of Section 6. Let the set of nodes be S; .

Step 3. Pick a node from the remaining nodes. Repeat step 2 above and find
another set of nodes S .
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{3
NN
@ ,, \1
L3
&
2 34 56 7 8 9 } 2 345 6 7 889
' 0001 00O0OQO0 00 01 00000
20000000 1 0O 2001 01 0010
301 1 000 0O O 301 1 00 O00O0O0
4000001 00 O 4 10000100 |
501 000000 O 501 0000010
60000000000 6 0001 00000O0
700000000 O 700000 00 0O
8000010000 8 01 001 0000
90001 0000 O 9 0001 00000
b ¢

Fia. 3a. A given graph
Fic. 3b. A given connectivity matrix = C
Fia. 3c. Modified symmetric connectivity matrix = C'

Repeat step 3 until all nodes of the graph are taken care of. Then the subsets of
nodes Sy, Sy, - - -, form subgraphs of the given graph that are mutually unconnected.

Example. Partition the directed graph shown in Figure 3a into unconnected
subgraphs. The connectivity matrix is given in Figure 3b.

Step 1. Set Cj: = Ci; = 1if Cji = 1. The matrix shown in Figure 3¢ is obtained.

Step 2. Pick node 1; all nodes strongly connected with it are (from ¢ equal to
8 = {1, 4, 6, 9. .

Step 3. Pick node 2; S = {2, 3, 5, 8.

Step 4. Pick node 7; 83 = {7}.

The given graph = {{7}, {1,4, 6,9}, (2,3, 5, 8}}, i.e., the disjoint subgraphs are
{7}, {1, 4, 6, 9}, and {2, 3, 5, 8}.

17. Entries and Exits of S.C. Subgraphs and Their Relation to Directed Cut-Sets
A directed cut-set can be defined as a set of those branches whose removal leaves
the graph in disconnected subgraphs, such that these branches have their initial
nodes in one subgraph and their terminal nodes in another, and such that no proper
subset of these branches has this property [1].
It is of interest to determine the directed cut-sets of 8.C. subgraphsin a given
graph, which translates itself to the problem of finding all the entries or exits to

M.8.C. subgraphs.
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18. Determination of Entries and Exits of M.S.C. Subgraphs

(a) Algorithm to determine the entries:

Step 1. Compute matrix M. (See Section 12.)

Step 2. Compute matrix S = M N C.

Step3. Let J = ji, ja, *+-, j- be nodes that are not members of any M.S.C,
subgraph. These correspond to all-zero rows of M. Set columns of S corresponding
to set J to zero. The residual matrix S¥ is the matrix of entries to S.C. subgraphs,
i.e., Sij = 1if the branch (3, ;) enters the M.S.C. subgraph containing j.

(b) Algorithm to determine the exits:

Step 1. Compute the matrix M.

Step 2. Compute the matrix § = M N C.

Step 3. Find set J as in step 3 in part (a). Set rows of S corresponding to nodes
J to zero. The resulting matrix $" is the matrix of exits such that S% = 1if and only
if the branch (7, j) exits from the S.C. subgraph containing node s.

ProoF OF THE ALGORITHMS., S = M N C is a matrix such that Si;; = 1 if and
only if (a) branch (7, j) exists, and (b) it either enters or exits from an M.S.C.
subgraph or it either enters or exits from nodes that are not members of any S.C.
subgraph, viz., {J}.

By setting column elements corresponding to set {J} to zero, we have selected all
branches (Z, 7) such that either nodes 7 and j are members of two different 8.C.
subgraphs, or 7 is an element of {/} and j is an element of some S.C. subgraph. This
proves the entry algorithm. The proof of the exit determination algorithm is
similar.

Ezample. In the determination of the entries and exits of all S.C. subgraphs of
the graph whose connectivity matrix is given in Figure 2, excluding nodes 12 and
13, it is found that J = {1}. Branches entering the 8.C. subgraphs are those S
whose 7’s are not elements of J = (1, 7), (5, 6), (2,4), and (8, 4).

Branches going out of 8.C. subgraphs are equal to

Siis, where ¢ {J}, or
(2,4), (8,4), and (5, 6).

19. Link Subgraphs

A Uink subgraph of an M.S.C. subgraph G, is a set of all nonstrongly connected
(N.8.C.) nodes such that there exists at least one path through them that emanates
from Gi and terminates in another M.S.C. subgraph.

In Figure 4 the subgraph containing the nodes 2, 3, 4, 5 is a link subgraph. When
the source node (the end node) is not strongly connected, it can be assumed that
there is a directed branch reaching (emanating from) it from (into) an M.8.C.
subgraph. From these principles we note that the sequential flow from the start
node to the end node goes from one M.S.C. subgraph to another either directly or
via a link subgraph.

20. Determaination of the Link Subgraphs

Step 1. Determine the set of all the N.S.C. nodes.

NSt(ép 2. Derive their reachability matrix RY> from their connectivity matrix
C 8. -,
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F16. 4. A given graph

ow

QN.S.C.= 0234559 BN.s.c:.o > 3 4 5 9RWT.
0000000 O1 000O0O0 |

2 0001 000 201 1 1 10 4
30001 1 O 3001 1 1 03
4000000 4 0001 00 |
5000000 500001 0 |

9 001 00O 900 11 I 1 1 4

a b

F16. 5a. N.S.C. connectivity matrix
Fie. 5b. RN-SC

Step 3. Make R = 1 for all 4. _

Step 4. Count the number of ones in each row. Find the row R with the
largest weight. The nonzero columns of Ri > are the nodes in the link subgraph
that starts at node 7.

Step 5. Ignore all rows corresponding to nodes selected in step 4. Find from the
remaining rows another row R; ~< with the largest row weight. Its nonzero columns
are the nodes in a link subgraph that starts at node j. Repeat step 5 until all rows
are selected in R™>C. R

The proof of this algorithm is simple. The branching paths in a link subgraph
of a given M.S.C. subgraph are given by its component N.S.C. node whose row
weight in the N.S.C. connectivity matrix exceeds one.

Ezample. Find all the link subgraphs from the connectivity matrix of Figure 4.
Using the previous tests, the N.S.C. nodes are 0, 2, 3, 4, 5, and 9. The connectivity
matrix of N.S.C. nodes is given in Figure 5a. . .

The reachability matrix R™>% (Figure 5b) is derived from € . Also, Ri:
has been made equal to 1.

C.
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Referring to Figure 5b, select row 2 of R to get the link subgraph |2, 3, 4, 3

emanating from M.S.C. subgraph {1}. Select row 9 to get the link subgraph

{3,

4, 5, 9} emanating from M.S.C. subgraph {10}. Finally, row 0 gives the linj

subgraph {0}.
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