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It is shown that a version of Mandelbrot’s monkey-at-the-typewriter model of Zipf’s inverse power law is
directly related to two classical areas in probability theory: the central limit theorem and the ‘‘broken stick’’
problem, i.e., the random division of the unit interval. The connection to the central limit theorem is proved
using a theorem on randomly indexed sums of random variables@A. Gut, Stopped Random Walks: Limit
Theorems and Applications~Springer, New York, 1987!#. This reveals an underlying log-normal structure of
pseudoword probabilities with an inverse power upper tail that clarifies a point of confusion in Mandelbrot’s
work. An explicit asymptotic formula for the slope of the log-linear rank-size law in the upper tail of this
distribution is also obtained. This formula relates to known asymptotic results concerning the random division
of the unit interval that imply a slope value approaching21 under quite general conditions. The role of
size-biased sampling in obscuring the bottom part of the distribution is explained and connections to related
work are noted.@S1063-651X~96!01007-0#

PACS number~s!: 05.40.1j, 02.50.2r, 87.10.1e

I. INTRODUCTION

Mandelbrot’s creative and influential work on Zipf’s in-
verse power law of word frequency distributions contains
two potential points of confusion. One of these concerns
what Mandelbrot@1# now acknowledges as the ‘‘linguistic
shallowness’’ of the law. The possible confusion here stems
from the fact that Mandelbrot@2# has shown that an inverse
power distribution of pseudoword frequencies can be gener-
ated from random text, although in contrast his earlier work
@3,4# aimed at information-theoretic models that might shed
light on deeper properties of language or thought. A second
point of confusion concerns Mandelbrot’s,@5, see pp. 209–
211# extended argument opposing the log-normal distribu-
tion as a model for word frequency distributions, although a
version of his random text model has a natural underlying
log-normal structure. The first issue, linguistic shallowness,
was addressed decades ago by the prominent language re-
searchers Miller and Chomsky@6,7#. It is the purpose of this
article to address the second issue, log-normal structure, by
proving the previously unrecognized—but direct—
connection between a version of Mandelbrot’s monkey-at-
the-typewriter model and a special case of Anscombe’s@8#
important generalization of the central limit theorem. We
also show that the upper tail of this log-normal structure is an
approximate inverse power law and discuss asymptotic re-
sults from the classical ‘‘broken stick’’ problem that explain
why a log-log rank-size plot of the upper tail will tend to
have a slope close to21 under quite general conditions.

The confusion on both points—linguistic shallowness and
log-normal structure—is intertwined. Mathematically ori-
ented researchers in psychology and linguistics were at first
quite interested in Mandelbrot’s use of information theory to
derive Zipf’s law, but then also realized the significance of
his derivation of an inverse power law using nothing but a
Markov random text model. Miller@6# and Miller and Chom-

sky @7# greatly clarified the situation by discussing an illus-
trative, special case of Mandelbrot’s model. Miller@6#
showed that one can straightforwardly derive a step function
approximating an inverse power law with the simplifying
assumptions ofequiprobableand independently combined
letters. He concludes with the clear words—which are im-
plied, but not stated, in the Appendix to@2#—that Zipf’s law
can be derived ‘‘without appeal to least effort, least cost,
maximal information, or any branch of the calculus of varia-
tions.’’

Physical scientists interested in Zipf’s law through Man-
delbrot’s work may be unaware of Miller’s clarification,
probably because it was published in the psychology litera-
ture. For example, Li@9# writes that ‘‘Miller did not give a
proof of his statement’’—referring to a comment by Miller
@10# that Zipf’s law could be generated by random text—and
then gives the same proof of the special equiprobable letters
case given by Miller@6# and Miller and Chomsky@7#. And
recently Mantegnaet al. @11# have come under criticism~see
@12#! for arguing that noncoding DNA sequences may be
transmitting biological information based on an analysis
which they assert shows that noncoding DNA pseudoword
frequencies conform approximately to a Zipf-like law. They
might have been less likely to make such an argument had
they been familiar with Miller’s clarification of Mandelbrot’s
results.

II. EXHIBITING LOG-NORMAL STRUCTURE

Unfortunately, Miller’s simplified model is degenerate in
the sense that it does not reveal the natural log-normal struc-
ture of word probabilities that exists for the case ofunequal
letter probabilities. For this case, Mandelbrot,@5, p. 210# did
note that the logarithmic probabilities of randomly generated
pseudowords of afixednumbern of letters will be approxi-
mately normal; however, he overlooked a stronger result,
following directly from Anscombe’s theorem on random
sums@8#, which shows that the logarithmic probabilities of
all words of n or fewer letterswill be approximately normal.*Electronic address: rkper@acm.org
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Therefore the probabilities themselves will be approximately
log-normal.

Mandelbrot’s derivation of Zipf’s law from his Markov
random text model is based on the ensemble of all the word
probabilities that can be generated by random sequences of
all possible lengths, i.e., an infinite vocabulary. For proving
the log-normal structure, our analysis will be based on a
scheme assuming~1! unequal and independent letter prob-
abilities ~i.e., we drop the Markov assumption! and ~2! a
maximum word length ofn letters, although we study as-
ymptotic behavior asn→`.

Assume an alphabet consisting ofK>2 nonspace charac-
tersL1 ,L2 ,...,LK and the space characterLK11. Let the let-
ter keys be struck independently with probabilities
a1 ,a2 ,...,aK11, where ( j51

K11aj51 and 0,aj,1 for
1< j<K11. For the purposes of proving the log-normal
structure of the word probabilities, it is necessary to assume
that aiÞaj for at least one case whereiÞ j and i , j<K.
Choose an integern and define a trial as the outcome after
n11 or fewer letters have been selected. The outcome will
result in either~a! a ‘‘word’’ consisting of n or fewer non-
space characters plus the ending space character or~b! a
‘‘nonword’’ consisting ofn11 consecutive nonspace char-
acters with no ending space character. As many trials are run
as desired, but each is limited to a maximum ofn11 char-
acters and ends when either outcome~a! or ~b! occurs.

A finite vocabulary model introduces the difficulty of the
Kn11 nonwords, which have a positive aggregate probability
of occurrence on each trial of (( j51

K aj )
n115(12aK11)

n11.
We exclude the nonwords and analyze the distributional
characteristics of the probabilities for theNn5( j50

n K j ‘‘le-
gitimate’’ words.

It simplifies matters to factor outaK11 and refer to the
resulting values asbase values. The largest base value is
always equal to 1, corresponding to the word of 0 nonspace
letters. LetBj denote the multiset~i.e., a set that can contain
repetitions of its elements! of theKj base values for each of
the words of exactlyj letters. LetUn5B0ø•••øBn be the
multiset of all base values for words from 0 ton letters. A
generic element of the multisetsBj andUn will be writtenb.
Write the ranked values ofUn asbr , wherer represents rank
from the top. Define a probability space onUn by the natural
counting measure, i.e., each elementbPUn is assigned an
atom of probability equal to 1/Nn . Denote the random vari-
able defined in this way asYn .

By this definition,Yn can be represented as the product of
a random numberRn of independent and identically distrib-
uted random variables:Yn5X1X2•••XRn

, where 0<Rn<n.
EachXi is a multinomial random variable taking on the val-
uesaj , 1< j<K, with equal probability. The caseRn50,
whenYn51, corresponds to the single 0-letter word. Since
there areKj words of exactlyj letters, the probability thatYn
will have the representationYn5X1X2•••Xj involving ex-
actly j factors isKj /Nn . Therefore, lettingP$ % be the prob-
ability of the expression inside the braces, the probability
mass function ofRn is P$Rn5 j %5Kj /Nn for j50,1,...,n.

Take logarithms~base-K logarithms prove convenient; ln
will be used for natural logarithms! to obtain logKYn
5(j51

Rn logK Xj . So logKYn is the sum of arandom numberof
independent and identically distributed random variables

with finite variance. Anscombe’s theorem@8# assures the as-
ymptotic normality of logKYn if it can be shown that the ratio
Rn/n converges in probability to a constantc.0 asn→`.
SinceP$Rn5n2 j %5Kn2 j /Nn.(K21)/Kj11, it is not dif-
ficult to show thatP$uRn/n21u< j /n%.121/Kj11. Letting
j5@An#, the largest integer inAn, and n→` proves that
Rn/n converges in probability toc51.0. Consequently,
logKYn is asymptotically normal and soYn will be approxi-
mately log-normal for sufficiently largen.

The approximate log-normality ofYn is illustrated in the
approximately linear log-normal probability plot of Fig. 1,
where we taken55, K510, and use nonspace letter prob-
abilities a1 through a10 with values 0.002 04, 0.0305,
0.0575, 0.06, 0.0668, 0.0715, 0.0837, 0.12, 0.144, and 0.148.
All the values inU5 have been generated and plotted. The
points (x,y) plotted in the graph arex5log10br and
y5F21[(Nn2r11)/(Nn11)] for 1<r<Nn , whereF21 is
the inverse of the standard normal distribution function.

III. AN INVERSE POWER UPPER TAIL
AND THE ‘‘BROKEN STICK’’ PROBLEM

Significantly, the upper tail of the distribution of base
values inUn conforms approximately to an inverse power
law, as can been seen in Fig. 2. This figure shows the same
base values previously displayed in Fig. 1 now represented
in log-log coordinates. The vertical axis represents logKbr
and the horizontal axis represents the logarithm of the asso-
ciated rank, logKr . The evident linearity of the graph over
most of the top range of base values is graphic proof of an
approximate inverse power law in this range.

Mandelbrot’s@2# combinatorial proof explains this phe-
nomenon, but his derivation does not lead to an explicit for-
mula for the slope of the linear part of this graph. We obtain
an asymptotic estimate for it here and show that it connects
up in a natural way with the ‘‘broken stick’’ problem. Con-
sider the least squares regression of logKbr onto logKr con-

FIG. 1. Log-normal probability plot of base values for the ran-
dom text model. The approximate linearity of the curve shows the
approximate log-normality of the values.
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strained to go through the origin,~0,0!5~logK1,logKb1!. This
constrained, least squares regression line can be proven to be
a very good fit in the sense that theR2 ~coefficient of deter-
mination! associated with the model approaches 1 asn→`.
~The fact that the regression line isnot a good fit for the
bottom of the distribution of base values is addressed below.!
The following calculations show that the slopeb of this line
is asymptotically equal to (( j51

K logKaj )/K.
Let m j be the mean ands j

2 the variance of the logarithms
of the Kj base values inBj . For example,m05s0

250,
m15(( j51

K logKaj )/K, and s 1
25[( j51

K ~logKaj2m1)
2]/K.

Write xn;yn whenever limn→`xn/yn51. The following re-
quired intermediate results are stated without proof.

~R1! The equationsm j5 jm1 and s j
25 js 1

2 hold for
j50,1,...,n.

~R2! The least squares line of logKbr regressed onto
logKr and constrained to pass through the origin has the
slopeb5(( r51

Nn logKbr logKr)/(r51
Nn logK

2r.
~R3! ~i! ( j51

n logK j;n logKn and ~ii ! ( j51
n logK

2 j
;n logK

2 n.
~R4! ( j51

n j aKj;naKn11/(K21) for a>0.
~R5! ~i! ( r51

Nn u logK bru;um1unKn11/(K21) and ~ii !

( r51
Nn logK

2 br;m1
2n2Kn11/(K21).

~R1! through~R4! are straightforward to prove, and~R5!
follows from ~R1! and ~R4!.

It is convenient to useubu in our calculations, and we can
obtain an asymptotic estimate of it by giving an upper and
lower bound that are asymptotically equivalent. The key in-
equalities are

1

Nn
(
r51

Nn

u logKbr u(
r51

Nn

logK r<(
r51

Nn

u logKbr u logKr

<S (
r51

Nn

logK
2br D 1/2

3S (
r51

Nn

logK
2 r D 1/2, ~1!

where the upper bound follows from the Cauchy-Schwartz
inequality and the lower follows from Chebychev’s mono-
tonic inequality@13#. The latter is applicable here because
ulogKbr u and logKr are both monotonically increasing inr .

After dividing through by( r51
Nn logK

2r in ~1!, the middle
expression in the chain of inequalities is justubu. Then, using
the asymptotic relations in~R3!–~R5!, routine calculations
show that both the upper and lower bounds ofubu are;um1u.
Consequently, forn→` we must haveubu;um1u, as well. The
inequalities of~1! are also the crux of similar manipulations
that proveR2 approaches 1 as a limit asn→`.

Empirical studies of natural language showing plots of
word frequenciesf r against their rankr in log-log coordi-
nates almost always have slopes very near21, as a glance
through Zipf’s work will show@14#. The value21 has some
significance for the slope estimateb;(( j51

K logKaj )/K of
this random text model through its connection to the classical
problem in probability theory concerned with the random
division of the unit interval. Consider the letter probabilities
a1 ,a2 ,...,aK11 as a random division of the interval@0,1#.
We represent this in the standard way. LetX1 ,X2 ,...,XK be
K independently and identically distributed random variables
defined on@0,1#. Write the corresponding order statistics as
X(1)<X(2)•••<X(K) . The interval @0,1# is subdivided into
K11 mutually exclusive and exhaustive segments by the
spacings Dj defined asD15X(1),D25X(2)2X(1),...,Dj
5X( j )2X( j21),..., DK11512X(K) . Think of the letter
probabilitiesaj as realized values of the spacingsDj .

Darling @15# has shown that for uniformly distributedXj
andK→`, ( j51

K11lnDj has the asymptotic mean2K ln K.
Blumenthal@16# has extended this result to a broader family
of nonuniform distributions. Dropping any single term, say
ln DK11, from the sum has no effect on this asymptotic re-
sult, and replacing ln with logK we see that (( j51

K logKD j )/K
must have the asymptotic mean (2K logKK)/K521. The
values ofaj used in the two figures of this paper were ob-
tained by sampling theXj from the uniform distribution on
@0,1# and computing the associated spacingsDj . For this
sample, (( j51

10 log10Dj )/10521.33, which is the slope of the
asymptotic regression line graphed in Fig. 2.

IV. THE ROLE OF SIZE-BIASED SAMPLING
AND CONCLUSION

It is clear from visual inspection of Fig. 2 that the asymp-
totic regression line with slopem1 does not fit the smallest
base values well, and this will not change asn→`. How-
ever, for the toy model defined here, the observed word fre-
quencies of an experiment would be those of a sample drawn
from a multinomial parent distribution withNn categories

FIG. 2. Log-log plot of base values by rank for the random text
model. The linear trend is evident for approximately the top half of
the data. In the random text model, observed word frequencies
would be those of a sample drawn from a multinomial distribution
with probabilities proportional to these base values. Zipf’s inverse
power law would tend to be observed because the bottom part of the
distribution ~i.e., words of low probability! would tend not to be
represented in the sample data.
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~words! with probabilities proportional to the base values
plotted in Fig. 2. The smallest probability words would tend
not to occur unless the sample size was very large. Conse-
quently, an approximate inverse power law for the observed
frequencies would be seen.The true log-normal structure of
the parent distribution would be obscured or distorted for
most practical sample sizes. In fact, Li @9# carries out a simu-
lation that demonstrates this phenomenon. One of his simu-
lations illustrates how Zipf’s law can be generated in a
sample of random text based on the independent, unequal
letter probability model with a maximum word length~see
his Fig. 2!. However, he did not recognize that the underly-
ing parent distribution is actually approximately log-
normal—not a power law. With a sufficiently large sample
size, his sample power law would have to break down as
more and more of the low-probability random word se-
quences appear.

The significance ofsize-biasedsampling in relation to this
problem and many others should be emphasized. To a re-
markable extent, what we observe are extreme, upper tail
events. We see the brightest stars, not the dimmest; we
record seismic occurrences only when they are sufficiently
large to be detected by our instruments; we collect and report
statistics on the heights of the tallest buildings, the areas of
the world’s largest lakes, and so on. In each of these cases,
there is an obviousvisibility bias in observing events that
makes it difficult to assess the nature of the underlying par-
ent distribution from which the sample was drawn. Statisti-

cians @17# have remarked that this pervasive issue needs
greater recognition and have developed analytic methods for
attacking it.

We conclude with very brief pointers to related topics.
Empirical, approximately log-normal distributions character-
ized by upper tails with inverse power laws have been noted
numerous times in many phenomena, as discussed, for ex-
ample, by Montroll and Shlesinger@18,19# and Perline@20#.
Empirical and theoretical arguments in support of log-normal
models of word frequency distributions are given by Herdan
@21#. ~The similarity between our construction ofUn and the
derivation of a hybrid lognormal-Pareto distribution in
@18,19# should be noted.! The fractal character of the setUn
~as n→`! seems intuitively evident, and the expression
(( j51

K logKaj )/K pops up as what Evertsz and Mandelbrot
@22# call the ‘‘most probable Ho¨lder exponent’’ of a multi-
fractal. Finally, Gut @8# has shown the importance of
Anscombe’s generalization of the central limit theorem for
more realistic models of random walks, and we suggest that
it can be extended in many ways for applications to a great
variety of phenomena.
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