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for useful discussions. We thank Robert Calhoun for technical assistance.



Contents

Chapter 1. Introduction 1

Chapter 2. Discrete Simulation 3
2.1. What Is Simulation? 3
2.2. About Random Numbers 4
2.3. Simulating Discrete Distributions and Sampling from Combinatorial

Sets 5
2.4. Randomly Ordered Decks Of Cards: Random Permutations 7
2.5. Random Colorings 8
2.6. Von Neumann unbiasing* 9
2.7. Problems 10
2.8. Notes 11

Chapter 3. Introduction to Finite Markov Chains 13
3.1. Finite Markov Chains 13
3.2. Simulating a Finite Markov Chain 16
3.3. Irreducibility and Aperiodicity 18
3.4. Random Walks on Graphs 19
3.5. Stationary Distributions 20
3.5.1. Definition 20
3.5.2. Hitting and first return times 21
3.5.3. Existence of a stationary distribution 21
3.5.4. Uniqueness of the stationary distribution 23
3.6. Reversibility and time reversals 23
3.7. Classifying the States of a Markov Chain* 24
3.8. Problems 24
3.9. Notes 28

Chapter 4. Some Interesting Markov Chains 29
4.1. Gambler’s Ruin 29
4.2. Coupon Collecting 30
4.3. Urn Models 31
4.3.1. The Bernoulli-Laplace model 31
4.3.2. The Ehrenfest urn model and the hypercube 32
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CHAPTER 1

Introduction

Consider the following (inefficient) method of shuffling a stack of cards: a card
is taken from the top of the deck and placed at a randomly chosen location in the
deck. This is known as the top-to-random shuffle, not surprisingly.

We want a mathematical model for this type of process. Suppose that several of
these shuffles have been performed in succession, each time changing the compo-
sition of the deck a little bit. After the next shuffle, the cards will be in some order,
and this ordering will depend only on the order of the cards now and the outcome
of the next shuffle. This property is important because to describe the evolution
of the deck, we need only specify the probability of moving from one ordering of
cards to any other ordering of cards in one shuffle.

The proper model for this card shuffling procedure is called a Markov chain.
From any arrangements of cards, it is possible to get to any other by a sequence
of top-to-random shuffles. We may suspect that after many of these moves, the
deck should become randomly arranged. Indeed, this is the motivation for per-
forming any kind of shuffle, as we are attempting to randomize the deck. Here, by
“randomly arranged,” we mean that each arrangement of the cards is equally likely.

Under mild regularity conditions, a Markov chain converges to a unique sta-
tionary distribution. Traditional undergraduate treatments of Markov chains ex-
amine fixed chains as time goes to infinity. In the past two decades, a different
asymptotic analysis has emerged. For a Markov chain with a large state space, we
care about the finite number of steps needed to get the distribution reasonably close
to its limit. This number is known as the mixing time of the chain. There are now
many methods for determining its behavior as a function of the geometry and size
of the state space.

Aldous and Diaconis (1986) presented the concept of mixing times to a wider
audience, using card shuffling as a central example. Since then, both the field and
its interactions with computer science and statistical physics have grown tremen-
dously. Many of these exciting developments can and should be communicated to
undergraduates. We hope to present this beautiful and relevant material in an acces-
sible way. This book is intended for a second undergraduate course in probability
and emphasizes current developments in the rigorous analysis of convergence time
for Markov chains.

The course will expose students to both key mathematical and probabilistic
concepts and the interactions of probability with other disciplines. The models we
analyze will largely be “particle systems” arising in statistical physics. Interest-
ingly, many of these models exhibit phase transitions: the behavior of the model
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2 1. INTRODUCTION

may change abruptly as a parameter describing local interactions passes through
a critical value. For our particle systems, the mixing time may vary from “fast”
(polynomial in the instance size n) to “slow” (exponential in n) as interaction pa-
rameters pass through a critical value.



CHAPTER 2

Discrete Simulation
{ch:simtechs}

2.1. What Is Simulation?

Let X be a random unbiased bit:

P{X = 0} = P{X = 1} =
1
2
. (2.1)

If we assign the value 0 to the “heads” side of a coin, and the value 1 to the “tails”
side, we can generate a bit which has the same distribution as X by tossing the coin.

Suppose now the bit is biased, so that

P{X = 1} =
1
4
, P{X = 0} =

3
4
. (2.2) {Eq:BiasedBit}

Again using only our (fair) coin toss, we are able to easily generate a bit with this
distribution: Toss the coin twice and assign the value 1 to the result “two heads”,
and the value 0 to all other possible outcomes. Since the coin cannot remember
the result of the first toss when it is tossed for the second time, the tosses are
independent and the probability of two heads is 1/4 (ideally, assuming the coin
is perfectly symmetric.) This is a recipe for generating observations of a random
variable which has the same distribution (2.2) as X. This is called a simulation of
X.

Consider the random variable Un which is uniform on the finite set{
0,

1
2n ,

2
2n , . . . ,

2n − 1
2n

}
. (2.3) {Eq:Dyadics}

This random variable is a discrete approximation to the uniform distribution on
[0, 1]. If our only resource is the humble fair coin, we are still able to simulate
Un: toss the coin n times to generate independent unbiased bits X1, X2, . . . , Xn, and
output the value

n∑
i=1

Xi

2i . (2.4) {Eq:RandomSum}

This random variables has the uniform distribution on the set in (2.3). (See Exercise
2.9.)

Consequently, a sequence of independent and unbiased bits can be used to sim-
ulate a random variable whose distribution is close to uniform on [0, 1]. A sufficient
number of bits should be used to ensure that the error in the approximation is small
enough for any needed application. A computer can store a real number only to
finite precision, so if the value of the simulated variable is to be placed in computer
memory, it will be rounded to some finite decimal approximation. With this in

3



4 2. DISCRETE SIMULATION

mind, the discrete variable in (2.4) will be just as useful as a variable uniform on
the interval of real numbers [0, 1].

2.2. About Random Numbers
{Sec:PseudoRandom}

Because most computer languages provide a built-in capability for simulating
random numbers chosen independently from the uniform density on the unit in-
terval [0, 1], we will assume throughout this book that there is a ready source of
independent uniform-[0, 1] random variables.

This assumption requires some further discussion, however. Since computers
are finitary machines and can work with numbers of only finite precision, it is in
fact impossible for a computer to generate a continuous random variable. Not to
worry: a discrete random variable which is uniform on, for example, the set in (2.3)
is a very good approximation to the uniform distribution on [0, 1], at least when n
is large.

A more serious issue is that computers do not produce truly random numbers
at all. Instead, they use deterministic algorithms, called pseudorandom number
generators, to produce sequences of numbers that appear random. There are many
tests which identify features which are unlikely to occur in a sequence of inde-
pendent and identically distributed random variables. If a sequence produced by a
pseudorandom number generator can pass a battery of these tests, it is considered
an appropriate substitute for random numbers.

One technique for generating pseudorandom numbers is a linear congruential
sequence (LCS). Let x0 be an integer seed value. Given that xn−1 has been gener-
ated, let

xn = (axn−1 + b) mod m. (2.5)

Here a, b and m are fixed constants. Clearly, this produces integers in {0, 1, . . . ,m};
if a number in [0, 1] is desired, divide by m.

The properties of (x0, x1, x2, . . .) vary greatly depending on choices of a, b and
m, and there is a great deal of art and science behind making judicious choices for
the parameters. For example, if a = 0, the sequence doesn’t look random at all!

Any linear congruential sequence is eventually periodic. (Exercise 2.8.) The
period of a LCS can be much less than m, the longest possible value.

The goal of any method for generating pseudorandom numbers is to generate
output which is difficult to distinguish from truly random numbers using statistical
methods. It is an interesting question whether a given pseudorandom number gen-
erator is good. We will not enter into this issue here, but the reader should be aware
that the “random” numbers produced by today’s computers are not in fact random,
and sometimes this can lead to inaccurate simulations. For an excellent discussion
of these issues, see Knuth (1997).
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2.3. Simulating Discrete Distributions and Sampling from Combinatorial
Sets

A Poisson random variable X with mean λ has mass function

p(k) :=
e−λλk

k!
.

X can be simulated using a uniform random variable U as follows: subdivide the
unit interval into adjacent subintervals I1, I2, . . . where the length of Ik is p(k).
Because the chance a random point in [0, 1] falls in Ik is p(k), the index X for
which U ∈ IX is a Poisson random variable with mean λ.

In principle, any discrete random variable can be simulated from a uniform
random variable using this method. To be concrete, suppose X takes on the values
a1, . . . , aN with probabilities p1, p2, . . . , pN . Let Fk :=

∑k
j=1 p j (and F0 := 0), and

define φ : [0, 1]→ {a1, . . . , aN} by

φ(u) := ak if Fk−1 < u ≤ Fk. (2.6) {Eq:DiscreteSim}

If X = φ(U), where U is uniform on [0, 1], then P{X = ak} = pk. (Exercise 2.9.)
Much of this book is concerned with the problem of simulating discrete distri-

butions. This may seem odd, as we just described an algorithm for simulating any
discrete distribution!

One obstacle is that this recipe requires that the probabilities (p1, . . . , pN) are
known exactly, while in many applications these are only known up to constant
multiple. This is a more common situation than the reader may imagine, and in
fact many of the central examples treated in this book fall into this category.

A random element of a finite set is called a uniform sample if it is equally likely
to be any of the members of the set. Many applications require uniform samples
from combinatorial sets whose sizes are not known.

{Example:SAW}

E 2.1 (Self-avoiding walks). A self-avoiding walk in Z2 of length n
is a sequence (z0, z1, . . . , zn) such that z0 = (0, 0), |zi − zi−1| = 1, and zi , z j
for i , j. See figure 2.1 for an example of length 6. Let Ξn be the collection
of all self-avoiding walks of length n. Chemical and physical structures such as
molecules and polymers are often modeled as “random” self-avoiding walks, that
is, as uniform samples from Ξn.

Unfortunately, a formula for the size of Ξn is not known. Although the size can
be calculated by computer for a fixed n if n is small enough, for sufficiently large
n this is not possible. Nonetheless, we still desire (a practical) method for sam-
pling uniformly from Ξn. We present a Markov chain in Example 4.23 whose state
space is the set of all self-avoiding walks of a given length and whose stationary
distribution is uniform.

A nearest-neighbor path 0 = v0, . . . , vn is non-reversing if vk , vk−2 for k =
2, . . . , n. It is simple to generate a non-reversing path recursively. First choose v1
uniformly at random from {(0, 1), (1, 0), (0,−1), (−1, 0)}. Given that v0, . . . , vk−1 is
a non-reversing path, choose vk uniformly from the three sites in Z2 at distance 1
from vk−1 but different from vk−2.
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F 2.1. A self-avoiding path
fig:SAW

Let Ξnr
n be the set of non-reversing nearest-neighbor paths of length n. The

above procedure generates a uniform random sample from Ξnr
n . (Exercise 2.10.)

Exercise 2.11 implies that if we try generating random non-reversing paths
until we get a self-avoiding path, the expected number of trials required grows
exponentially in the length of the paths.

Many problems are defined for a family of structures indexed by instance size.
For example, we desire an algorithm for generating uniform samples from self-
avoiding paths of length n, for each n. The efficiency of solutions is measured
by the growth of run-time as a function of instance size. If the run-time grows
exponentially in instance size, the algorithm is considered impractical.

81 2 3 4 5 6 7

F 2.2. A configuration of the hard-core gas model with n =
8. Colored circles correspond to occupied sites.

{Xmple:1dHC}
E 2.2 (One dimensional hard-core gas). The hard-core gas models the

random distribution of particles under the restriction that the centers of any two
particles are at least a fixed distance apart. In one dimension, the state space Ωn is
functions ω : {1, 2, . . . , n} → {0, 1} satisfying ω( j)ω( j+ 1) = 0 for j = 1, . . . , n− 1.
We think of {1, 2, . . . , n} as sites arranged linearly, and ω as describing a config-
uration of particles on {1, . . . , n}. The condition ω( j) = 1 indicates that site j is
occupied by a particle. The constraint ω( j)ω( j+1) = 0 means that no two adjacent
sites are both occupied by particles.

Exercise 2.12 suggests an algorithm for inductively generating a random sam-
ple from Ωn: Suppose you are able to generate random samples from Ωk for
k ≤ n − 1. With probability fn−1/ fn+1, put a 1 at location n, a 0 at location
n − 1, and then generate a random element of Ωn−2 to fill out the configuration
at {1, 2, . . . , n − 2}. With the remaining probability fn/ fn+1, put a 0 at location n
and fill out the positions {1, 2, . . . , n − 1} with a random element of Ωn−1.

{Example:DominoTilings}
E 2.3 (Domino Tilings). A domino tile is a 2×1 or 1×2 rectangle, and,

informally speaking, a domino tiling of a region is a partition of the region into
domino tiles, disjoint except along their boundaries.

Consider the set Tn,m of all domino tilings of an n × m checker board. See
figure 2.3 for an element ofT6,6. Random domino tilings arise in statistical physics,
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F 2.3. A domino tiling of a 6 × 6 checkerboard.
Fig:Domino

and it was a physicist who first completed the daunting combinatorial calculation
of the size of Tn,m. (See Notes.)

Although the size N of Tn,m is known, the simulation method using (2.6) is not
necessarily the best. The elements of Tn,m must be enumerated so that when an
integer in {1, . . . ,N} is selected, the corresponding tiling can be generated.

To summarize, we would like methods for picking at random from large combi-
natorial sets which do not require enumerating the set or even knowing how many
elements are in the set. We will see later that Markov chain Monte Carlo often
provides such a method.

2.4. Randomly Ordered Decks Of Cards: Random Permutations
{Sec:SimPerms}

If a game is to be played from a deck of cards, fairness usually requires that the
deck is completely random. That is, each of the 52! arrangements of the 52 cards
should be equally likely.

An arrangements of cards in a particular order is an example of a permutation.
Mathematically, a permutation on [n] := {1, 2, . . . , n} is a mapping from [n] to itself
which is both one-to-one and onto. The collection Sn of all permutations on [n] is
called the symmetric group.

We describe a simple algorithm for generating a random permutation. Let σ0
be the identity permutation. For k = 1, 2, . . . , n − 1 inductively construct σk from
σk−1 by swapping the cards at location k and Jk, where Jk is an integer picked
uniformly in [k, n], independently of previous picks. More precisely,

σk(k) := σk−1(Jk), σk(Jk) := σk−1(k), and σk(i) := σk−1(i) for i , k, Jk.

The kth position refers to the image of k under the permutation. At the kth
stage, a particular choice for the kth position has probability (n − k + 1)−1. Conse-
quently, the probability of generating a particular permutation is

∏n
k=1(n−k+1)−1 =

(n!)−1.
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This method requires n steps, which is quite efficient. However, this is not
how any human being shuffles cards! For a standard deck of playing cards, it
would require 52 steps, many more operations than the usual handful of standard
shuffles. We will discuss several methods of shuffling cards later, which generate
approximate random permutations on n things. Our interest will be in how many
shuffles need to be applied before the approximation to a random permutation is
good.

{Exercise:RandomFunction}
E 2.1. Suppose that a random function σ : [n] → [n] is created by

letting σ(i) be a random element of [n], independently for each i = 1, . . . , n. If the
resulting functionσ is a permutation, stop, and otherwise begin anew by generating
a fresh random function. Stirling’s Formula (see Feller (1968, Chapter II, Equation
9.1) or Graham et al. (1994, Table 452)) gives the approximation

n! ∼
√

2πnn+1/2e−n, (2.7){Eq:Stirling}

where an ∼ bn means that limn→∞ an/bn = 1. Use (2.7) to approximate the ex-
pected number of times a random function must be generated before a permutation
results.

{Exercise:BadPermMethod}

E 2.2. Consider the following variation of our method for generating
random permutations: let σ0 be the identity permutation. For k = 1, 2, . . . , n induc-
tively construct σk from σk−1 by swapping the cards at location k and Jk, where Jk
is an integer picked uniformly in [1, n], independently of previous picks.

For which values of n does this variant procedure yield a uniform random
permutation?

2.5. Random Colorings

A proper k-coloring of [n] := {1, 2, . . . , n} is a map h : [n]→ [k] such that

h( j) , h( j + 1) for j = 1, 2, . . . , n − 1.

The reader should imagine each of {1, 2, . . . , k} representing a color, and a proper
k-coloring as an assignment of colors to {1, 2, . . . , n} such that no two consecutive
integers share the same color. Let Ωk,n be the set of all proper k-colorings of [n].

We can generate a random element H from Ωk,n using a simple recursive pro-
cedure.

{Exercise:RandomCol}

E 2.3. Let H(1) be a uniform sample from [k]. Given that H(i) has been
assigned for i = 1, . . . , j − 1, choose H( j) uniformly from [k] \ {H( j − 1)}. Repeat
for j = 2, . . . , n. Show that H is a uniform sample from Ωk,n.

Suppose now we want to color the nodes of the grid in figure 2.4 so that no pair
of nodes separated by a single link have the same color, and we want to do this so
that each proper coloring has the same chance. We describe an approximate way
to do this in chapter 14.
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F 2.4. How can we generate a proper coloring of the nodes
uniformly at random?

Fig:PlaneGrid

2.6. Von Neumann unbiasing*

Suppose you have available an i.i.d. vector of biased bits, X1, X2, . . . , Xn. That
is, each Xk is a {0, 1}-valued random variable, with P{Xk = 1} = p , 1/2. Further-
more, suppose that we do not know the value of p. Can we convert this random
vector into a (possibly shorter) random vector of independent and unbiased bits?

This problem was considered by Von Neumann (1951) in his work on early
computers. He described the following procedure: divide the original sequence of
bits into pairs, discard pairs having the same value, and for each discordant pair 01
or 10, take the first bit. An example of this procedure is shown in figure 2.5; the
extracted bits are shown in the second row.

original bits 00 11 01 01 10 00 10 10 11 10 01 · · ·

extracted unbiased · · 0 0 1 · 1 1 · 1 0 · · ·

discarded bits 0 1 · · · 0 · · 1 · · · · ·

XORed bits 0 0 1 1 1 0 1 1 0 1 1 · · ·

(2.8)

F 2.5. Extracting unbiased bits from biased bit stream.
Fig:VN

Note that the number L of unbiased bits produced from (X1, . . . , Xn) is itself a
random variable. We denote by (Y1, . . . ,YL) the vector of extracted bits.

{Exercise:VonNeumann}
E 2.4. Show that applying Von Neumann’s procedure to the vector

(X1, . . . , Xn) produces a vector (Y1, . . . ,YL) of random length L, which conditioned
on L = m is uniformly distributed on {0, 1}m.

How efficient is this method? For any algorithm for extracting random bits, let
N be the number of fair bits generated using the first n of the original bits. The
efficiency is measured by the asymptotic rate

r(p) = lim sup
n→∞

E(N)
n

. (2.9)

Let q := 1 − p.
{Exercise:VNEfficiency}

E 2.5. Show that for the Von Neumann algorithm, E(N) = npq, and the
rate is r(p) = pq.



10 2. DISCRETE SIMULATION

The Von Neumann algorithm throws out many of the original bits, which in
fact contain some unexploited randomness. By converting the discarded 00s and
11s to 0s and 1s, we obtain a new vector Z = (Z1,Z2, . . . ,Zn/2−L) of bits. In the
example shown in figure 2.5, these bits are shown on the third line.

E 2.6. Prove: conditioned on L = m, the two vectors Y = (Y1, . . . ,YL)
and Z = (Z1, . . . ,Zn/2−L) are independent, and the bits Z1, . . . ,Zn/2−L are indepen-
dent.

The probability that Zi = 1 is p′ = p2/(p2 + q2). We can apply the algorithm
again on the independent bits Z. Given that L = m, Exercise 2.5 implies that the
expected number of fair bits we can extract from Z is

(length of Z)p′q′ =
(n
2
− m

) ( p2

p2 + q2

) (
q2

p2 + q2

)
. (2.10)

By Exercise 2.5 again, the expected value of L is npq. Hence the expected number
of extracted bits is

n[(1/2) − pq]
(

p2

p2 + q2

) (
q2

p2 + q2

)
. (2.11)

Adding these bits to the original extracted bits yields a rate for the modified algo-
rithm of

pq + [(1/2) − pq]
(

p2

p2 + q2

) (
q2

p2 + q2

)
. (2.12)

A third source of bits is obtained by taking the XOR of adjacent pairs. (The
XOR of two bits a and b is 0 if and only if a = b.) Call this sequence U =

(U1, . . . ,Un/2). This is given on the fourth row in figure 2.5. It turns out that U is
independent of Y and Z, and applying the algorithm on U yields independent and
unbiased bits. It should be noted, however, that given L = m, the bits in U are not
independent, as it contains exactly m 1’s.

Note that when the Von Neumann algorithm is applied to the sequence Z of
discarded bits and to U, it creates a new sequence of discarded bits. The algorithm
can be applied again to this sequence, improving the extraction rate.

Indeed, this can be continued indefinitely. This idea is developed in Peres
(1992).

2.7. Problems
{Exer:CoinSimUnif}

E 2.7. Check that the random variable in (2.4) has the uniform distri-
bution on the set in (2.3).

{Exer:LCSPeriodic}
E 2.8. Show that if f : {1, . . . ,m} → {1, . . . ,m} is any function, and

xn = f (xn−1) for all n, then there is an integer k such that xn = xn+k eventually.
That is, the sequence is eventually periodic.

{Exer:UnifDiscDim}
E 2.9. Let U be uniform on [0, 1], and let X be the random variable

φ(U), where φ is defined as in (2.6). Show that X takes on the value ak with
probability pk.
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{Exercise:NonRev}
E 2.10. A nearest-neighbor path 0 = v0, . . . , vn is non-reversing if vk ,

vk−2 for k = 2, . . . , n. It is simple to generate a non-reversing path recursively.
First choose v1 uniformly at random from {(0, 1), (1, 0), (0,−1), (−1, 0)}. Given
that v0, . . . , vk−1 is a non-reversing path, choose vk uniformly from the three sites
in Z2 at distance 1 from vk−1 but different from vk−2.

Let Ξnr
n be the set of non-reversing nearest-neighbor paths of length n. Show

that the above procedure generates a uniform random sample from Ξnr
n .

{Exer:SAW}
E 2.11. One way to generate a random self-avoiding path is to generate

non-reversing paths until a self-avoiding path is obtained.
(a) Let cn,4 be the number of paths in Z2 which do not contain loops of length 4

at indices i ≡ 0 mod 4. More exactly, these are paths (0, 0) = v0, v1, . . . , vn so
that v4i , v4(i−1) for i = 1, . . . , n/4. Show that

cn,4 ≤
[
4(33) − 8

] [
34 − 6

]dn/4e−1
(2.13) {Eq:NoLoops}

(b) Conclude that the probability that a random non-reversing path of length n is
self-avoiding is bounded above by e−αn for some fixed α > 0.

{Exer:HC}
E 2.12. Recall that the Fibonacci numbers are defined by f0 := f1 := 1,

and fn := fn−1 + fn−2 for n ≥ 1. Show that the number of configurations in the
one-dimensional hard-core model with n sites is fn+1.

{Exer:HC2}
E 2.13. Show that the algorithm described in Example 2.2 generates a

uniform sample from Ωn.

2.8. Notes

Counting the number of self-avoiding paths is an unsolved problem. For more
on this topic, see Madras and Slade (1993). Randall and Sinclair (2000) give an al-
gorithm for approximately sampling from the uniform distribution on these walks.

For more examples of sets enumerated by the Fibonacci numbers, see Stanley
(1986, Chapter 1, Exercise 14) and Graham et al. (1994, Section 6.6). Benjamin
and Quinn (2003) use combinatorial interpretations to prove Fibonacci identities
(and many other things).

On random numbers, Von Neumann offers the following:
“Any one who considers arithmetical methods of producing ran-
dom digits is, of course, in a state of sin.” (von Neumann, 1951)

Iterating the Von Neumann algorithm asymptotically achieves the optimal ex-
traction rate of −p log2 p − (1 − p) log2(1 − p), the entropy of a biased random bit
(Peres, 1992). Earlier, a different optimal algorithm was given by Elias (1972),
although the iterative algorithm has some computational advantages.

Kasteleyn’s formula (Kasteleyn, 1961) for the number of tilings of a n×m grid,
when n and m are even (Example 2.3), is

2nm
n/2∏
i=1

m/2∏
j=1

(
cos2 π j

n + 1
+ cos2 πk

m + 1

)
. (2.14)
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Thorp (1965) proposed Exercise 2.2 as an “Elementary Problem” in the Amer-
ican Mathematical Monthly.



CHAPTER 3

Introduction to Finite Markov Chains
{Chapters:MC}

3.1. Finite Markov Chains {Sec:FinMarkChains}

A Markov chain is a system which moves among the elements of a finite set
Ω in the following manner: when at x ∈ Ω, the next position is chosen according
to a fixed probability distribution P(x, ·). More precisely, a sequence of random
variables (X0, X1, . . .) is a Markov chain with state space Ω and transition matrix
P if for each y ∈ Ω,

P {Xt+1 = y | X0 = x0, X1 = x1, . . . , Xt−1 = xt−1, Xt = x} = P(x, y) (3.1) {Eq:MarkovDef}

for all x0, x1, . . . , xt−1, x ∈ Ω such that

P{X0 = x0, X1 = x1, . . . , Xt−1 = xt−1, Xt = x} > 0.

Here P is an |Ω| × |Ω| matrix whose xth row is the distribution P(x, ·). Thus P is
stochastic, that is, its entries are all non-negative and∑

y∈Ω

P(x, y) = 1 for all x ∈ Ω.

Equation (3.1), often called the Markov property, means that the conditional prob-
ability of proceeding from state x to state y is the same, no matter what sequence
x0, x1, . . . , xt−1 of states precedes the current state x. This is exactly why the matrix
P suffices to describe the transitions.

{xmpl:frog}

E 3.1. A certain frog lives in a pond with two lily pads, east and west.
A long time ago, he found two coins at the bottom of the pond and brought one up
to each lily pad. First thing every morning, the frog decides whether to jump by

F 3.1.
fig:frog
A randomly jumping frog. Whenever he tosses heads,

he jumps to the other lily pad.

13
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tossing the current lily pad’s coin. If the coin lands heads up, he jumps to the other
lily pad. If the coin lands tails, he remains where he is.

Let Ω = {e,w}, and let (X0, X1, . . . ) ∈ ΩZ
+

be the sequence of lily pads occu-
pied by the frog on Sunday, Monday,. . .. Given the source of the coins, we should
not assume that they are fair! Say the coin on the east pad has probability p of
landing heads up, while the coin on the west pad has probability q of landing heads
up. The frog’s rules for jumping imply that if we set

P =
(

P(e, e) P(e,w)
P(w, e) P(w,w)

)
=

(
1 − p p

q 1 − q

)
, (3.2){Eq:FrogMatrix}

then (X0, X1, . . . ) is a Markov chain with transition matrix P. Note that the first
row of P is the conditional distribution of Xt+1, given that Xt = e, while the second
row is the conditional distribution of Xt+1, given that Xt = w.

If the frog spends Sunday on the east pad, then when he awakens Monday, he
has probability p of moving to the west pad and probability 1− p of staying on the
east pad. That is,

P{X1 = e | X0 = e} = 1 − p, P{X1 = w | X0 = e} = p. (3.3){eq:time1}

What happens Tuesday? The reader should check that, by conditioning on X1,

P{X2 = e | X0 = e} = (1 − p)(1 − p) + pq. (3.4){eq:time2a}

While we could keep writing out formulas like (3.4), there is a more systematic
approach. Let’s store our distribution information in a row vector,

µt := (P{Xt = e | X0 = e}, P{Xt = w | X0 = e}) .

Our assumption that the frog starts on the east pad can now be written as µ0 = (1, 0),
while (3.3) becomes µ1 = µ0P.

Multiplying by P on the right updates the distribution by another step:

µt = µt−1P for all t ≥ 1. (3.5){eq:frogmatmult}

Indeed, for any initial distribution µ0,

µt = µ0Pt for all t ≥ 0. (3.6){eq:froghiordtrans}

How does the distribution µt behave in the long term? Figure 3.2 suggests that
µt has a limit π (whose value depends on p and q) as t → ∞. Any such limit
distribution π must satisfy

π = πP,
which implies (after a little algebra)

π(e) =
q

p + q
, π(w) =

p
p + q

.

If we define, for t ≥ 0,
∆t = µt(e) −

q
p + q

,

then the sequence (∆t) satisfies (c.f. Exercise 3.2)

∆t+1 = (1 − p − q)∆t. (3.7){Eq:FrogRate}
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F 3.2.
fig:limits
The probability of being on the east pad (started from

the east pad) plotted versus time for (a) p = q = 1/2 (b) p = 0.2,
q = 0.1 (c) p = 0.95, q = 0.7.

We conclude that when 0 < p < 1 and 0 < q < 1,

lim
t→∞

µt(e) =
q

p + q
and lim

t→∞
µt(w) =

p
p + q

(3.8){eq:froglimit}

for any initial distribution µ0.

The traditional theory of finite Markov chains is concerned with convergence
statements of the type seen in (3.32), that is, with the rate of convergence as t → ∞
for a fixed chain. Note that 1 − p − q is an eigenvalue of the frog’s matrix P, and
from (3.31) this eigenvalue determines the rate of convergence in (3.32):

∆t = (1 − p − q)t∆0.

As we explained in the Introduction, our focus in this book is quite different.
We are studying families of chains, and we are interested in the asymptotics as the
state space grows—not just as time grows.

Fortunately, the computations we just did for a 2-state chain generalize to any
finite Markov chain: the distribution at time t can be found by matrix multiplica-
tion. Let (X0, X1, . . . ) be a finite Markov chain with state space Ω and transition
matrix P, and let the row vector µt be the distribution of Xt:

µt(x) = P{Xt = x} for all x ∈ Ω.

By conditioning on the possible predecessors of the (t + 1)-st state, we see that for
all y ∈ Ω

µt+1(y) =
∑
x∈Ω

P{Xt = x}P(x, y) =
∑
x∈Ω

µt(x)P(x, y).

Rewriting this in vector form gives

µt+1 = µtP for t ≥ 0

and hence
µt = µ0Pt for t ≥ 0. (3.9) {Eq.Aftertsteps}
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Since we will often consider Markov chains with the same transition matrix
but different starting distributions, we introduce the notation Pµ and Eµ for proba-
bilities and expectations given that µ0 = µ. Most often, the initial distribution will
be concentrated at a single definite starting state, x; we denote this distribution by
δx:

δx(y) =

1 y = x,
0 y , x.

We write simply Px and Ex for Pδx and Eδx , respectively.
Using these definitions and (3.9) shows that

Px{Xt = y} = (δxPt)(y) = Pt(x, y).

That is, the probability of moving in t steps from x to y is given by the (x, y)-th
entry of Pt. (We call these entries the t-step transition probabilities.)

R. The way we constructed the matrix P has forced us to treat distribu-
tions as row vectors. In general, if the chain has distribution µ at time t, then it has
distribution µP at time t + 1. Multiplying a row vector by P on the right takes you
from today’s distribution to tomorrow’s distribution.

What if we multiply a column vector f by P on the left? Think of f as function
on the state spaceΩ (for the frog of Example 3.1, f (x) might be the average number
of flies the frog catches per day at lily pad x). Consider the x-th entry of the
resulting vector:

P f (x) =
∑

y

P(x, y) f (y) =
∑

y

f (y)Px{X1 = y} = Ex( f (X1)).

That is, the x-th entry of P f tells us the expected value of the function f at tomor-
row’s state, given that we are at state x today. Multiplying by column vector by P
on the left takes us from a function to the expected value of that function tomorrow.

3.2. Simulating a Finite Markov Chain
{Sec:SimMC}

In Chapter 2, we discussed methods for sampling from various interesting dis-
tributions on finite sets, given the ability to produce certain simple types of random
variables—coin flips, or uniform samples from the unit interval, say. It is natural to
ask: how can we sample from the distribution of a Markov chain which has been
run for many steps?

One possible method would be to explicitly compute the vector µ0Pt, then use
one of the methods from Chapter 2 to sample from this distribution. If our state
space is even moderately large, this method will be extremely inefficient, since
it requires us to raise the |Ω| × |Ω| matrix P to a large power. There is an even
more elementary problem, however: for many chains we study (and would like to
simulate), we don’t even know |Ω|!

Fortunately, generating a trajectory of a Markov chain can be done one step at
a time. Let’s look at a simple example.



3.2. SIMULATING A FINITE MARKOV CHAIN 17

F 3.3.
Fig:Cycle
Random walk on Z10 is periodic, since every step

goes from an even state to an odd state, or vice-versa. Random
walk on Z9 is aperiodic.

{Xmpl:Ncycle}
E 3.2 (Random walk on the n-cycle). Let Ω = Zn = {0, 1, . . . , n − 1},

the set of remainders modulo n. Consider the transition matrix

P( j, k) =


1/2 if k ≡ j + 1 (mod n),
1/2 if k ≡ j − 1 (mod n),
0 otherwise.

(3.10)

The associated Markov chain (Xt) is called random walk on the n-cycle. The states
can be envisioned as equally spaced dots arranged in a circle (see Figure 3.3). At
each time, the walker must either go one step clockwise, or one step counterclock-
wise.

That description in words translates neatly into a simulation method. Let
Z1,Z2, . . . be a sequence of independent and identically distributed random vari-
ables, each of which is equally likely to be +1 or −1. Let’s require that our walker
starts at 0, i.e. that X0 = 0. Then for each t ≥ 0 set

Xt+1 = Xt + Zt mod n. (3.11) {eq:randmapxmpl}

The resulting sequence of random variables X0, X1, . . . is clearly a Markov chain
with transition matrix P.

More generally, we define a random mapping representation of a Markov chain
on state space Ω with transition matrix P to consist of a function f : Ω × Λ → Ω
such that for some sequence of independent and identically distributed random
variables Z0,Z1, . . . , each of which takes values in the set Λ,

X0, f (X0,Z0), f (X1,Z1), f (X2,Z2), . . .

is a Markov chain with transition matrix P. The function f takes in the current
state and some new random information, and from that information determines the
next state of the chain. More explicitly, if we are at state x ∈ Ω at time t, and our
auxiliary randomness-generating device outputs z ∈ Λ, then the next state of the
chain will be f (x, z):

(Xt = x and Zt = z)⇒ Xt+1 = f (x, z).
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In the example above, Λ = {1,−1}, each Zi is uniform on Λ, and

f (x, z) = x + z mod n.

P 3.3. Every transition matrix on a finite state space has a random
mapping representation.

P. Let P be the transition matrix of a Markov chain with state space Ω =
{x1, . . . , xn}. Take Λ = [0, 1]; our auxiliary random variables Z1,Z2, . . . will be
uniformly chosen in this interval. To determine the function f : Ω × Λ → Ω, we
use the method of Exercise 2.9 to simulate the discrete distributions P(x j, ·). More
specifically, set F j,k =

∑k
i=1 P(x j, xi) and define

f (x j, z) := xk when F j,k−1 < z ≤ F j,k.

�

Note that, unlike transition matrices, random mapping representations are far
from unique. For instance, replacing the f (x, z) in the previous proof with f (x, 1−z)
yields another representation.

Random mapping representations are crucial for simulating large chains. They
can also be the most convenient way to describe a chain. We will often give rules
for how a chain proceeds from state to state, using some “extra” randomness to
determine where to go next; such discussions are implicit random mapping repre-
sentations. Finally, random mapping representations provide a way to coordinate
two (or more) chain trajectories, as we can simply use the same sequence of aux-
iliary random variables to determine updates. This technique will be exploited in
Chapter 6, on coupling.

3.3. Irreducibility and Aperiodicity
{Sec:IrrAper}

We now make note of two simple properties possessed by most interesting
chains. Both will turn out to be necessary for the Convergence Theorem (Theorem
5.6) to be true.

A chain P is called irreducible if for any two states x, y ∈ Ω, there exists
an integer t (possibly depending on x and y) such that Pt(x, y) > 0. This means
that it is possible to get from any state to any other state using only transitions of
positive probability. We will generally assume that the chains under discussion are
irreducible. (Checking that specific chains are irreducible can be quite interesting;
see, for instance, Sections 4.4 and 4.7. See Section 3.7 for a discussion of all the
ways in which a Markov chain can fail to be irreducible.)

The chain P will be called aperiodic if gcd{t : Pt(x, x) > 0} = 1 for all x ∈ Ω.
If a chain is not aperiodic, we call it periodic.

If P is aperiodic and irreducible, then there is an integer r so that Pr(x, y) > 0
for all x, y, ∈ Ω. (See Exercise 3.3.)

According to our definition, a chain in which all paths from x0 to x0 have even
length is periodic. In such a chain, the states lying on x0–x0 paths can be split
into those at even distance from x0 and those at odd distance from x0; all allowed
transitions go from one class to the other. No matter how many steps the chain
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started at x0 takes, the distribution at a particular instant will never be spread over
all the states. The best we can hope for is that the distribution will alternate between
being nearly uniform on the “even” states, and nearly uniform on the “odd” states.
Of course, if gcd{t : Pt(x, x) > 0} > 2, the situation can be even worse!

Fortunately, a simple modification can repair periodicity problems. Given an
arbitrary transition matrix P, let Q = I+P

2 (here I is the |Ω| × |Ω| identity matrix).
(One can imagine simulating Q as follows: at each time step, flip a fair coin. If
it comes up heads, take a step in P; if tails, then stay at the current state.) Since
Q(x, x) > 0 for all x ∈ Ω, the transition matrix Q is aperiodic. We call Q a lazy
version of P. It will often be convenient to analyze lazy versions of chains.

{Xmpl:NcyclePer}
E 3.4 (The n-cycle, revisited). Recall random walk on the n-cycle, de-

fined in Example 3.2. For every n ≥ 1, random walk on the n-cycle is irreducible.
Random walk on any even-length cycle is periodic, since gcd{t : Pt(x, x) >

0} = 2 (see Figure 3.3). Random walk on an odd-length cycle is aperiodic.
The transition matrix for lazy random walk on the n-cycle is

Q( j, k) =


1/4 if k ≡ j + 1 (mod n),
1/2 if k ≡ j (mod n),
1/4 if k ≡ j − 1 (mod n),
0 otherwise.

(3.12)

Lazy random walk on the n-cycle is both irreducible and aperiodic for every n.

3.4. Random Walks on Graphs
{Sec:RWG}

The random walk on the n-cycle, shown in Figure 3.3, is a simple case of an
important type of Markov chain.

A graph G = (V, E) consists of a vertex set V and an edge set E, where the
elements of E are unordered pairs of vertices: E ⊂ {{x, y} : x, y ∈ V, x , y}. We can
think of V as a set of dots, where two dots x and y are joined by a line if and only if
{x, y} is an element of the edge set. When {x, y} ∈ E we write x ∼ y and say that y
is a neighbor of x (and also that x is a neighbor of y.) The degree deg(x) of a vertex
x is the number of neighbors of x.

Given a graph G = (V, E), we can define simple random walk on G to be the
Markov chain with state space V and transition matrix

P(x, y) =

 1
deg(x) if y ∼ x,

0 otherwise.
(3.13) {Eq:SRW}

That is to say, when the chain is at vertex x, it examines all the neighbors of x,
picks one uniformly at random, and moves to the chosen vertex.

E 3.5. Consider the graph G shown in Figure 3.4. The transition matrix
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F 3.4.
fig:SRW
An example of a graph with vertex set {1, 2, 3, 4, 5}

and 6 edges.

of simple random walk on G is

P =



0 1
2

1
2 0 0

1
3 0 1

3
1
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1
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1
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4
1
4

0 1
2

1
2 0 0

0 0 1 0 0


.

We will say much, much more about random walks on graphs throughout this
book—but especially in Chapter 10.

3.5. Stationary Distributions
{Sec:StatDist}

3.5.1. Definition. We saw in Example 3.1 that a distribution π onΩ satisfying

π = πP (3.14){Eq:StationaryEq}

can have another interesting property: in that case, π was the long-term limiting
distribution of the chain. We call a probability π satisfying (3.14) a stationary
distribution of the Markov chain. Clearly, if π is a stationary distribution and µ0 = π
(i.e. the chain is started in a stationary distribution), then µt = π for all t ≥ 0.

Note that we can also write (3.14) elementwise: an equivalent formulation is

π(y) =
∑
x∈Ω

π(x)P(x, y) for all y ∈ Ω. (3.15){Eq:StationarySystem}

{Example:PiForSRW}
E 3.6. Consider simple random walk on a graph G = (V, E). For any

vertex y ∈ V , ∑
x∈V

deg(x)P(x, y) =
∑
x∼y

deg(x)
deg(x)

= deg(y). (3.16)

To get a probability, we simply normalize by
∑

y∈V deg(y) = 2|E| (a fact you should
check). We conclude that

π(y) =
deg(y)
2|E|

for all y ∈ Ω,

the probability measure proportional to the degrees, is always a stationary distribu-
tion for the walk. For the graph in Figure 3.4,

π =
(

2
12 ,

3
12 ,

4
12 ,

2
12 ,

1
12

)
.
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If G has the property that every vertex has the same degree d, we call G d-regular.
In this case 2|E| = d|V | and the uniform distribution π(y) = 1/|V | for every y ∈ V is
stationary.

Our goal for the rest of this chapter and the next is to prove a general yet pre-
cise version of the statement that “finite Markov chains converge to their stationary
distributions.” In this section we show that, under mild restrictions, stationary dis-
tributions exist and are unique. Our strategy of building a candidate distribution,
then verifying that it has the necessary properties, may seem cumbersome. How-
ever, the tools we construct here will be applied many other places.

{Sec:FirstReturn}
3.5.2. Hitting and first return times. Throughout this section, we assume

that the Markov chain X0, X1, . . . under discussion has finite state space Ω and
transition matrix P. For x ∈ Ω, define the hitting time for x to be

τx := min{t ≥ 0 : Xt = x},

the first time at which the chain visits state x. For situations where only a visit to x
at a positive time will do, we also define

τ+x := min{t ≥ 1 : Xt = x}.

When X0 = x, we call τ+x the first return time.
{lem:firstreturnintegrable}

L 3.7. For any states x and y of an irreducible aperiodic chain, Ex(τ+y ) <
∞.

P. By Exercise 3.3, there exists an r such that every entry of Pr is positive.
Let ε = minz,w∈Ω Pr(z,w) be its smallest entry. No matter the value of Xt, the
probability of hitting state y at time t+r is at least ε. Thus, for k ≥ 0, the probability
that the chain has not arrived at y by time kr is no larger than the probability that k
independent trials, each with success probability ε, all fail:

Px{τ
+
y > kr} ≤ Px{Xr , y, X2r , y, . . . , Xkr , y} ≤ (1 − ε)k. (3.17) {eq:everyrth}

See Exercise 3.12 to complete the proof. �

3.5.3. Existence of a stationary distribution. The Convergence Theorem
(Theorem 5.6 below) implies that the “long-term” fractions of time a finite aperi-
odic Markov chain spends in each state coincide with the chain’s stationary distri-
bution. We, however, have not yet demonstrated that stationary distributions exist!
To build a candidate distribution, we consider a sojourn of the chain from some
arbitrary state z back to z. Since visits to z break up the trajectory of the chain
into identically distributed segments, it should not be surprising that the average
fraction of time per segment spent in each state y coincides with the “long-term”
fraction of time spent in y.

{Prop:PiExists}
P 3.8. Let P be the transition matrix of an irreducible Markov chain.

Then there exists a probability distribution π on Ω such that π = πP.
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P. Let z ∈ Ω be an arbitrary state of the Markov chain. We will closely
examine the time the chain spends, on average, at each state in between visits to z.
Hence define

π̃(y) := Ez(number of visits to y before returning to z)

=

∞∑
t=0

Pz{Xt = y, τ+z > t}.
(3.18) {eq:pitildedefn}

By Exercise 3.13, π̃(y) < ∞ for all y ∈ Ω. Let’s try checking whether π̃ is stationary,
starting from the definition:

∑
x∈Ω

π̃(x)P(x, y) =
∑
x∈Ω

∞∑
t=0

Pz{Xt = x, τ+z > t}P(x, y). (3.19){eq:tildesum}

Now reverse the order of summation in (3.19). After doing so, we can use the
Markov property to compute the sum over x. Essentially we are shifting by one
the time slots checked, while at the same time shifting the state checked for by one
step of the chain—from x to y:

∞∑
t=0

∑
x∈Ω

Pz{Xt = x, τ+z ≥ t + 1}P(x, y) =
∞∑

t=0

Pz{Xt+1 = y, τ+z ≥ t + 1} (3.20)

=

∞∑
t=1

Pz{Xt = y, τ+z ≥ t}. (3.21){eq:almostthere}

The expression in (3.21) is very similar to (3.18), so we’re almost done. In fact,

∞∑
t=1

Pz{Xt = y, τ+z ≥ t} = π̃(y) − Pz{X0 = y, τ+z > 0} +
∞∑

t=1

Pz{Xt = y, τ+z = t} (3.22)

= π̃(y) − Pz{X0 = y} + Pz{Xτ+z = y}. (3.23){eq:negligibledifference}

Now consider two cases:

y = z: Since X0 = z and Xτ+z = z, the two last terms of (3.23) are both 1, and
they cancel each other out.

y , z: Here both terms are 0.

Finally, to get a probability measure, we normalize by
∑

x π̃(x) = Ez(τ+z ):

π(x) =
π̃(x)

Ez(τ+z )
satisfies π = πP. (3.24){Eq:pi}

�

R. The computation at the heart of the proof of Proposition 3.8 can be
generalized. The argument we give above works whenever X0 = z is a fixed state
and the stopping time τ satisfies both Pz{τ < ∞} = 1 and Pz{τ = z} = 1.
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{Sec:StatUnique}
3.5.4. Uniqueness of the stationary distribution. Earlier this chapter we

pointed out the difference between multiplying a row vector by P on the right and
a column vector by P on the left: the former advances a distribution by one step
of the chain, while the latter gives the expectation of a function on states, one step
of the chain later. We call distributions invariant under right multiplication by P
stationary. What about functions that are invariant under left multiplication?

Call a function h : Ω→ R harmonic at x if

h(x) =
∑
y∈Ω

P(x, y)h(y). (3.25) {Eq:HarmonicDefn}

A function is harmonic on D ⊂ Ω if it is harmonic at every state x ∈ D. If h is
regarded as a column vector, then a function which is harmonic on all ofΩ satisfies
the matrix equation Ph = h.

{Lem:Liouville}
L 3.9. A function h which is harmonic at every point of Ω is constant.

P. Since Ω is finite, there must be a state x0 such that h(x0) = M is maxi-
mal. If for some state z such that P(x0, z) > 0 we have h(z) < M, then

h(x0) = P(x0, z)h(z) +
∑
y,z

P(x0, y)h(y) < M, (3.26)

a contradiction. It follows that h(z) = M for all states z such that P(x0, z) > 0.
For any y ∈ Ω, irreducibility implies that there is a sequence x0, x1, . . . , xn = y

with P(xi, xi+1) > 0. Repeating the argument above tells us that h(y) = h(xn−1) =
· · · = h(x0) = M. Thus h is constant. �

{Cor:StatDistUnique}
C 3.10. Let P be the transition matrix of an irreducible Markov chain.

There exists a unique probability distribution π satisfying π = πP.

P. While proving Proposition 3.8, we constructed one such measure. Lemma 3.9
implies that the kernel of P − I has dimension 1, so the column rank of P − I is
|Ω|−1. The row rank equals column rank (equals rank), so the row-vector equation
ν = νP also has a one-dimensional space of solutions. This space contains only
one vector whose entries sum to 1. �

R. Another proof of Corollary 3.10 follows from the Convergence The-
orem (Theorem 5.6, proved below).

3.6. Reversibility and time reversals
{Sec:Reversibility}

Suppose a probability π on Ω satisfies

π(x)P(x, y) = π(y)P(y, x). (3.27) {Eq:DetailedBalance}

Exercise 3.22 asks you to check that π is then stationary for P. Furthermore, when
(3.27) holds,

π(x0)P(x0, x1) · · · P(xn−1, xn) = π(xn)P(xn, xn−1) · · · P(x1, x0). (3.28) {Eq:Reversed}

We can rewrite (3.28) in the following suggestive form:

Pπ{X0 = x0, . . . , Xn = xn} = Pπ{X0 = xn, X1 = xn−1, . . . , Xn = x0}, (3.29) {Eq:Reversed2}
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In words: when a chain satisfying (3.27) is run in stationarity, the distribution of
finite segments of trajectory is the same no matter whether we run time backwards
or forwards. For this reason, a chain satisfying (3.27) is called reversible. The
equations (3.27) are called the detailed balance equations.

The time-reversal of a Markov chain with transition matrix P and stationary
distribution π is the chain with matrix

P̂(x, y) :=
π(y)P(y, x)

π(x)
. (3.30){Eq:ReversedMatrix}

Exercise 7.6 shows that the terminology “time-reversal” is reasonable. (Note
that when a chain is reversible, as defined in Section 3.6, then P̂ = P.)

3.7. Classifying the States of a Markov Chain*
{sec:classification}

We will occasionally need to study chains which are not irreducible—see, for
instance, Sections 4.1, 4.2 and 4.3.3. In this section we describe a way to clas-
sify the states of a Markov chain; this classification clarifies what can occur when
irreducibility fails.

Let P be the transition matrix of a Markov chain on a finite state space Ω.
Given x, y ∈ Ω, we say that x sees y, and write x → y, if there exists an r > 0 such
that

Pr(x, y) > 0. That is, x sees y if it’s possible for a trajectory of the chain to
proceed from x to y. We say that x communicates with y, and write x ↔ y, if and
only if x→ y and y→ x.

The equivalence classes under↔ are called communication classes. For x ∈ Ω,
let [x] denote the communication class of x.

E 3.11. When P is irreducible, all the states of the chain lie in a single
communication class.

E 3.12. When a communication class consists of a single state z ∈ Ω, it
follows that P(z, z) = 1 and we call z an absorbing state. Once a trajectory arrives
at z, it is “absorbed” there and can never leave.

It follows from Exercise 3.24(c) that every chain trajectory follows a weakly in-
creasing path in the partial order on communication classes. Once the chain arrives
in a class that is maximal in this order, it stays there forever. See Exercise 18.8,
which connects this structure to the concepts of recurrence and transience defined
in Chapter 18.

3.8. Problems
{Exer:frogstate}

E 3.1. Can you tell what time of day is shown in Figure 3.1? What are
the frog’s plans? [S]

{ex:froglimit}
E 3.2. Consider the jumping frog chain of Example 3.1, whose transi-

tion matrix is given in (3.2). Assume that our frog begins hopping from an arbitrary
distribution µ0 on {e,w}.
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(a) Define, for t ≥ 0,

∆t = µt(e) −
q

p + q
.

Show that
∆t+1 = (1 − p − q)∆t. (3.31) {Eq:FrogRate}

(b) Conclude that when 0 < p < 1 and 0 < q < 1,

lim
t→∞

µt(e) =
q

p + q
and lim

t→∞
µt(w) =

p
p + q

(3.32) {eq:froglimit}

for any initial distribution µ0.
{Exer:Aperiodic}

E 3.3. Show that when P is aperiodic and irreducible, there exists an
integer r such that Pr(x, y) > 0 for all x, y ∈ Ω.

{ex:oddcycle}
E 3.4. Let P be the transition matrix of random walk on the n-cycle,

where n is odd. Find the smallest value of t such that Pt(x, y) > 0 for all states x
and y.

{Exer:Connected}
E 3.5. A graph G is connected when any two vertices x and y of G can

be connected by a path x = x0, x1, . . . , xk = y of vertices such that xi ∼ xi+1, for
0 ≤ i ≤ k − 1. Show that random walk on G is irreducible if and only if G is
connected.

{Exer:TreeTFAE}

E 3.6. We define a graph to be a tree if it is connected, but contains no
cycles. Prove that the following statements about a graph T with n vertices and m
edges are equivalent:
(a) T is a tree.
(b) T is connected and m = n − 1.
(c) T has no cycles and m = n − 1.

{Exer:TreeBasics}
E 3.7. Let T be a tree.

(a) Prove that T contains a leaf, that is, a vertex of degree 1.
(b) Prove that between any two vertices in T there is a unique path.

{Exer:Tree3ColIrr}
E 3.8. Let T be a tree. Show that the graph whose vertices are proper

3-colorings of T , and whose edges are pairs of colorings which differ at only a
single vertex, is connected. [S]

{Exer:PermParity}
E 3.9. Consider the following natural (if apparently slow) method of

shuffling cards: at each point in time, a pair of distinct cards is chosen, and the
positions of those two cards are switched. Mathematically, this corresponds to the
following Markov chain: make the state space Ω = S n, the set of all permutations
of [n], and set

P(σ1, σ2) =

1/
(
n
2

)
σ2 = σ1(i j) for some transposition (i j),

0 otherwise.

(a) Show that this Markov chain is irreducible, but periodic.
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1 2 3 4

5 6 7 8

9 10 11 12

13 15 14

F 3.5.
Fig:fifteen
The “fifteen puzzle”.

(b) Modify the shuffling technique so that the two cards to be exchanged are cho-
sen independently and uniformly at random (and if the same card is chosen
twice, nothing is done to the deck). Compute the transition probabilities for
the modified shuffle, and show that it is both irreducible and aperiodic.

{Exer:fifteen}
E 3.10. The long-notorious Sam Loyd “fifteen puzzle” is shown in Fig-

ure 3.5. It consists of 15 tiles, numbered with the values 1 through 15, sitting in a
4 by 4 grid; one space is left empty. The tiles are in order, except that tiles 14 and
15 have been switched. The only allowed moves are to slide a tile adjacent to the
empty space into the empty space.

Is it possible, using only legal moves, to switch the positions of tiles 14 and
15, while leaving the rest of the tiles fixed?
(a) Show that the answer is “no.”
(b) Describe the set of all configurations of tiles that can be reached using only

legal moves.
[S]

{Exer:SymmTransMat}
E 3.11. Let P be a transition matrix satisfying P(x, y) = P(y, x) for all

states x, y ∈ Ω. Show that the uniform distribution on Ω is stationary for P.
{Exer:FirstReturnIntegrable}

E 3.12.
(a) Prove that if Y is a positive integer-valued random variable, then E(Y) =∑

t≥0 P{Y > t}.
(b) Use (a) and (3.17) to finish the proof of Lemma 3.7.

[S]
{Exer:RetTimeIrr}

E 3.13. Prove that if P is irreducible (but not necessarily aperiodic),
then Ex(τ+y ) < ∞. [S]

{Exer:TwoStepsRev}
E 3.14. Let P be a transition matrix which is reversible with respect to

the probability distribution π on Ω. Show that the transition matrix P2 correspond-
ing to two steps of the chain is also reversible with respect to π. [S]

{Exer:StatDistPos}
E 3.15. Let π be a stationary distribution for an irreducible transition

matrix P. Prove that π(x) > 0 for all x ∈ Ω.

E 3.16. Check carefully that equation (3.18) is true.
{ex:periodicstatdist}

E 3.17. Let P be the transition matrix of a chain and let Q = I+P
2 .
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(a) Show that for any distribution µ on Ω, µ = µP if and only if µ = µQ.
(b) Show that P has a unique stationary distribution if and only if Q does.

{Exer:BolzWeierStatDist}
E 3.18. Here we outline another proof, more analytic, of the existence

of stationary distributions. Let P be the transition matrix of a Markov chain on
state space Ω. For an arbitrary initial distribution µ on Ω and n > 0, define the
distribution νn by

νn =
1
n

(
µ + µP + · · · + µPn−1

)
.

(a) Show that for any x ∈ Ω and n > 0,

|νnP(x) − νn(x)| ≤
2
n
.

(b) Show that there exists a subsequence (νnk )k≥0 such that limk →∞ vnk (x) exists
for every x ∈ X.

(c) For x ∈ Ω, define ν(x) = limk →∞ vnk (x). Show that ν is a stationary distribution
for P.

[S]

E 3.19. Let P be the transition matrix of a Markov chain with state
space X. Let ∆ ⊂ X be a subset of the state space, and assume h : Ω → R is a
function harmonic at all states x < ∆.

Prove that if h(y) = maxx∈Ω h(x), then y ∈ ∆. (Note: this is a discrete version
of a maximum principle.)

{Exer:RetTime}
E 3.20. Show that for any state x of an irreducible chain, π(x) = 1

Ex(τ+x ) .

E 3.21. Check that for any graph G, the simple random walk on G
defined by (3.13) is reversible.

{Exer:RevImpliesStat}
E 3.22. Show that when π satisfies (3.27), then π also satisfies (3.14),

i.e. π is stationary for P.

The following exercises concern the material in Section 3.7.
{Exer:ClassEquiv}

E 3.23. Show that↔ is an equivalence relation on Ω.
{Exer:ClassPartialOrder}

E 3.24. The relation “sees” can be lifted to communication classes by
defining [x]→ [y] if and only if x→ y.
(a) Show that→ is a well-defined relation on the communication classes.
(b) Show that→ is a partial order on communication classes.
(c) Show that if, in some trajectory (Xt) of the underlying Markov chain, Xr = x

and Xs = y, where r < s, then [x]→ [y].

R. It is certainly possible for the partial order constructed in Exercise 3.24(b)
above to be trivial, in the sense that no class can see any other! In this case the un-
derlying Markov chain consists of non-interacting sets of mutually communicating
states; any trajectory is confined to a single communication class.
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3.9. Notes

The right-hand side of (3.1) does not depend on t either. We take this as part
of the definition of a Markov chain; be warned that other authors sometimes single
this out as a special case, which they call time homogeneous. (This simply means
that the transition matrix is the same at each step of the chain. It is possible to give
a more general definition in which the transition matrix depends on t. We will not
consider such chains in these notes.)

Aldous and Fill (in progress, Chapter 2, Proposition 4) present a version of the
key computation for Proposition 3.8 which requires only that the chain be started
in the same distribution as the stopping time ends. We have essentially followed
their proof.

The standard approach to demonstrating that irreducible aperiodic Markov
chains have unique stationary distributions is through the Perron-Frobenius the-
orem. See, for instance, Karlin and Taylor (1975) or Seneta (2006).

http://www.stat.berkeley.edu/~aldous/RWG/book.html


CHAPTER 4

Some Interesting Markov Chains

{Ch:Classic}
Here we present several basic and important examples of Markov chains. Each

chain results from a situation that occurs often in other problems, and the results
we prove in this chapter will be used in many places throughout the book.

This is also the only chapter in the book where the central chains are not always
irreducible. Indeed, two of our examples, gambler’s ruin and coupon collecting,
both have absorbing states (for each we examine closely how long it takes to be
absorbed).

4.1. Gambler’s Ruin
{Sec:Gambler}

Consider a gambler betting on the outcome of a sequence of independent fair
coin tosses. If the coin comes up heads, she adds one dollar to her purse; if the coin
lands tails, she loses one dollar. If she ever reaches a fortune of n dollars, she will
stop playing. If her purse is ever empty, then she must stop betting.

This situation can be modeled by a random walk on a path with vertices {0, 1, . . . , n}.
At all interior vertices, the walk is equally likely to go up by 1 or down by 1. Once
it arrives at 0 or n, however, it stays forever. In the language of Section 3.7, the
states 0 and n are absorbing.

There are two questions that immediately come to mind: how long will it take
for the gambler to arrive at one of the two possible fates? And what are the proba-
bilities of the two possibilities?

{Prop:Gambler}
P 4.1. Assume that a gambler making fair unit bets on coin flips will

abandon the game when his fortune falls to 0 or rises to n. Let Xt be gambler’s
fortune at time t and let τ be the time required to be absorbed at one of 0 or n.
Assume that X0 = k, where 0 ≤ k ≤ n. Then:

Ek(τ) = k(n − k), (4.1) {Eq:GRExpTime}

Pk{Xτ = n} = k/n. (4.2) {Eq:GRProb}

n0 1 2

F 4.1. How long until the walker reaches either 0 or n? And
what is the probability of each?

Fig:GamblersRuin

29
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P. To solve for the value Ek(τ) for a specific k, it is easiest to consider the
problem of finding the values Ek(τ) for all k = 0, 1, . . . , n. To this end, write fk
for the expected time Ek(τ) started at position k. Clearly, f0 = fn = 0; the walk is
started at one of the absorbing states. For 1 ≤ k ≤ n − 1, it’s true that

fk =
1
2

(1 + fk+1) +
1
2

(1 + fk−1) (4.3){Eq:GRR}

Why? When the first step of the walk increases the gambler’s fortune, then the
conditional expectation of τ is 1 plus the expected additional time needed. The
expected additional time needed is fk+1, because the walk is now at position k + 1.
Parallel reasoning applies when the gambler’s fortune first decreases.

Exercise 4.1 asks you to solve this system of equations, completing the proof
of Equation 4.1.

Equation 4.2 is even simpler. Again we try to solve for all the values at once.
Let pk be the probability that the gambler reaches a fortune of n before ruin, given
that she starts with k dollars. Then p0 = 0 and pn = 1, while

pk =
1
2

pk−1 +
1
2

pk+1, for 1 ≤ k ≤ n − 1. (4.4){Eq:GamblerResult}

Why? If the gambler is at one end or the other, she stays there—the outcome never
changes. If she’s in between, then the result of the next bet is equally likely to
increase her fortune by 1, or decrease it by 1.

Clearly the values pk must be evenly spaced between 0 and 1, and thus pk =

k/n. �

R. See Chapter 10 for powerful generalizations of the simple methods
we have just applied.

4.2. Coupon Collecting
{Sec:CouponCollecting}

A card company issues baseball cards, each featuring a single player. There
are n players total, and a collector desires a complete set. We suppose each card
he acquires is equally likely to be each of the n players. How many cards must he
obtain so that his collection contains all n players?

It may not be obvious why this is a Markov chain. Let Xt denote the number
of different players represented among the collector’s first t cards. Clearly X0 = 0.
When the collector has cards of k different types, there are n − k types missing. Of
the n possibilities for his next card, only n − k will expand his collection. Hence

P{Xt+1 = k + 1 | Xt = k} =
n − k

n
,

and

P{Xt+1 = k | Xt = k} =
k
n
.

Every trajectory of this chain is non-decreasing. Once the chain arrives at state n
(corresponding to a complete collection), it is absorbed there. We are interested in
the number of steps required to reach the absorbing state.



4.3. URN MODELS 31

{Prop:CouponExpected}
P 4.2. Consider a collector attempting to collect a complete set of

cards. Assume that each new card is chosen uniformly and independently from the
set of n possible types, and let τ be the (random) number of cards collected when
the set first contains every type. Then

E(τ) = n
n∑

k=1

1
k
.

P. The expectation E(τ) can be computed by writing τ as a sum of geo-
metric random variables. Let τk be the total number of cards accumulated when
the collection first contains k distinct players. Then

τ = τn = τ1 + (τ2 − τ1) + · · · + (τn − τn−1). (4.5)

Furthermore, τk − τk−1 is a geometric random variable with success probability
(n− k+1)/n: after collecting τk−1 cards, n− k+1 of the n players are missing from
the collection. Each subsequent card drawn has the same probability (n − k − 1)/n
of being a player not already collected, until such a card is finally drawn. Thus
E(τk − τk−1) = n/(n − k + 1) and

E(τ) =
n∑

k=1

E(τk − τk−1) = n
n∑

k=1

1
n − k + 1

= n
n∑

k=1

1
k
. (4.6) {Eq:CCExp}

�

While Proposition 4.2 is simple and vivid—you should not forget the argument!—
we will generally need to know more in about the distribution of τ in future applica-
tions. Recall that

∑n
k=1

1
k ≈ log n (see Exercises 4.5 for more detail). The following

estimate says that T is unlikely to be much larger than its expected value.
{Prop:CouponTail}

P 4.3. Let τ be a coupon collector random variable, as in Proposi-
tion 4.2. Then for any c > 0

P{τ > n log n + cn} ≤ e−c.

P. Let Ai be the event that the ith player does not appear among the first
n log n + cn cards drawn. Then

P{τ > n log n + cn} = P
 n⋃

i=1

Ai

 ≤ n∑
i=1

P(Ai)

=

n∑
i=1

(
1 −

1
n

)n log n+cn

≤ n exp
(
−

n log n + cn
n

)
= e−c. (4.7) {Eq:CouponTail}

�

4.3. Urn Models
{Sec:Urns}{Sec:BLUrn}

4.3.1. The Bernoulli-Laplace model.
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{Sec:Ehrenfest}
4.3.2. The Ehrenfest urn model and the hypercube. Suppose n balls are

distributed among two urns, I and II. At each move, a ball is selected at random
and transferred from its current urn to the other urn. If (Xt) is the number of balls
in urn I at time t, then the transition matrix for (Xt) is

P( j, k) =


n− j

n if k = j + 1,
j
n if k = j − 1,
0 otherwise.

(4.8){Eq:EhrenTM}

Thus, the chain lives on Ω = {0, 1, 2, . . . , n}, moving by ±1 on each move, and
biased towards the middle of the interval.

Exercise 4.6 asks you to check that the stationary distribution is binomial with
parameters n and 1/2.

The Ehrenfest urn is a projection of the random walk on the n-dimensional hy-
percube. The n-dimensional hypercube is the graph which has vertex set {0, 1}n and
has edges connecting vectors which differ in exactly one coordinate. See Figure 4.2
for an illustration of the 3-dimensional hypercube.

000 100

010 110

001 101

011 111

F 4.2. The 3-dimensional hypercube.
Fig:HypercubeA

The simple random walk on {0, 1}n moves from a vertex (x1, x2, . . . , xn) by
choosing a coordinate j ∈ {1, 2, . . . , n} uniformly at random, and setting the new
state equal to (x1, . . . , 1 − x j, . . . , xn). That is, the bit at the chosen coordinate is
flipped.

It will be convenient to often consider instead the lazy random walker. This
walker remains at its current position with probability 1/2, and moves as above
with probability 1/2. This chain can be realized by choosing a coordinate uni-
formly at random and refreshing the bit at this coordinate by replacing it with an
unbiased random bit independent of everything.

Define the Hamming weight W(x) of a vector x = (x1, . . . , xn) ∈ {0, 1}n as the
number of coordinates with value 1:

W(x) =
n∑

j=1

x j. (4.9){Eq:HammingDefn}

Let (Xt) be the simple random walk on {0, 1}n, and let Wt = W(Xt) be the
Hamming weight of the walker at time t.
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When Wt = j, the weight increments by a unit amount when one of the n − j
coordinates with value 0 is selected. Likewise, when one of the j coordinates with
value 1 is selected, the weight decrements by one unit. From this it is clear that
(Wt) is a Markov chain with transition probabilities given by (4.8).

{Sec:Polya}
4.3.3. The Pólya urn model. Consider the following process, known as Pólya’s

urn. Start with an urn containing two balls, one black and one white. From this
point on, proceed by choosing a ball at random from those already in the urn; re-
turn the chosen ball to the urn and add another ball of the same color. If there are
j black balls in the urn after k balls have been added (so that there are k + 2 balls
total in the urn), then the probability another black ball is added is j/(k + 2). The
sequence of ordered pairs listing the numbers of black and white balls is a Markov
chain with state space {1, 2, . . .}2.

{Lem:PUUniform}
L 4.4. Let Bk be the number of black balls in Pólya’s urn after the addi-

tion of k balls. The distribution of Bk is uniform on {1, 2, . . . , k + 1}.

P. Let U0,U1, . . . ,Un be independent and identically distributed random
variables, each uniformly distributed on the interval [0, 1]. Let Lk be the number
of U1,U2, . . . ,Uk which lie to the left of U0.

The event {Lk = j− 1, Lk+1 = j} occurs if and only if U0 is the ( j+ 1)st small-
est and Uk+1 is one of the j smallest among {U0,U1, . . . ,Uk+1}. There are j(k!)
orderings of {U0,U1, . . . ,Uk+1} making up this event; since all (k + 2)! orderings
are equally likely,

P{Lk = j − 1, Lk+1 = j} =
j(k!)

(k + 2)!
=

j
(k + 2)(k + 1)

. (4.10) {Eq:JointLk}

Clearly P{Lk = j − 1} = 1/(k + 1), which with (4.10) shows that

P{Lk+1 = j | Lk = j − 1} =
j

k + 2
. (4.11) {Eq:Lk1}

Since Lk+1 ∈ { j − 1, j} given Lk = j − 1,

P{Lk+1 = j − 1 | Lk = j − 1} =
k + 2 − j

k + 2
. (4.12) {Eq:Lk2}

Equation 4.11 and Equation 4.12 show that the sequences (Lk + 1)n
k=1 and

(Bk)n
k=1 have the same distribution; in particular, Lk + 1 and Bk have the same

distribution.
Since the position of U0 among {U0, . . . ,Uk} is uniform among the k + 1

possible positions, Lk + 1 is uniform on {1, . . . , k + 1}. Thus, Bk is uniform on
{1, . . . , k + 1}. �

4.4. Random Walks on Groups
{Sec:RWGroups}

Several of the examples we have already examined and many others we will
study in future chapters share some important symmetry properties, which we
make explicit here. Recall that a group is a set G endowed with an associative
operation · : G ×G → G and an identity e ∈ G such that for all g ∈ G,

(i) e · g = g and g · e = g, and
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(ii) there exists an inverse g−1 ∈ G for which g · g−1 = g−1 · g = e.
{Xmpl:SnCycleNot}

E 4.5. The set Sn of all permutations of the standard n-element set
{1, 2, . . . , n}, introduced in Section 2.4, forms a group under the operation of func-
tional composition. The identity element of Sn is the identity function id(k) = k.
Every σ ∈ Sn has a well-defined inverse function, which is its inverse in the group.

We will sometimes find it convenient to use cycle notation for permutations.
In this notation, a string such as (abc) refers to the permutation which sends the
element a to b, the element b to c, and the element c to a. When several cycles
are written consecutively, they are performed one at a time, from right to left (as is
consistent with ordinary function composition). For example,

(13)(12) = (123)

and
(12)(23)(34)(23)(12) = (14).

Given a probability measure µ on a group (G, ·), we can define a random walk
on G with increment distribution µ as follows: it is a Markov chain with state space
G and which moves by multiplying the current state on the left by a random element
of G selected according to µ. Equivalently, the transition matrix P of this chain has
entries

P(g, hg) = µ(h).

E 4.6 (The n-cycle). Let µ assign probability 1/2 to each of to 1 and
n − 1 ≡ −1 (mod n) in the additive cyclic group Zn = {0, 1, . . . , n − 1}. Then the
simple random walk on the n-cycle first introduced in Example 3.2 is the random
walk on Zn with increment µ. Similarly, if ν assigns weight 1/4 to both 1 and
n − 1 and weight 1/2 to 0, then lazy random walk on the n-cycle, discussed in
Example 3.4, is the random walk on Zn with increment ν.

E 4.7 (The hypercube). The hypercube random walks discussed in Sec-
tion 4.3.2 can be viewed as a random walks on the group Zn

2, which is the direct
product of n copies of the two-element group Z2 = {0, 1}. For the simple random
walk the increment measure is uniform on the set {ei | 1 ≤ i ≤ n}, where ei has a 1 in
the i-th place and 0 in all other entries. For the lazy version, the increment measure
gives the vector 0 (with all zero entries) weight 1/2 and each ei weight 1/2n.

R. We are multiplying the current state by the increment on the left be-
cause it is often more natural in the symmetric group, which is our most important
non-commutative example. (For commutative examples, such as Zn or the hyper-
cube, it of course doesn’t matter on which side we multiply.)

{Prop:RWGStat}
P 4.8. Let P be the transition matrix of a random walk on a finite

group G. Then the uniform measure on G is a stationary distribution for P.

P. Let µ be the increment distribution of the random walk, and let U de-
note the uniform measure on G. For any g ∈ G,∑

h∈G

P(h, g)U(h) =
1
|G|

∑
k∈G

P(k−1g, g) =
1
|G|

∑
k∈G

µ(k) =
1
|G|
= U(g).
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For the first equality, we reindexed by setting k = gh−1. (The key point is that, just
as it is possible to step away from g using any element in the support of µ, it is
possible to arrive at G using any element in the support of µ.) �

4.4.1. Generating sets and irreducibility. For a set H ⊂ G, let 〈H〉 be the
smallest group containing all the elements of H; recall that every element of 〈H〉
can be written as a product of elements in H and their inverses. A set H is said to
generate G if 〈H〉 = G.

P 4.9. Let µ be a probability measure on a finite group G. The
random walk on G with increments µ is irreducible if and only if S={g ∈ G | µ(g) >
0} generates G.

P. When the random walk is irreducible, then for any a, b ∈ G there exists
an r > 0 s.t. Pr(a, b) > 0. In order for this to occur, there must be a sequence
s1, . . . , sr ∈ G such that b = sr sr−1 . . . s1a and gi ∈ S for i = 1, . . . , r.

Now assume S generates G, and consider a, b ∈ G. Let g = ba−1. We know
that g can be written as a word in the elements of S and their inverses. Since every
element of G has finite order, any inverses appearing in the expression for g can
be rewritten as positive powers of elements of S . If the resulting expression is
g = smsm−1 . . .1 where si ∈ S for i = 1, . . . ,m, then

Pm(a, b) = Pm(a, ga) = P(a, s1a)P(s1a, s2s1a) . . . P(sm−1 . . .1 a, ga) > 0.

�

Let G be a group and let J be a set which generates G. The directed Cayley
graph associated to G and J is the directed graph with vertex set G in which (v,w)
is an edge if and only if v = gw for some generator g ∈ J.

We call a set J of generators of G symmetric if g ∈ J implies g−1 ∈ J. When
J is symmetric, all edges in the directed Cayley graph are bidirectional, and it may
be viewed as an ordinary graph.

E 4.10 (Random transpositions, version 1). A transposition is an ele-
ment of Sn that interchanges two elements and leaves all others fixed. Let T ⊆ Sn
be the set of all transpositions. In Section 2.4, we gave a method for generating a
uniform random permutation that started with the sorted sequence and used only
transpositions. Hence 〈T 〉 = S n, and the corresponding random walk is irreducible.

Suppose that G is finite with generators {g1, . . . , gn}. The simple random walk
on the Cayley graph of G is the random walk on G with µ taken to be the uniform
distribution on the generators.

{Sec:PermParity}
4.4.2. Parity of permutations and periodicity. For contrast, consider the set

T ′ of all three-cycles in Sn. The set T ′ does not generate all of Sn, but we must
introduce an important property of the permutation group Sn to see why. Given a
permutation σ ∈ Sn, consider the sign of the product

M(σ) =
∏

1≤i< j≤n

(σ( j) − σ(i)) .
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Clearly M(id) > 0, since every term is positive. For every σ ∈ Sn and every
transposition (ab), we have

M((ab)σ) = −M(σ).

Why? We may assume that a < b. Then for every c such that a < c < b, two
factors change sign, while the single factor containing both a and b also changes
sign.

Call a permutation σ even if M(σ) > 0, and otherwise call σ odd. Note that
a permutation is even (odd) if and only if every way of writing it as a product of
transpositions contains an even (odd) number of factors. Furthermore, under com-
position of permutations, evenness and oddness follow the same rules as they do
for integer addition. Hence the set of all even permutations in S n forms a subgroup,
known as the alternating group An.

4.4.3. Reversibility and random walks on groups.
{Sec:Transitive}

4.4.4. Transitive chains. A Markov chain is called transitive if for each pair
(x, y) ∈ Ω ×Ω there is a function φ = φ(x,y) mapping Ω to itself such that

φ(x) = y and P(z,w) = P(φ(z), φ(w)). (4.13)

Roughly, this mean the chain “looks the same” from any point in the state-space
Ω.

4.5. Reflection Principles

A nearest-neighbor random walk on Z moves right and left by at most one
step on each move, and each move is independent of the past. More exactly, if (∆t)
is a sequence of independent and identically distributed {−1, 0, 1}-valued random
variables and Xt =

∑t
s=1 ∆s, then the sequence (Xt) is a nearest-neighbor random

walk with increments (∆t).
This sequence of random variables is a Markov chain with infinite state-space

Z and transition matrix

P(k, k + 1) = p, P(k, k) = r, P(k, k − 1) = q,

where p + r + q = 1.
The special case where p = q = 1/2, r = 0 is called the simple random walk,

and if p = q = 1/4, r = 1/2 the chain is called the lazy simple random walk.
{Thm:SRWHitBound}

T 4.11. If (Xt) is the simple random walk on Z and τ0 is the first time
that the walk visits 0, then for k = 1, 2, . . .,

Pk{τ0 > r} ≤
12k
√

r
(4.14){Eq:SRWHitBound}

We prove this by a sequence of lemmas which are of independent interest.
{Lem:RP0}

L 4.12 (Reflection Principle). Let (Xt) be either the simple random walk
or the lazy simple random walk on {−B, . . . , B}, and let

τ0 := min{t ≥ 0 : Xt = 0}
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be the first time when the walk hits 0. For k ∈ {1, 2, . . .},

Pk{τ0 < r, Xr = j} = Pk{Xr = − j}.

Summing over j ≥ 1 shows that

Pk{τ0 < r, Xr > 0} = Pk{Xr < 0}.

P. The walker “starts afresh” from 0 when he hits 0, meaning that the walk
viewed from the first time it hits zero has the same distribution as a walk started
from zero and is independent of the past. From this, for j = 1, 2, . . .,

Pk{τ0 = s, Xr = j} = Pk{τ0 = s}P0{Xr−s = j}.

The distribution of Xt is symmetric when started at 0, so the right-hand side equals

Pk{τ0 = s}P0{Xr−s = − j} = Pk{τ0 = s, Xr = − j}.

Summing over s < r,

Pk{τ0 < r, Xr = j} = Pk{τ0 < r, Xr = − j} = Pk{Xr = − j}.

The last equality follows since the random walk must past through 0 before hitting
a negative integer. �

R 4.1. There is also a simple combinatorial proof of Lemma 4.12. There
is a one-to-one correspondence between walk paths which hit 0 before time r and
are positive at time r and walk paths which are negative at time r. This is illustrated
in Figure 4.3: to obtain a bijection from the former set of paths to the latter set,
reflect a path after the first time it hits 0.

F 4.3. A path hitting zero and ending above zero can be
transformed, by reflection, into a path ending below zero.

Fig:RP
.
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E 4.13 (First passage time for simple random walk). A nice application
of Lemma 4.12 gives the distribution of τ0 when starting from 1. We have

P1{τ0 = 2m + 1} = P1{τ0 > 2m, X2m = 1, X2m+1 = 0}
= P1{τ0 > 2m, X2m = 1}P1{X2m+1 = 0 | X2m = 1}

= P1{τ0 > 2m, X2m = 1}
1
2
.

The second to the last equality follows since the conditional probability of hitting
0 at time 2m + 1, given that at time 2m the walker is at 1 and has not previously
visited 0, is simply the probability of moving from 1 to 0 in one move (by the
Markov property). Rewriting and using Lemma 4.12 yields

P1{τ0 = 2m + 1} =
1
2

[
P1{X2m = 1} − P1{τ0 ≤ 2m, X2m = 1}

]
=

1
2

[
P1{X2m = 1} − P1{X2m = −1}

]
.

Calculating using the Binomial distribution shows that

P1{τ0 = 2m + 1} =
1
2

[(
2m
m

)
2−2m −

(
2m

m − 1

)
2−2m

]
=

1
(m + 1)22m+1

(
2m
m

)
.

{Lem:RP1}
L 4.14. For simple random walk or lazy simple random walk (Xt) on Z,

for k = 1, 2, . . .,
Pk{τ0 > r} = P0{−k < Xr ≤ k}.

P. We can write

Pk{Xr > 0} = Pk{Xr > 0, τ0 ≤ r} + Pk{τ0 > r}.

By Lemma 4.12,
Pk{Xr > 0} = Pk{Xr < 0} + Pk{τ0 > r}.

By symmetry of the walk, Pk{Xr < 0} = Pk{Xr > 2k}, and so

Pk{τ0 > r} = Pk{Xr > 0} − Pk{Xr > 2k} = Pk{0 < Xr ≤ 2k} = P0{−k < Xr ≤ k}.

�
{Lem:RP2}

L 4.15. For the simple random walk (Xt) on Z,

P0{Xt = k} ≤
3
√

t
. (4.15){Eq:SRWStirling}

R 4.2. By applying Stirling’s formula a bit more carefully than we do in
the proof below, one can see that in fact

P0{X2r = 2k} =
1
√
πr

[1 + o(1)]

when is k not too far away from 0. Hence the constant 3 is nowhere near the best
possible. Our goal here is to give an explicit upper bound valid for all k without
working too hard to achieve the best possible constant. Indeed, note that for simple
random walk, if t and k have different parities, the probability on the left-hand side
of (4.15) is 0.
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P. If X2r = 2k, there are r + k “up” moves and r − k “down” moves. The
probability of this is

(
2r

r+k

)
2−2r. The reader should check that

(
2r

r+k

)
is maximized at

k = 0, so for k = 0, 1, . . . , r,

P0{X2r = 2k} ≤
(
2r
r

)
2−2r =

(2r)!
(r!)222r .

By Stirling’s Formula (use the bounds 1 ≤ e1/(12n+1) ≤ e1/(12n) ≤ 2 in Equation
B.11), we obtain the bound

P0{X2r = 2k} ≤

√
8
π

1
√

2r
. (4.16) {Eq:BoundEven}

To bound P0{X2r+1 = 2k + 1}, condition on the first step of the walk and use the
bound above. Then use the simple bound [t/(t − 1)]1/2 ≤

√
2 to see that

P0{X2r+1 = 2k + 1} ≤
4
√
π

1
√

2r + 1
. (4.17) {Eq:BoundOdd}

Putting together (4.16) and (4.17), establishes (4.15), since 4/
√
π ≤ 3.

�

P  T 4.11. Combining Lemma 4.14 and Lemma 4.15, we obtain
(4.14). �

{Thm:NoReturn}
T 4.16. Let (∆i) be i.i.d. integer-valued variables with mean zero and

variance σ2, and let Xt =
∑t

i=1 ∆i.

P{Xt , 0 for 1 ≤ t ≤ r} ≤
4σ
√

r
. (4.18) {Eq:NoReturn}

R 4.3. The constant in this estimate is not sharp, but we will give a very
elementary proof, only using Chebyshev’s inequality.

P. Let
Lr(v) := {t ∈ {0, 1, . . . , r} : Xt = v}

be the set of times up to and including r when the walk visits v, and let

Ar := {t ∈ Lr(v) : Xt+u , 0 for 1 ≤ u ≤ r},

be those times t in Lr(0) where the walk does not visit 0 for r steps after t. Since
the future of the walk after visiting 0 is independent of the walk up until this time,

P{t ∈ Ar} = P{t ∈ Lr(0)}αr,

where
αr := P0{Xt , 0, t = 0, 1, . . . , r}.

Summing this over t ∈ {0, 1, . . . , r} and noting that |Ar | ≤ 1 gives

1 ≥ E|Ar | = E|Lr(0)|αr. (4.19) {Eq:LocTimeRF}

It remains to estimate E|Ln(0)| from below, and this can be done using the local
Central Limit Theorem or (in special cases) Stirling’s formula.
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A more direct (but less precise) approach is to first use Chebyshev to write

P{|Xt| ≥ σ
√

r} ≤
t
r

and then deduce for I = (−σ
√

r, σ
√

r) that

E|Lr(Ic)| ≤
r∑

t=1

t
r
=

r + 1
2

,

whence E|Lr(I)| ≥ r/2. The strong Markov property (at the first visit to v) shows
that E|Lr(v)| ≤ E|Lr(0)| for any v, so that r/2 ≤ E|Lr(D)| ≤ 2σ

√
rE|Lr(0)|. Thus

E|Lr(0)| ≥
√

r/(4σ). In conjunction with (4.19) this proves (4.18). �
{Cor:LRWNoZero}

C 4.17. For the lazy simple random walk on Z started at height k,

Pk{τ
+
0 > r} ≤

8k
√

r
. (4.20){Eq:NoHitZero}

P. By conditioning on the first move of the walk, and then using the fact
that the distribution of the walk is symmetric about 0,

P0{τ
+
0 > r} =

1
4

P1{τ
+
0 > r − 1} +

1
4

P−1{τ
+
0 > r − 1} =

1
2

P1{τ
+
0 > r − 1}. (4.21){Eq:LRWOneMove}

Note that when starting from 1, the event that the walk hits height k before visiting
0 for the first time, and subsequently does not hit 0 for r steps, is contained in the
event that the walk started from 1 does not hit 0 for r − 1 steps. Thus, from (4.21)
and Theorem 4.16,

P1{τk < τ0}Pk{τ
+
0 > r} ≤ P1{τ0 > r − 1} = 2P0{τ

+
0 > r} ≤

8
√

r
. (4.22){Eq:PenultAvoid}

(The variance σ2 of the increments of the lazy random walk is 1/2, which we
bound by 1.) From the “gambler’s ruin formula” given in Equation 4.2, the chance
a simple random walk starting from height 1 hits k before visiting 0 is 1/k. The
probability is the same for a lazy random walk, so together with (4.22) this implies
(4.20). �

4.5.1. The Ballot Theorem.

4.6. Metropolis Chains and Glauber Dynamics

4.6.1. Metropolis chains. In Section 3.5, given an irreducible transition ma-
trix P, we constructed a unique stationary distribution π satisfying π = πP. We
now consider the inverse problem: given a probability distribution π on Ω, can we
find a transition matrix P for which π is its stationary distribution?

Suppose that Ψ is a symmetric transition matrix. In this case, Ψ is reversible
with respect to the uniform distribution on Ω. We now show how to modify transi-
tions made according to Ψ to obtain a chain with stationary distribution π, where π
is any probability distribution on Ω.

The new chain evolves as follows: when at state x, a candidate move is gener-
ated from the distribution Ψ(x, ·). If the proposed new state is y, then the move is
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censored with probability 1 − a(x, y). That is, with probability a(x, y), the state y
is accepted as the new state, and with the remaining probability, the chain remains
at x. Rejecting moves is wasteful, but may be necessary to achieve a specified
stationary distribution. The transition matrix of this chain is P, where

P(x, y) =

Ψ(x, y)a(x, y) y , x,
1 −

∑
z∈Ω\{x}Ψ(x, z)a(x, z) y = x.

P has stationary distribution π if

π(x)Ψ(x, y)a(x, y) = π(y)Ψ(y, x)a(y, x). (4.23) {Eq:RevMetrop}

Since we have assumed Ψ is symmetric, equation (4.23) holds if and only if

b(x, y) = b(y, x), (4.24) {Eq:RevMetrop2}

where b(x, y) = π(x)a(x, y). Because a(x, y) is a probability and must satisfy
a(x, y) ≤ 1, the function b must obey the constraints

b(x, y) ≤ π(x),
b(x, y) = b(y, x) ≤ π(y).

(4.25) {Eq:bCons}

Since rejecting the moves of the original chain Ψ is wasteful, a solution b to (4.24)
and (4.25) should be chosen which is as large as possible. Clearly, all solutions are
bounded above by b(x, y) = π(x)∧π(y). For this choice, the acceptance probability
a(x, y) equals (π(y)/π(x)) ∧ 1.

The Metropolis chain for a probability π and a symmetric transition matrix Ψ
is defined as

P(x, y) =

Ψ(x, y)
[
1 ∧ π(y)

π(x)

]
y , x,

1 −
∑

z∈Ω\{x}Ψ(x, z)
[
1 ∧ π(z)

π(x)

]
y = x.

{Rmk:MetRat}
R 4.4. A very important feature of the Metropolis chain is that it only

depends on the ratios π(x)/π(y). Frequently π(x) is only be explicitly known up to
a normalizing constant. The optimization chains described below are examples of
this type. The normalizing constant is not needed to run the Metropolis chain.

E 4.18 (Optimization). Let f be a real-valued function defined on the
vertex set Ω of a graph. In many applications it is desired to find a vertex x where
f is largest; if the domain Ω is very large, then an exhaustive search many too
expensive.

A hill climb is an algorithm which attempts to locate the maximum values of f
as follows: when at x, if a neighbor y of x has f (y) > f (x), move to y. The reader
will quickly see that if f has a local maximum, then the climber may become
trapped before discovering a global maximum.

One solution is to randomize moves so that instead of always remaining at a
local maximum, with some probability the climber moves to lower states.

Suppose for simplicity that Ω is a regular graph, so that simple random walk
has a symmetric transition matrix. Define for λ ≥ 1,

πλ(x) =
λ f (x)

Z(λ)
,
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0

f(x)

x

F 4.4. A hill climb may become trapped at a local maximum.
Fig:HillClimb

where Z(λ) :=
∑

x∈Ω λ
f (x) is a normalizing constant making µ a probability mea-

sure. Note that π(x) is increasing in f (x), so that π favors x with large values of
f (x).

If f (y) < f (x), the Metropolis chain accepts a transition x 7→ y with probability
λ−[ f (x)− f (y)]. As λ → ∞, the chain more closely resembles the deterministic hill
climb.

Suppose that

Ω? = {x ∈ Ω : f (x) = max
x∈Ω

f (x) := f?}.

Then

lim
λ→∞

πλ(x) = lim
λ→∞

λ f (x)/ f?

|Ω?| +
∑

x∈Ω\Ω? λ
f (x)/ f?

=
1{x∈Ω?}
|Ω?|

That is, as λ→ ∞, the stationary distribution converges to the uniform distribution
over the global maximum of f .

As mentioned in Remark 4.4, running the Metropolis chain does not require
computation of Z(λ), which may be prohibitively expensive to compute.

The Metropolis chain can be defined when the underlying chain is not sym-
metric.

{Example:MetroplisSRW0}

E 4.19. Suppose you know neither the vertex set V or the edges et of
a graph, but are however able to perform a random walk on the graph. You desire
a uniform sample from V . Many computer and social networks are of this form.
If the graph is not regular, then the stationary distribution is not uniform, so the
distribution of the walk will not converge to uniform.

For a general (irreducible) transition matrix Ψ, and an arbitrary probability
distribution π on Ω, the Metropolized chain is executed as follows: When at state
x, generate a state y from Ψ(x, ·). Move to y with probability

π(y)Ψ(y, x)
π(x)Ψ(x, y)

∧ 1, (4.26){Eq:MetropAcceptProb}
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and remain at x with the complementary probability. The transition matrix P for
this chain is

P(x, y) =

Ψ(x, y)
[
π(y)
π(x) ∧ 1

]
if y , x,

1 −
∑

z,xΨ(x, z)
[
π(z)
π(x) ∧ 1

]
if y = x.

The reader should check that P is reversible with respect to the probability distri-
bution π.

{Example:MetropolisSRW}

E 4.20. Consider the set-up in Example 4.19. The Metropolis algorithm
can modify the simple random walk to ensure a uniform stationary distribution.
The acceptance probability in (4.26) reduces in this case to

deg(x)
deg(y)

∧ 1.

This biases the walk against moving to higher degree vertices, giving a uniform
stationary distribution. Note that the size of the graph is not needed to perform this
modification, an important consideration in applications.

4.6.2. Glauber Dynamics. A proper q-coloring of the vertices V of a graph
assigns to each vertex one among q possible colors so that no two neighboring
vertices share a common color. We will represent the colors monochromatically by
the integers {1, 2, . . . , q}. A proper q-coloring is an element x of {1, 2, . . . , q}V , the
functions from V to {1, 2, . . . , q}, so that x(v) , x(w) for all edges {v,w}.

A hardcore configuration is a placement of particles on the vertices V of a
graph so that no two particles are adjacent. A hardcore configuration x is an ele-
ment of {0, 1}V , the functions from V to {0, 1}, satisfying x(v)x(w) = 0 for all edges
{v,w}.

In general, suppose that Ω is a subset of S V , where V is the vertex set of a
graph and S is a finite set, and let µ be a probability distribution on Ω. Both the
set of proper q-colorings and the set of hardcore configurations are of this form.
In this section, we describe Glauber dynamics for µ, which is a reversible Markov
chain with stationary distribution µ.

In words, the Glauber chain moves from state x as follows: a vertex w is chosen
uniformly at random from V , and a new state is chosen according to the measure µ
conditioned to equal x at all vertices different from w.

{Ex:GlCol}
E 4.21 (Glauber dynamics for uniform proper q-colorings). Suppose

that µ is the uniform distribution on proper q-colorings. To understand how the
Glauber chain transitions from x, we must determine the distribution of µ condi-
tioned on the set

Ax,w := {z ∈ Ω : z(v) = x(v) for v , w}.

Call a color feasible at w in configuration x if it is not among the set {x(z) : z ∼ w}.
A configuration x can be changed at vertex w only to a feasible color. The set Ax,w
consists of all configurations agreeing with x away from w and having a feasible
color at w. Since µ is uniform on Ω,

µ(y | Ax,w) =
1
|Ax,w|

.
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Thus, the Glauber chain moves from x by selecting a vertex w at random and
updating the color at w to a uniform sample from the feasible colors at w.

E 4.22 (Glauber dynamics for uniform Hardcore configuration). Let µ
be the uniform distribution on the Hardcore configurations. The reader should
check that the Glauber dynamics for µ updates x at vertex w by leaving w unoccu-
pied if a neighbor of w is occupied, and by placing a particle at w with probability
1/2 if no neighbor is occupied.

Consider the Markov chain on {0, 1}V which moves by picking a vertex w at
random and then updating w by placing a particle there with probability 1/2. Note
that this chain does not live on the space of hardcore configurations, as nothing
restricts moves placing two particles on adjacent vertices. The Metropolis chain
for the uniform distribution on hardcore configurations accepts a move x 7→ y with
probability 0 if y is not a hardcore configuration, and with probability 1 if y is
a hardcore configuration. Thus, the Metropolis chain and the Glauber dynamics
agree in this example.

4.7. The Pivot Chain for Self-Avoiding Random Walk*
{Sec:SAWpivot}{Example:SAW2}

E 4.23 (Pivot chain for self-avoiding paths). The space Ξn of self-
avoiding lattice paths of length n was described in Example 2.1. These are paths in
Z2 of length n which never intersect themselves.

We describe now a Markov chain on Ξn and show that it is irreducible. If the
current state of the chain is the path (0, v1, . . . , vn) ∈ Ξn, the next state is chosen by
the following:

(1) Pick a value k from {0, 1, . . . , n} uniformly at random.
(2) Pick uniformly at random from the following transformations of Z2: Ro-

tations clockwise by π/2, π, 3π/2, reflection across the x-axis, and reflec-
tion across the y-axis.

(3) Take the path from vertex k on, (vk, vk+1, . . . , vn), and apply the transfor-
mation chosen in the previous step to this subpath only, taking vk as the
origin.

(4) If the resulting path is self-avoiding, this is the new state. If not, repeat.
An example move is shown in Figure 4.5.

We now show that this chain is irreducible by proving that any self-avoiding
path can be unwound to a straight line by a sequence of possible transitions. Since
the four straight paths starting at (0, 0) are rotations of each other, and since any
transition can also be undone by a dual transition, any self-avoiding path can be
transformed into another. The proof below follows Madras and Slade (1993, The-
orem 9.4.4).

For a path ξ ∈ Ξn, put around ξ as small a rectangle as possible, and define
D = D(ξ) to be the sum of the length and the width of this rectangle. The left-hand
diagram in Figure 4.6 shows an example of this bounding rectangle. Define also
A = A(ξ) to be the number of interior vertices v of ξ where the two edges incident

at v form an angle of π, that is, which look like either or . We first observe
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(0,0)

4

−→

(0,0)

4

current path path after rotating by π
from vertex 4

F 4.5. Example of a single move of pivot chain for self-
avoiding walk.

Fig:SAWTransition

that D(ξ) ≤ n and A(ξ) ≤ n−1 for any ξ ∈ Ξn, and D(ξ)+A(ξ) = 2n−1 if and only
if ξ is a straight path. We show now that if ξ is any path different from the straight
path, we can make a legal move —that is, a move having positive probability—to
another path ξ′ which has D(ξ′) + A(ξ′) > D(ξ) + A(ξ).

There are two cases which we will consider separately.
Case 1. Suppose that at least one side of the bounding box does not contain

either endpoint, 0 or vn, of ξ = (0, v1, . . . , vn). This is the situation for the path on
the left-hand side in Figure 4.6. Let k ≥ 1 be the smallest index so that vk lies on
this side. Obtain ξ′ by taking ξ and reflecting its tail (vk, vk+1, . . . , vn) across this
box side. Figure 4.6 shows an example of this transformation. The new path ξ′

satisfies D(ξ′) > D(ξ) and A(ξ′) = A(ξ) (the reader should convince herself this is
indeed true!)

Case 2. Suppose every side of the bounding box contains an endpoint of ξ.
This implies that the endpoints are in opposing corners of the box. Let k be the
largest index so that the edges incident to vk form a right angle. The path ξ from
vk to vn forms a straight line segment, and must lie along the edge of the bounding
box. Obtain ξ′ from ξ by rotating this straight portion of ξ so that it lies outside the
original bounding box. See Figure 4.7.

This operation reduces one dimension of the bounding box by at most the
length of the rotated segment, but increases the other dimension by this length.
This shows that D(ξ′) ≥ D(ξ). Also, we have strictly increased the number of
straight angles, so D(ξ′) + A(ξ′) > D(ξ) + A(ξ).

In either case, D + A is strictly increased by the transformation, so continuing
this procedure eventually leads to a straight line segment. This establishes that the
pivot Markov chain is irreducible.
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(0,0)

−→

(0,0)
reflected across side not containing both
endpoints

F 4.6. A SAW without both endpoints in corners of bound-
ing box.

Fig:SawCase1

−→

rotated final straight segment outside
box

F 4.7. A SAW with endpoints in opposing corners.
Fig:SawCase2

4.8. Problems
{Exer:GamblersRuin}

E 4.1. Show that the system of equations

fk =
1
2

(1 + fk+1) +
1
2

(1 + fk−1) (4.27)

together with the boundary conditions f0 = fn = 0, has a unique solution fk =
k(n − k).

Hint: One approach is to define ∆k = fk − fk−1 for 1 ≤ k ≤ n. Check that
∆k = ∆k+1 + 2 (so the ∆k’s form an arithmetic progression) and that

∑
k ∆k = 0.

{Exer:LazyGambler}
E 4.2. Consider a lazy gambler: at each time, she flips a coin with

probability p of success. If it comes up heads, she places a fair one dollar bet. If
tails, she does nothing that round, and her fortune stays the same. If her fortune
ever reaches 0 or n, she stops playing. Find the expected value of the time required
for her to be absorbed at (either) endpoint in terms of n, k, and p.

{Exer:HitOtherEnd}
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E 4.3. Consider a random walk on the path {0, 1, . . . , n} in which the
walker moves left or right with equal probability; if he tries to move above n, he
stays put for that round, and if he hits 0, he stays there forever. Compute the
expected time of the walker’s absorption at state 0, given that he starts at state n.

{Exercise:EhrenStat}
E 4.4. Let P be the transition matrix for the Ehrenfest chain described

in Equation 4.8. Show that the Binomial distribution with parameters d and 1/2 is
the stationary distribution for this chain.

{Exer:HarmonicSum}
E 4.5.

(a) By comparing the integral of 1/x with its Riemann sums, show that

log n ≤
n∑

k=1

k−1 ≤ log n + 1. (4.28)

(b) In the set-up of Proposition 4.2, prove that

P{τ > cn(log n + 1)} ≤
1
c
.

{Exercise:EhrenStat}
E 4.6. Let P be the transition matrix for the Ehrenfest chain described

in Equation 4.8. Show that the Binomial distribution with parameters d and 1/2 is
the stationary distribution for this chain.

4.9. Notes

See any undergraduate algebra book, for example Herstein (1975) or Artin
(1991), for more information on groups. Much more can be said about random
walks on groups than for general Markov chains. Diaconis (1988) is a starting
place.

Pólya’s urn was featured in problem B1 of the 2002 Putnam mathematical
competition.

It is an open problem to analyze the convergence behavior of the pivot chain on
self-avoiding walks. The algorithm of Randall and Sinclair (2000) uses a different
underlying Markov chain to approximately sample from the uniform distribution
on these walks.

Rigorous results for simulated annealing were obtained in Hajek (1988).





CHAPTER 5

Introduction to Markov Chain Mixing

{Chapters:Mixing}
We are now ready to discuss the long-term behavior of finite Markov chains.

Since we are interested in quantifying the speed of convergence of families of
Markov chains, we need to choose an appropriate metric for measuring the dis-
tance between distributions.

First we define the total variation distance and give several characterizations of
it, all of which will be useful in our future work. Next we prove the Convergence
Theorem (Theorem 5.6), which says that for an irreducible and aperiodic chain
the distribution after many steps approaches the chain’s stationary distribution, in
the sense that the total variation distance between them approaches 0. In the rest
of the chapter we examine the effects of the initial distribution on distance from
stationarity, define the mixing time of a chain, and prove a version of the Ergodic
Theorem (Theorem 5.11) for Markov chains.

5.1. Total Variation Distance {Sec:TVDist}

The total variation distance between two probability distributions µ and ν on
Ω is defined as

‖µ − ν‖TV = max
A⊂Ω
|µ(A) − ν(A)| . (5.1) {eq:TVdef}

This definition is explicitly probabilistic: the distance between µ and ν is the max-
imum difference between the probabilities assigned to a single event by the two
distributions.

{Xmpl:FrogTV}

E 5.1. Recall the coin-tossing frog of Example 3.1, who has probability
p of jumping from east to west, and probability q of jumping from west to east.
His transition matrix is

(
1−p p

q 1−q

)
and his stationary distribution is π =

( q
p+q ,

p
p+q

)
.

Assume the frog starts at the east pad (that is, µ0(t) = (1, 0)) and define

∆t = µt(e) − π(e).

Since there are only two states, there are only four possible events A ⊆ Ω. Hence
is easy to check (and you should) that

‖µt − π‖TV = ∆t = Pt(e, e) − π(e) = π(w) − Pt(e,w).

We pointed out in Example 3.1 that ∆t = (1 − p − q)t∆0. Hence for this two-
state chain, the total variation distance decreases exponentially fast at t increases.
(Note that (1 − p − q) is an eigenvalue of P; we will discuss connections between
eigenvalues and mixing in Chapter 12.)

49



50 5. INTRODUCTION TO MARKOV CHAIN MIXING

I
II

B Bc

Μ
Ν

F 5.1.
fig:TV1
Recall that B = {x : µ(x) > ν(x)}. Region I has area

µ(B) − ν(B). Region II has area ν(Bc) − µ(Bc). Since the total area
under each of µ and ν is 1, regions I and II must have the same
area—and that area is ‖µ − ν‖TV .

It is not immediately clear from (5.1) how to compute the total variation dis-
tance between two given distributions. We now give three extremely useful alterna-
tive characterizations. Proposition 5.2 reduces total variation distance to a simple
sum over the state space. Proposition 5.3 describes total variation distance in terms
of integrating a single function with respect to both underlying measures. Proposi-
tion 5.5 uses coupling to give another probabilistic interpretation: ‖µ − ν‖TV mea-
sures how close to identical we can force two random variables realizing µ and ν
to be.

{Prop:TotalVariation}

P 5.2. Let µ and ν be two probability distributions on Ω. Then

‖µ − ν‖TV =
1
2

∑
x∈Ω

|µ(x) − ν(x)| . (5.2){Eq:TVisL1}

P. Let B = {x : µ(x) ≥ ν(x)} and let A ⊂ Ω be any event. Then

µ(A) − ν(A) ≤ µ(A ∩ B) − ν(A ∩ B) (5.3)
≤ µ(B) − ν(B). (5.4)

The first inequality is true because any x ∈ A ∩ Bc satisfies µ(x) − ν(x) < 0, so the
difference in probability cannot decrease when such elements are eliminated. For
the second inequality, note that including more elements of B cannot decrease the
difference in probability.

By exactly parallel reasoning,

ν(A) − µ(A) ≤ ν(Bc) − µ(Bc). (5.5)

Fortunately, these two upper bounds are actually the same (as can be seen by sub-
tracting them; see Figure 5.1). Furthermore, when we take A = B (or Bc), then
|µ(A) − ν(A)| is equal to the upper bound. Thus

‖µ − ν‖TV =
1
2

[
µ(B) − ν(B) + ν(Bc) − µ(Bc)

]
=

1
2

∑
x∈Ω

|µ(x) − ν(x)|. (5.6)
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�
{Rmk:TVSet}

R 5.1. The proof of Proposition 5.2 also shows that

‖µ − ν‖TV =
∑
x∈Ω

µ(x)≥ν(x)

[µ(x) − ν(x)], (5.7) {Eq:TVHalfSum}

which is a useful identity.
{Prop:TVFunction}

P 5.3. Let µ and ν be two probability distributions on Ω. Then the
total variation distance between them satisfies

‖µ − ν‖TV

=
1
2

sup

∑
x∈Ω

f (x)µ(x) −
∑
x∈Ω

f (x)ν(x) : f satisfying max
x∈Ω
| f (x)| ≤ 1

 . (5.8) {Eq:TVLInf}

P. We have

1
2

∣∣∣∣∣∣∣∑x∈Ω f (x)µ(x) −
∑
x∈Ω

f (x)ν(x)

∣∣∣∣∣∣∣ ≤ 1
2

∑
x∈Ω

| f (x)[µ(x) − ν(x)]|

≤
1
2

∑
x∈Ω

|µ(x) − ν(x)|

= ‖µ − ν‖TV .

This shows that the right-hand side of (5.8) is not more than ‖µ − ν‖TV . Define

f?(x) =

1 if x satisfies µ(x) ≥ ν(x),
−1 if x satisfies µ(x) < ν(x).

Then

1
2

∑
x∈Ω

f?(x)µ(x) −
∑
x∈Ω

f?(x)ν(x)

 = 1
2

∑
x∈Ω

f?(x)[µ(x) − ν(x)]

=
1
2


∑
x∈Ω

µ(x)≥ν(x)

[µ(x) − ν(x)] +
∑
x∈Ω

ν(x)>µ(x)

[ν(x) − µ(x)]

 .
Using (5.7) shows that the right-hand side above equals ‖µ − ν‖TV . This shows that
the right-hand side of (5.8) is at least ‖µ − ν‖TV . �

5.2. Coupling and Total Variation Distance

A coupling of two probability distributions µ and ν is a pair of random variables
(X,Y) defined on a single probability space such that the marginal distribution of
X is µ and the marginal distribution of Y is ν. That is, a coupling (X,Y) satisfies
P{X = x} = µ(x) and P{Y = y} = ν(y).

Coupling is a general and powerful technique; it can be applied in many dif-
ferent ways. Indeed, Chapters 6 and 14 use couplings of entire chain trajectories to
bound rates of convergence to stationarity. Here, we offer a gentle introduction by
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showing the close connection between couplings of two random variables and the
total variation distance between those variables.

{Xmpl:CoupleFairCoin}

E 5.4. Let µ and ν both be the “fair coin” measure giving weight 1/2 to
the elements of {0, 1}.

{It:IndCoin}
(i) One way to couple µ and ν is to define (X,Y) to be a pair of independent

coins, so that P{X = x, Y = y} = 1/4 for all x, y ∈ {0, 1}.{It:SameCoin}
(ii) Another way to couple µ and ν is to let X be a fair coin toss, and define Y = X.

In this case, P{X = Y = 0} = 1/2, P{X = Y = 1} = 1/2, and P{X , Y} = 0.

Given a coupling (X,Y) of µ and ν, if q is the joint distribution of (X,Y) on
Ω ×Ω, meaning that q(x, y) = P{X = x,Y = y}, then q satisfies∑

y∈Ω

q(x, y) =
∑
y∈Ω

P{X = x, Y = y} = P{X = x} = µ(x)

and ∑
x∈Ω

q(x, y) =
∑
x∈Ω

P{X = x, Y = y} = P{Y = y} = ν(y).

Conversely, given a probability distribution q on the product space Ω × Ω which
satisfies ∑

y∈Ω

q(x, y) = µ(x) and
∑
x∈Ω

q(x, y) = ν(x),

there is a pair of random variables (X,Y) having q as their joint distribution – and
consequently this pair (X,Y) is a coupling of µ and ν. In summary, a coupling
can be specified either by a pair of random variables (X,Y) defined on a common
probability space, or by a distribution q on Ω ×Ω.

Returning to Example 5.4, the coupling in part (i) could equivalently be speci-
fied by the probability distribution q1 on {0, 1}2 given by

q1(x, y) =
1
4

for all (x, y) ∈ {0, 1}2.

Likewise, the coupling in part (ii) can be identified by the probability distribution
q2 given by

q2(x, y) =

1
2 (x, y) = (0, 0), (x, y) = (1, 1),
0 (x, y) = (0, 1), (x, y) = (1, 0).

Any two distributions µ and ν have an independent coupling. However, when µ
and ν are not identical, it will not be possible for X and Y to always have the same
value. How close can a coupling get to having X and Y identical? Total variation
distance gives the answer.

{Prop:TVCouple}
P 5.5. Let µ and ν be two probability distributions on Ω. Then

‖µ − ν‖TV = inf {P{X , Y} : (X,Y) is a coupling of µ and ν} . (5.9){Eq:TVCoupling}
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I
II

III

Μ
Ν

F 5.2.
fig:TVcouple
Since each of regions I and II has area ‖µ − ν‖TV , and

µ and ν are probability measures, region III has area 1−‖µ − ν‖TV .

P. First, we note that for any coupling (X,Y) of µ and ν and any event
A ⊂ Ω,

µ(A) − ν(A) = P{X ∈ A} − P{Y ∈ A} (5.10)
≤ P{X ∈ A,Y < A} (5.11)
≤ P{X , Y}. (5.12)

(Dropping the event {X < A,Y ∈ A} from the second term of the difference gives
the first inequality.) It immediately follows that

‖µ − ν‖TV ≤ inf
{
P{X , Y} : (X,Y) is a coupling of µ and ν

}
. (5.13) {Eq:TVLessC}

If we can construct a coupling for which P{X , Y} is actually equal to ‖µ − ν‖TV ,
we’ll be done. We will do so by forcing X and Y to be equal as often as they
possibly can be. Consider Figure 5.2. Region III, bounded by µ(x) ∧ ν(x) =
min{µ(x), ν(x)}, can be seen as the overlap between the two distributions. We con-
struct our coupling so that, whenever we “land” in region III, X = Y . Otherwise,
we accept that X must be in region I and Y must be in region II; since those regions
have disjoint support, X and Y cannot be equal.

More formally, we use the following procedure to generate X and Y . Let

p =
∑
x∈Ω

[µ(x) ∧ ν(x)].

Write ∑
x∈Ω

µ(x) ∧ ν(x) =
∑
x∈Ω,

µ(x)≤ν(x)

µ(x) +
∑
x∈Ω,

µ(x)>ν(x)

ν(x).

Adding and subtracting
∑

x : µ(x)>ν(x) µ(x) to the right-hand side above shows that∑
x∈Ω

µ(x) ∧ ν(x) = 1 −
∑
x∈Ω,

µ(x)>ν(x)

[µ(x) − ν(x)].

By Equation 5.7 and the immediately preceding equation,∑
x∈Ω

µ(x) ∧ ν(x) = 1 − ‖µ − ν‖TV = p.



54 5. INTRODUCTION TO MARKOV CHAIN MIXING

We can thus define the probability distribution γIII(x) = p−1[µ(x) ∧ ν(x)].
Flip a coin with probability of heads equal to p.

(i) If the coin comes up heads, then choose a value Z according to the probability
distribution

γIII(x) =
µ(x) ∧ ν(x)

p
,

and set X = Y = Z.
(ii) If the coin comes up tails, choose X according to the probability distribution

γI(x) =

µ(x)−ν(x)
‖µ−ν‖TV

if µ(x) > ν(x),

0 otherwise,

and independently choose Y according to the probability distribution

γII(x) =

 ν(x)−µ(x)
‖µ−ν‖TV

if ν(x) > µ(x),

0 otherwise.

γI and γII are probability distributions by (5.7).
Clearly,

pγIII + (1 − p)γI = µ,

pγIII + (1 − q)γII = ν,

so that the distribution of X is µ and the distribution of Y is ν. Note that in the case
that the coin lands tails, X , Y since γI and γII are positive on disjoint subsets of
Ω. Thus X = Y if and only if the coin toss is heads, and

P{X , Y} = ‖µ − ν‖TV .

�

We call a coupling optimal if it attains the infimum in (5.9). The above proof
shows that in fact an optimal coupling always exists.

5.3. Convergence Theorem

We are now ready to prove that irreducible, aperiodic Markov chains converge
to their stationary distributions—a key step, as much of the rest of the book will be
devoted to estimating the rate at which this convergence occurs. The assumption
of aperiodicity is indeed necessary—recall the even n-cycle of Example 3.2.

As is often true of such fundamental facts, there are many proofs of the Con-
vergence Theorem. The one given here decomposes the chain into a mixture of
repeated independent sampling from its own stationary distribution and another
Markov chain. The argument is finished via a little matrix algebra; we’ve put the
details in an exercise. See Exercise 6.1 for another proof using two coupled copies
of the chain.

{Thm:ConvergenceThm}

T 5.6. Suppose that P is irreducible and aperiodic, with stationary dis-
tribution π. Then there exists 1 > α > 0 such that

max
x∈Ω

∥∥∥Pt(x, ·) − π
∥∥∥

TV ≤ α
t. (5.14){Eq:ConvThm}
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P. Since P is aperiodic, there exists an r such that Pr has strictly positive
entries. Let Π be the matrix with |Ω| rows, each of which is the row vector π. For
sufficiently small δ > 0, we have

Pr(x, y) ≥ δπ(y)

for all x, y ∈ Ω. Once we fix such a δ, the equation

Pr = δΠ + (1 − δ)Q (5.15) {Eq:PmDecomp}

defines a stochastic matrix Q.
It is a straightforward computation to check that MΠ = Π for any stochastic

matrix M, and that ΠM = Π for any matrix M such that πM = π.
Next, we use induction to demonstrate that

Prk =
[
1 − (1 − δ)k

]
Π + (1 − δ)kQk. (5.16) {Eq:PmGeo}

for k ≥ 1. If k = 1, this holds by (5.15). Assuming that (5.16) holds for k = n,

Pr(n+1) = PrnPr =
{[

1 − (1 − δ)n]Π + (1 − δ)nQn} Pr. (5.17)

Distributing and expanding Pr in the second term gives

Pr(n+1) =
[
1 − (1 − δ)n]ΠPr + δ(1 − δ)nQnΠ + (1 − δ)n+1QnQ. (5.18)

Using that ΠPr = Π and QnΠ = Π shows that

Pr(n+1) =
[
1 − (1 − δ)n+1

]
Π + (1 − δ)n+1Qn+1. (5.19)

This establishes (5.16) for k = n + 1 (assuming it holds for k = n), and hence it
holds for all k.

Multiplying by P j and rearranging terms now yields

Prk+ j − Π = (1 − δ)k
[
QkP j − Π

]
. (5.20) {Eq:MatrixDiff}

To complete the proof, examine the x0th row of (5.20). Take the L1 norm of
both sides and divide by 2. On the right, the second factor is at most the largest
possible total variation distance between distributions, which is 1. Hence for any
x0 we have ∥∥∥Prk+ j(x0, ·) − π

∥∥∥
TV ≤ (1 − δ)k. (5.21)

�

R. Because of Theorem 5.6, the distribution π is also called the equilib-
rium distribution.

5.4. Standardizing distance from stationarity

Bounding the maximal distance between Pt(x0, ·) and π appearing in the Con-
vergence Theorem (Theorem 5.6) is among our primary objectives. It would sim-
plify analysis to eliminate the dependence on the initial state, so that “distance from
stationarity” depends on the transition matrix and the number of steps. In view of
this, we define

d(t) := max
x∈Ω

∥∥∥Pt(x, ·) − π
∥∥∥

TV . (5.22) {Eq:dDefn}
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We will see in Chapter 6 that it is often possible to bound the maximum dis-
tance between the distribution of the chain started from x and the distribution of
the chain started at y, over all pairs of states (x, y). Thus it is convenient to define

d̄(t) := max
x,y∈Ω

∥∥∥Pt(x, ·) − Pt(y, ·)
∥∥∥

TV . (5.23){Eq:dbarDefn}

The relationship between d and d̄ is given below:
{Lem:StationaryVsState}

L 5.7.
d(t) ≤ d̄(t). (5.24){Eq:StationaryVsState}

P. As π is stationary, π(A) =
∑

y π(y)Pt(y, A) for any set A. (This is the
definition of stationarity if A is a singleton {x}. To get this for arbitrary A, just sum
over the elements in A.) Using this shows that∥∥∥Pt(x, ·) − π

∥∥∥
TV = max

A
|Pt(x, A) − π(A)|

= max
A

∣∣∣∣∣∣∣∣
∑
y∈Ω

π(y)
[
Pt(x, A) − Pt(y, A)

]∣∣∣∣∣∣∣∣ .
We can use the triangle inequality and the fact that the maximum of a sum is not
larger than the sum over a maximum to bound the right-hand side above by

max
A

∑
y∈Ω

π(y)|Pt(x, A) − Pt(y, A)| ≤
∑
y∈Ω

π(y) max
A
|Pt(x, A) − Pt(y, A)|. (5.25){Eq:LemStepTV}

Finally, a weighted average of a set of numbers is never larger than the maximum
element, so the right-hand side in (5.25) is bounded by maxy∈Ω

∥∥∥Pt(x, ·) − Pt(y, ·)
∥∥∥

TV .
�

Exercise 5.1 asks the reader to prove the following equalities:

d(t) = sup
µ

∥∥∥µPt − π
∥∥∥

TV ,

d̄(t) = sup
µ,ν

∥∥∥µPt − νPt
∥∥∥

TV .

{Lem:TVSubMult}
L 5.8. The function d̄ is submultiplicative: d̄(s + t) ≤ d̄(s)d̄(t).

P. Fix x, y ∈ Ω, and let (Xs,Ys) be the optimal coupling of Ps(x, ·) and
Ps(y, ·) whose existence is guaranteed by Proposition 5.5. Hence∥∥∥Ps(x, ·) − Ps(y, ·)

∥∥∥
TV = P{Xs , Ys}.

As Ps+t is the matrix product of Pt and Ps, and the distribution of Xs is Ps(x, ·),
we have

Ps+t(x,w) =
∑

z

Ps(x, z)Pt(z,w) =
∑

z

P{Xs = z}Pt(z,w) = E
(
Pt(Xs,w)

)
. (5.26)

Combining this with the similar identity Ps+t(y,w) = E
(
Pt(Ys,w)

)
allows us to

write
Ps+t(x,w) − Ps+t(y,w) = E

(
Pt(Xs,w)

)
− E

(
Pt(Ys,w)

)
= E

(
Pt(Xs,w) − Pt(Ys,w)

)
.

(5.27){Eq:SandTCoupling}
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Combining the expectations is possible since Xs and Ys are defined together on the
same probability space.

Summing (5.27) over w ∈ Ω and applying Proposition 5.2 shows that∥∥∥Ps+t(x, ·) − Ps+t(y, ·)
∥∥∥

TV =
1
2

∑
w

∣∣∣∣E (
Pt(Xs,w) − Pt(Ys,w)

)∣∣∣∣ . (5.28)

Since |E(Z)| ≤ E (|Z|) for any random variable Z and expectation is linear, the
right-hand side above is less than or equal to

E
1

2

∑
w

∣∣∣Pt(Xs,w) − Pt(Ys,w)
∣∣∣ . (5.29)

Applying Proposition 5.2 again, we see that the quantity inside the expectation
is exactly the distance

∥∥∥Pt(Xs, ·) − Pt(Ys, ·)
∥∥∥

TV , which is zero whenever Xs = Ys.
Moreover, this distance is always bounded by d̄(t). This shows that∥∥∥Ps+t(x, ·) − Ps+t(y, ·)

∥∥∥
TV ≤ d̄(t)E

(
1{Xs,Ys}

)
= d̄(t)P{Xs , Ys}. (5.30)

Finally, since (Xs,Ys) is an optimal coupling, the probability on the right-hand side
is equal to ‖Ps(x, ·) − Ps(y, ·)‖TV . Maximizing over x, y completes the proof. �

Exercise 5.3 implies that d̄(t) is non-increasing in t. From this and Lemma 5.8
it follows that when c is any non-negative real number and t is any non-negative
integer, we have

d̄(ct) ≤ d̄(bcct) ≤ d̄(t)bcc. (5.31) {Eq:TimeMult}

5.5. Mixing Time

It is useful to introduce a parameter for the Markov chain which measures the
time required before the distance to stationarity is small. The mixing time is defined
by

tmix(ε) := min{t : d(t) ≤ ε}, (5.32) {Eq:MixingTimeDefnEp}

tmix := tmix(1/4). (5.33) {Eq:MixingTimeDefn}

Together Lemma 5.7 and Exercise 5.5 show that d(t) ≤ d̄(t) ≤ 2d(t). This, with
Equation 5.31, shows that if c is a non-negative real number,

d( ctmix(ε) ) ≤ d̄( ctmix(ε) ) ≤ d̄( tmix(ε) )bcc ≤ (2ε)bcc. (5.34) {Eq:dTimeMult}

In particular, taking ε = 1/4 above yields

d( ctmix ) ≤ (1/2)bcc (5.35) {Eq:MTMult}

tmix(ε) ≤
⌈
log2 ε

−1
⌉

tmix. (5.36) {Eq:TMixMult}

Thus, although the choice of 1/4 is arbitrary in the definition of tmix (Equation
5.33), a value of ε less than 1/2 is needed to make the inequality d( ctmix(ε) ) ≤
(2ε)bcc in (5.34) non-trivial and to achieve an inequality like (5.36).
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5.6. Reversing Symmetric Chains

For a distribution R on Sn, the inverse distribution R is defined by R(ρ) =
R(ρ−1).

{Lem:InvTVSame}
L 5.9. Let P be the transition matrix of the random walk on Sn generated

by a distribution R, and let P be that of the walk generated by R. Let U be the
uniform distribution on S. Then∥∥∥Pt(id, ·) − U

∥∥∥
TV =

∥∥∥∥P
t
(id, ·) − U

∥∥∥∥
TV

P. Let X0 = id, X1, . . . be a Markov chain with transition matrix P. We
can write Xk = π1π2 . . . πk, where the random permutations π1, π2, · · · ∈ Sn are
independent choices from the distribution R. Similarly, let (Yt) be a chain with
transition matrix P, with increments ρ1, ρ2, · · · ∈ Sn chosen independently from R.

For any fixed elements σ1, . . . , σt ∈ Sn,

P(π1 = σ1, . . . , πt = σt) = P(ρ1 = σ
−1
t , . . . , ρt = σ

−1
1 ),

by the definition of P. Summing over all strings such that σ1σ2 . . . σt = σ yields

Pt(id, σ) = P
t
(id, σ−1).

Hence ∑
σ∈Sn

∣∣∣∣∣Pt(id, σ) −
1
n!

∣∣∣∣∣ = ∑
σ∈Sn

∣∣∣∣∣Pt
(id, σ−1) −

1
n!

∣∣∣∣∣ = ∑
σ∈Sn

∣∣∣∣∣Pt
(id, σ) −

1
n!

∣∣∣∣∣
which is the desired result. �

The result of Lemma 5.9 generalizes to slightly less symmetric Markov chains.
{Lem:TimeReversal}

L 5.10. Let P be a transitive transition matrix and let P̂ be the time-
reversed matrix defined in (3.30). Then∥∥∥∥P̂t(x, ·) − π

∥∥∥∥
TV
=

∥∥∥Pt(x, ·) − π
∥∥∥

TV . (5.37){Eq:TimeReversedTV}

P. Since our chain is transitive, it has a uniform stationary distribution
(see Exercise 7.5). For x, y ∈ Ω, let φ(x,y) be a permutation carrying x to y and
preserving the structure of the chain. For any x, y ∈ Ω and any t,∑

z∈Ω

∣∣∣Pt(x, z) − |Ω|−1
∣∣∣ =∑

z∈Ω

∣∣∣Pt(φ(x,y)(x), φ(x,y)(z)) − |Ω|−1
∣∣∣ (5.38)

=
∑
z∈Ω

∣∣∣Pt(y, z) − |Ω|−1
∣∣∣ . (5.39)

Averaging both sides over y yields∑
z∈Ω

∣∣∣Pt(x, z) − |Ω|−1
∣∣∣ = 1
|Ω|

∑
y∈Ω

∑
z∈Ω

∣∣∣Pt(y, z) − |Ω|−1
∣∣∣ . (5.40){Eq:TransDoubleSumTV}
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Because π is uniform, we have P(y, z) = P̂(z, y), and thus Pt(y, z) = P̂t(z, y). It
follows that the right-hand side above is equal to

1
|Ω|

∑
y∈Ω

∑
z∈Ω

∣∣∣∣P̂t(z, y) − |Ω|−1
∣∣∣∣ = 1
|Ω|

∑
z∈Ω

∑
y∈Ω

∣∣∣∣P̂t(z, y) − |Ω|−1
∣∣∣∣ (5.41)

By Exercise 7.7, P̂ is also transitive, so (5.40) holds with P̂ replacing P (and z and
y interchanging roles). We conclude that∑

z∈Ω

∣∣∣Pt(x, z) − |Ω|−1
∣∣∣ =∑

y∈Ω

∣∣∣∣P̂t(x, y) − |Ω|−1
∣∣∣∣ . (5.42)

Dividing by 2 and applying Proposition 5.2 completes the proof. �

5.7. Ergodic Theorem*

The idea of the ergodic theorem for Markov chain is that “time averages equal
space averages”.

If f is a real-valued function defined onΩ, and µ is any probability distribution
on Ω, then we define

Eµ( f ) =
∑
x∈Ω

f (x)µ(x).

{Thm:ErgodicThm}
T 5.11. Let f be a real-valued function defined on Ω. If (Xt) is an

irreducible Markov chain, then for any starting distribution µ,

Pµ

 lim
t→∞

1
t

t−1∑
s=0

f (Xs) = Eπ( f )

 = 1. (5.43) {Eq:ErgodicThm}

P. Suppose that the chain starts at x, define τ+x,0 := 0 and

τ+x,k = min{t > τ+x,(k−1) : Xt = 0}.

Since the chain “starts afresh” every time it visits x, the blocks (Xτ+x,k , Xτ+x,k+1, . . . , Xτ+x,(k+1)−1)
are independent of one another. Thus if

Yk :=
τ+x,k−1∑

s=τ+x,(k−1)

f (Xs),

then the sequence (Yk) is i.i.d. If S t =
∑t−1

s=0 f (Xs), then S τ+x,n =
∑n

k=1 Yk, by the
Strong Law of Large Numbers (Theorem B.4),

Px

{
lim
n→∞

S τ+x,n

n
= Ex(Y1)

}
= 1.

Again by the Strong Law of Large Numbers, since τ+x,n =
∑n

k=1(τ+x,k − τ
+
x,(k−1)),

writing simply τ+x for τ+x,1,

Px

{
lim
n→∞

τ+x,n

n
= Ex(τ+x )

}
= 1.
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Thus,

Px

{
lim
n→∞

S τ+x,n

τ+x,n
=

Ex(Y1)
Ex(τ+x )

}
= 1. (5.44) {Eq:Erg1}

Note that

Ex(Y1) = Ex

τ
+
x−1∑
s=0

f (Xs)

 = Ex

∑
x∈Ω

f (x)
τ+x−1∑
s=0

1{Xs=x}

 =∑
x∈Ω

f (x)Ex

τ
+
x−1∑
s=0

1{Xs=x}

 .
Using (3.24) shows that

Ex(Y1) = Eπ( f )Ex(τ+x ). (5.45){Eq:Erg2}

Putting together (5.44) and (5.45) shows that

Px

{
lim
n→∞

S τ+x,n

τ+x,n
= Eπ( f )

}
= 1.

Exercise 5.2 shows that (5.43) holds when µ = δx, the probability distribution with
unit mass at x. Averaging over the starting state completes the proof. �

Taking f (y) = δx(y) = 1{y=x} in Theorem 5.11 shows that

Pµ

 lim
t→∞

1
t

t−1∑
s=0

1{Xs=x} = π(x)

 = 1,

so the asymptotic proportion of time the chain spends in state x equals π(x).

5.8. Problems
{Exer:MaxMeas}

E 5.1. Prove that

d(t) = sup
µ

∥∥∥µPt − π
∥∥∥

TV ,

d̄(t) = sup
µ,ν

∥∥∥µPt − νPt
∥∥∥

TV .

{Exercise:SubSeqSum}
E 5.2. Let (an) be a bounded (deterministic) sequence. If for a sequence

of integers (nk) satisfying limk→∞ nk/nk+1 = 1

lim
k→∞

a1 + · · · + ank

nk
= a,

then
lim
n→∞

a1 + · · · + an

n
= a.

{Ex:TVDistMonotone}
E 5.3. Let P by the transition matrix of a Markov chain with state space

Ω, and let µ and ν be any two distributions on Ω. Prove that

‖µP − νP‖TV ≤ ‖µ − ν‖TV .

(This in particular shows that
∥∥∥µPt+1 − π

∥∥∥
TV ≤

∥∥∥µPt − π
∥∥∥

TV , that is, advancing the
chain can only move it closer to stationarity.)
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{Exer:TVDecreasing}
E 5.4. Let P be the transition matrix of a Markov chain with stationary

distribution π. Prove that for any t ≥ 0,

d(t + 1) ≤ d(t),

where d(t) is defined by (5.22).
{Exer:StationaryVsState}

E 5.5. Let P be the transition matrix of a Markov chain with stationary
distribution π. Prove that for any t ≥ 0,

d̄(t) ≤ 2d(t),

where d(t) is defined by (5.22) and d̄(t) is defined by (5.23). [S]

5.9. Notes

One standard approach to proving the Convergence Theorem for ergodic fi-
nite Markov chains is to study the eigenvalues of the transition matrix. See, for
instance, Seneta (2006). Eigenvalues are often useful for bounding mixing times,
particularly for reversible chains, and we will study them in Chapter 12.

Aldous (1983) (in Lemma 3.5) gives versions of our Lemma 5.8 and Exer-
cises 5.4 and 5.5. He says all these results “can probably be traced back to Doe-
blin.”





CHAPTER 6

Coupling

{Ch:Coupling}
6.1. Definition

{Sec:CouplingDefn}

As we defined in Section 5.1, a coupling of two probability distributions µ and
ν is a pair of random variables (X,Y), defined on the same probability space, such
that the marginal distribution of X is µ and the marginal distribution of Y is ν.

Couplings are useful because we can often make comparisons between distri-
butions by constructing a coupling and comparing the random variables. Proposi-
tion 5.5 characterized ‖µ − ν‖TV as the minimum, over all couplings (X,Y) of µ and
ν, of the probability that X and Y are different. This provides a very useful way to
get upper bounds on the distance by finding a “good” coupling (X,Y) for which X
and Y agree as much as possible.

In this chapter, we will extract more information by coupling not only pairs of
distributions, but entire Markov chain trajectories. Here’s a simple initial example.

E 6.1. A simple random walk on {0, 1, . . . , n} is a Markov chain which
moves either up or down at each move with equal probability. If the walk attempts
to move outside the interval when at a boundary point, it stays put. It is intuitively
clear that Pt(x, n) ≤ Pt(y, n) whenever x ≤ y, as this says that the chance of being
at the “top” value n after t steps doesn’t decrease as you increase the height of the
starting position.

A simple proof uses a coupling of the distributions Pt(x, ·) and Pt(y, ·). Let
∆1,∆2, . . . be a sequence of i.i.d. {−1, 1}-valued random variables with zero mean,
so they are equally likely to be +1 as −1. We will define together two random
walks on {0, 1, . . . , n}: the walk (Xt) starts at x, while the walk (Yt) starts at y.

We use the same rule for moving in both chains (Xt) and (Yt): If ∆t = +1 move
the chain up if possible, and if ∆t = −1 move the chain down if possible. Hence the
chains move in step, although they are started at different heights. Once the two
chains meet (necessarily either at 0 or n), they stay together thereafter.

Clearly the distribution of Xt is Pt(x, ·), and the distribution of Yt is Pt(y, ·).
Importantly, Xt and Yt are defined on the same underlying probability space, as
both chains use the sequence (∆t) to determine their moves.

It is clear that if x ≤ y, then Xt ≤ Yt for all t. In particular, if Xt = n, the top
state, then it must be that Yt = n also. From this we can conclude that

Pt(x, n) = P{Xt = n} ≤ P{Yt = n} = Pt(y, n). (6.1)
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F 6.1. Coupled random walks on {0, 1, 2, 3, 4}. The walks
stay together after meeting.

Fig:CoupledRW

This argument shows the power of coupling. We were able to couple together
the two chains in such a way that Xt ≤ Yt always, and from this fact about the
random variables we could easily read off information about the distributions.

In the rest of this chapter, we will see how building two simultaneous copies of
a Markov chain using a common source of randomness, as we did in the previous
example, can be useful for getting bounds on the distance to stationarity.

Formally, a coupling of Markov chains is a process (Xt,Yt)∞t=0 with the property
that both (Xt) and (Yt) are Markov chains with transition matrix P, although the two
chains may possibly have different starting distributions.

Any coupling of Markov chains can be modified so that the two chains stay
together at all times after their first simultaneous visit to a single state—more pre-
cisely, so that

if Xs = Ys then Xt = Yt for t ≥ s. (6.2){Eq:StayTogether}

To construct a coupling satisfying (6.2), simply run the chains according to the
original coupling until they meet; then run them together.

6.2. Bounding Total Variation Distance

First, we show that the distance between the distributions of the chain started
from any two states can be bounded by the meeting time distribution of coupled
chains started from those same states. As usual, we will fix a Markov chain with
state space Ω, transition matrix P and stationary distribution π.

{Thm:CouplingFromStates}
T 6.2. Let {(Xt,Yt)} be a coupling satisfying (6.2) for which X0 = x and

Y0 = y. Let τcouple be the first time the chains meet:

τcouple := min{t : Xt = Yt}. (6.3){Eq:CouplingTimeDef}

Then ∥∥∥Pt(x, ·) − Pt(y, ·)
∥∥∥

TV ≤ P{τcouple > t}. (6.4)

P. Notice that Pt(x, z) = P{Xt = z} and Pt(y, z) = P{Yt = z}. Breaking up
the events in these probabilities according whether or not τcouple ≤ t gives

Pt(x, z) − Pt(y, z) = P{Xt = z, τcouple ≤ t} + P{Xt = z, τcouple > t}
− P{Yt = z, τcouple ≤ t} − P{Yt = z, τcouple > t}

(6.5)
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Now since Xt = Yt when τcouple ≤ t, the difference P{Xt = z, τcouple ≤ t} − P{Yt =

z, τcouple ≤ t} vanishes, and

Pt(x, z) − Pt(y, z) = P{Xt = z, τcouple > t} − P{Yt = z, τcouple > t}. (6.6)

Taking absolute values and summing over z yields∥∥∥Pt(x, ·) − Pt(y, ·)
∥∥∥

TV ≤
1
2

∑
z

[
P{Xt = z, τcouple > t} + P{Yt = z, τcouple > t}

]
(6.7)

= P{τcouple > t}. (6.8)

�

Lemma 5.7, combined with Theorem 6.2 proves the following corollary:
{Cor:Coupling}

C 6.3. Suppose that for each pair of states x, y there is a coupling
(Xt,Yt) with X0 = x and Y0 = y. For each such coupling, let τcouple be the first time
the chains meet, as defined in (6.3). Then

d(t) ≤ max
x,y∈Ω

Px,y{τcouple > t}.

Given a Markov chain on Ω with transition matrix P, a Markovian coupling of
P is a Markov chain with state space Ω ×Ω whose transition matrix Q satisfies

(i) for all x, y, x′ we have
∑

y′ Q((x, y), (x′, y′)) = P(x, x′), and
(ii) for all x, y, y′ we have

∑
x′ Q((x, y), (x′, y′)) = P(y, y′).

Clearly any Markovian coupling is indeed a coupling of Markov chains, as we
defined in Section 6.1.

R. All couplings used in this book will be Markovian.

6.3. Random Walk on the Torus
{Sec:RWTorus}

We defined random walk on the n-cycle in Example 3.2. The underlying graph
of this walk is called Zn. It has vertex set {1, 2, . . . , n}, with an edge between j and
k if j ≡ k ± 1 mod n. See Figure 3.3. The d-dimensional torus is the Cartesian
product

Zd
n = Zn × · · · × Zn︸          ︷︷          ︸

d times

.

Vertices x = (x1, . . . , xd) and y = (y1, y2, . . . , yd) are neighbors in Zd
n if for some

j ∈ {1, 2, . . . , n}, we have xi = yi for all i , j and x j ≡ y j±1 mod n. See Figure 6.2
for an example.

When n is even, the graph Zd
n is bipartite and the associated random walk is

periodic. To avoid this complication, we consider the lazy random walk on Zd
n,

defined in Section 3.3, which remains still with probability 1/2 at each move.
We now use coupling to bound the mixing time of the lazy random walk on Zd

n.
{Thm:RWTorus}

T 6.4. For the lazy random walk on the d-dimension torus Zd
n,

tmix(ε) = O
(

c(d)n2 log2(ε−1)
)
, (6.9) {Eq:Tau1RWTorus}

where c(d) is a constant dependening on the dimension d.
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F 6.2. The 2-torus Z2
20.
Fig:Torus

In order to apply Corollary 6.3 to prove Theorem 6.4, we construct a coupling
for each pair (x, y) of starting states and bound the coupling time τcouple = τx,y.

To couple together a random walk (Xt) started at x with a random walk (Yt)
started at y, first pick one of the d coordinates at random. If the two chains agree
in the chosen coordinate, we move both of the chains by +1, −1, or 0 in that
coordinate. If the two chains differ in the chosen coordinate, we randomly choose
one of the chains to move, leaving the other fixed. We then move the selected chain
by +1 or −1 in the chosen coordinate.

Let τi be the time required for coordinate i to agree in both chains. Each time
coordinate i is selected, the clockwise distance of the chain started at x to the chain
started at y either increases or decreases by 1, with equal probability. This distance,
when observed at the times that coordinate i is selected, is then a random walk on
{0, 1, 2, . . . , n}, with absorption at 0 and n. You should recognize this situation
as the “gambler’s ruin” discussed in Section 4.1. Proposition 4.1 implies that the
expected time to couple is at most n2/4, regardless of starting distance.

Since coordinate i is selected with probability 1/d at each move, there is a
geometric waiting time between moves with expectation d. Exercise 6.3 implies
that

E(τi) ≤
dn2

4
. (6.10)

The coupling time we are interested in is τcouple = max1≤i≤d τi, and we can
bound the max by a sum to get

E(τcouple) ≤
d2n2

4
. (6.11){Eq:CoupleTimeForTorus}

This time is independent of the starting states, and we can use Markov’s inequality
to get

P{τcouple > t} ≤
E(τcouple)

t
≤

1
t

d2n2

4
(6.12)

Taking t0 = d2n2 shows that d(t0) ≤ 1/4, and so tmix ≤ d2n2. By Equation 5.36,

tmix(ε) ≤ d2n2
⌈
log(ε−1)

⌉
,
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Copy 1: 0 0 1 1 0 1 0 0 1 1
Copy 2: 0 1 1 0 0 0 1 0 1 0

︸                                                                                             ︷︷                                                                                             ︸
Copy 1: 0 0 1 1 0 1 0 0 1 1
Copy 2: 0 1 1 0 0 1 1 0 1 0

F 6.3.
Fig:HCCoup
One step in two coupled lazy walks on the hypercube.

First, choose a coordinate to update—here, the sixth. Then, flip
a 0/1 coin and use the result to update the chosen coordinate to the
same value in both walks.

and we have proved Theorem 6.4.
Exercise 6.4 shows that the bound on c(d) can be improved.

6.4. Random Walk on the Hypercube
{Sec:CouplingRWHC}

The simple random walk hypercube {0, 1}n was defined in Section 4.3.2: this
is the simple walker on the graph having vertex set {0, 1}n – the binary words of
length n – and with edges connecting words differing in exactly one letter.

To avoid periodicity, we study the lazy chain: at each time step, the walker re-
mains at her current position with probability 1/2, and with probability 1/2 moves
to a position chosen uniformly at random among all neighboring vertices.

As remarked in Section 4.3.2, a convenient way to generate the lazy walk is
as follows: pick one of the n coordinates uniformly at random, and refresh the
bit at this coordinate with a random fair bit (one which equals 0 or 1 each with
probability 1/2).

This algorithm for running the walk leads to the following coupling of two
walks with possibly different starting positions: First, pick among the n coordinates
uniformly at random; suppose that coordinate i is selected. In both walks, replace
the bit at coordinate i with the same random fair bit. (See Figure 6.3.) From this
time onwards, both walks will agree in the ith coordinate. A moment’s thought
reveals that individually each of the walks is indeed a lazy random walker on the
hypercube.

If τ is the first time when all of the coordinates have been selected at least once,
then the two walkers agree with each other from time τ onwards. (If the initial
states agree in some coordinates, the first time the walkers agree could be strictly
before τ.) The distribution of τ is exactly the same as the coupon collector random
variable studied in Section 4.2. In particular, E(τ) = n

∑n
k=1 k−1 ≤ n(log n + 1).

Using Corollary 6.3 shows that

d(t) ≤ P{τ > t} ≤
E(τ)

t
≤

n(log n + 1)
t

.
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Thus, (5.36) yields

tmix(ε) ≤ 4n(log n + 1)
⌈
log2(ε−1)

⌉
. (6.13) {Eq:BadHCBound}

Simply, tmix = O(n log n). The bound in (6.13) will be sharpened in Section 8.5 via
a more complicated coupling.

6.5. Problems
{Exer:CouplingConvergence}

E 6.1. A mild generalization of Theorem 6.2 can be used to give an
alternative proof of the Convergence Theorem.
(a) Show that when (Xt,Yt) is a coupling satisfying (6.2) for which X0 ∼ µ and

Y0 ∼ ν, then ∥∥∥µPt − νPt
∥∥∥

TV ≤ P{τcouple > t}. (6.14){Eq:CplCnvThm}

(b) If in (a) we take ν = π, where π is the stationary distribution, then (by defini-
tion) πPt = π, and (6.14) bounds the difference between µPt and π. The only
thing left to check is that there exists a coupling guaranteed to coalesce, that is,
for which P{τcouple < ∞} = 1. Show that if the chains (Xt) and (Yt) are taken to
be independent of one another then they are assured to eventually meet.

{Exercise:MarkovianCoupling}
E 6.2. Let (Xt,Yt) be a Markovian coupling such that for some 0 < α <

1 and some t0 > 0, the coupling time τcouple = min{t ≥ 0 : Xt = Yt} satisfies
P{τcouple ≤ t0} ≥ α for all pairs of initial states (x, y). Prove that

E(τcouple) ≤
t0
α
.

{Exer:WeakWald}
E 6.3. Show that if X1, X2, . . . are independent and each have mean µ,

and τ is a Z+-valued random variable independent of all the Xi’s, then

E
 τ∑

i=1

Xi

 =∑
t

P{τ = t}E
 t∑

i=1

Xi

 = µE(τ).

{Exer:BetterTorusBound}
E 6.4. We can get a better bound on the mixing time for the lazy

walker on the d-dimensional torus by sharpening the analysis of the “coordinate-
by-coordinate” coupling given in the proof of Theorem 6.4.

Let t ≥ kdn2.
(a) Show that the probability that the first coordinates of the two walks have not

yet coupled by time t is less than (1/4)k.
(b) By making an appropriate choice of k and considering all the coordinates, ob-

tain an O(d log dn2) bound on tmix.

6.6. Notes

For many examples of coupling, a good reference is Lindvall (2002).



CHAPTER 7

Strong Stationary Times

{Ch:SST}
7.1. Two Examples

{Sec:T2R1}
7.1.1. The top-to-random shuffle. Consider the following (slow) method of

shuffling a deck of n cards: Take the top card and insert it uniformly at random in
the deck. This process will eventually mix up the deck – the successive arrange-
ments of the deck is a Markov chain on the n! possible orderings of the cards, with
uniform stationary distribution. (See Exercise 7.1.)

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	


 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 


� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �


 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 


� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

under the original bottom card

Original bottom card

Next card to be placed in one of the slots

F 7.1. The top-to-random shuffle.
Fig:TopToRandom

How long must we shuffle using this method until the arrangement of the deck
is close to random?

Let τ be the time one move after the first occasion when the original bottom
card has moved to the top of the deck. We show now that the arrangement of cards
at time τ is distributed uniformly on the set of all permutations of {1, . . . , n}. More
generally, we argue that when there are k cards under the original bottom card, then
all k! orderings of these k cards are equally likely.

This can be seen by induction. When k = 1, the conclusion is obvious. Suppose
that there are (k − 1) cards under the original bottom card, and that each of the
(k − 1)! arrangements are equally probable. The next card to be inserted below the
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original bottom card is equally likely to land in any of the k possible positions, and
by hypothesis, the remaining (k − 1) cards are in random order. We conclude that
all k! arrangements are equally likely.

{Sec:RWHC_ST_I}
7.1.2. Random walk on the hypercube. We have met already the lazy ran-

dom walk on the hypercube {0, 1}n in Section 4.3.2. Recall that a move of this walk
can be executed by choosing among the n coordinate at random, and replacing the
bit at the selected location by an independent fair bit.

Let τ be the first time that each of the coordinates has been selected at least
once. Since all the bits at this time have been replaced by independent fair coin
tosses, the distribution of the state of the chain at τ is uniform on {0, 1}n, and
independent of the value of τ.

In both of these examples, we found an “online algorithm” for when to stop
the chain so that the stopping state is distributed exactly according to the stationary
distribution π.

It should not be too surprising that bounding the size of τ (in distribution)
bounds the mixing time of the chain, the fixed time required before the distribution
of the chain is near the stationary distribution.

The random times τ in these two examples are both strong stationary times.
Before we can give a precise definition, we first must understand stopping times.

7.2. Stopping in the Stationary Distribution
{Sec:Stop}

7.2.1. Stopping times. A friend gives you directions to his house, telling you
to take Main street and to turn left at the first street after City Hall. These are
acceptable directions, because you are able to determine when to turn using land-
marks you have already encountered before the turn. This is an example of a stop-
ping time, which is an instruction for when to “stop” depending only on informa-
tion up until the turn.

On the other hand, his roommate also provides directions to the house, telling
you to take Main street and turn left at the last street before you reach a bridge. You
have never been down Main street, so not knowing where the bridge is located, you
unfortunately must drive past the turn before you can identify it. Once you reach
the bridge, you must backtrack. This is not a stopping time, you must go past the
turn before recognizing it.

We now provide a precise definition for a stopping time. Let (Yt)∞t=0 be a se-
quence of random variables taking values in the space Λ, which we assume to be
either a finite set or Rd. Another sequence (Zt) with values in Λ′ is said to be
adapted to (Yt) if for each t there exists a function ft : Λt+1 → Λ′ so that

Zt = ft(Y0,Y1, . . . ,Yt).

E 7.1. Let (Yt) be an i.i.d. sequence of mean-zero {−1,+1}-valued ran-
dom variables, and let S t =

∑t
s=1 Ys. The sequence (S t) is adapted to (Yt).

In this set-up, the sequence (Yt) is the fundamental source of noise, while we
may be primarily interested in a sequence (Zt) which is built from this source of
randomness.
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A stopping time for (Yt) is a random time τ with values in {0, 1, 2, . . . , } ∪ {∞}
such that (1{τ=t}) is adapted to (Yt). (The random variable 1A is the indicator ran-
dom variable for the event A, i.e. the {0, 1}-valued random variable which equals 1
if and only if A occurs.) For a stopping time τ, the event {τ = t} is determined by
the vector (Y0,Y1, . . . ,Yn).

E 7.2 (Hitting times). Let A be a subset of Ω. The history up to time t
suffices to determine whether a site in A is visited for the first time at time t. That
is, if

τA = min{t ≥ 0 : Yt ∈ A}
is the first time that the sequence (Yt) is in A, then

1{τA=t} = 1{Y0<A,Y1<A,...,Yt−1<A,Yt∈A}.

The right-hand side is a function of (Y0,Y1, . . . ,Yt), whence (1{τA=t}) is adapted to
(Yt) and τA is a stopping time.

An example of a random time which is not a stopping time is the first time that
the sequence reaches its maximum value over a time interval {0, 1 . . . , t1}:

M = min
{

t : Yt = max
1≤s≤t1

Ys

}
. (7.1)

It is impossible to check whether M = t by looking only at the first t values of the
sequence. Indeed, any investor hopes to sell a stock at the time M when it achieves
its maximum value. Alas, this would require clairvoyance—the ability to see into
the future—and is not a stopping time.

7.2.2. Achieving equilibrium. Let (Xt) be a Markov chain which is adapted
to the sequence of random variables (Yt). A strong stationary time for a Markov
chain (Xt) is a stopping time τ for (Yt) such that Xτ, the chain sampled at τ, has two
properties: first, the law of Xτ is exactly the stationary distribution of the chain,
and second, the value of Xτ is independent of τ. That is, for all t = 0, 1, 2, . . .,

P{Xt = x, τ = t} = π(x)P{τ = t}. (7.2) {Eq:SSTDefn}

Strong stationary times were introduced in Aldous and Diaconis (1987); see also
Aldous and Diaconis (1986).

We will later need the following strengthening of equation (7.2): If τ is a strong
stationary time, then

P{Xt = x, τ ≤ t} = π(x)P{τ ≤ t} (7.3) {Eq:SSTFuture}

To see this, if s ≤ t and P{T = s} > 0, then

P{Xt = x, T = s} =
∑
y∈Ω

P{Xt = x | Xs = y, T = s}P{Xs = y, T = s}

=
∑
y∈Ω

Pt−s(y, x)π(y)P{T = s}. (7.4) {Eq:SSTStrong}

Since π satisfies π = πPt−s, the right-hand side of (7.4) equals π(x)P{T = s}.
Summing over s ≤ t establishes (7.3).
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7.3. Bounding Convergence using Strong Stationary Times

Throughout this section, we discuss a Markov chain (Xt) with transition matrix
P and stationary distribution π. The route from strong stationary times to bounding
convergence time is the following proposition:

{Prop:SSTBound}
P 7.3. If τ is a strong stationary time, then

d(t) = max
x∈Ω
‖Pt(x, ·) − π‖TV ≤ max

x∈Ω
Px{τ > t}. (7.5){Eq:TVSST}

We break the proof into several lemmas. It will be convenient to introduce a
parameter s(t), called separation distance and defined by

s(t) := max
x,y∈Ω

[
1 −

Pt(x, y)
π(y)

]
. (7.6){Eq:SepDef}

The relationship between s(t) and τ is:
{Lem:SepAndSST}

L 7.4. If τ is a strong stationary time, then

s(t) ≤ max
x∈Ω

Px{τ > t}. (7.7){Eq:SepUB}

P. Observe that for any x, y ∈ Ω,

1 −
Pt(x, y)
π(y)

= 1 −
Px{Xt = y}

π(y)
≤ 1 −

Px{Xt = y, τ ≤ t}
π(y)

. (7.8)

By Equation 7.3, the right-hand side is bounded above by

1 −
π(y)Px{τ ≤ t}

π(y)
= Px{τ > t}. (7.9)

�

The next lemma along with Lemma 7.4 proves (7.5).
{Lem:TVSep}

L 7.5. d(t) ≤ s(t).

P. Writing

‖Pt(x, ·) − π‖TV =
∑
y∈Ω

Pt(x,y)<π(y)

[
π(y) − Pt(x, y)

]
=

∑
y∈Ω

Pt(x,y)<π(y)

π(y)
[
1 −

Pt(x, y)
π(y)

]
,

(7.10)
we conclude that

‖Pt(x, ·) − π‖TV ≤ max
y∈Ω

[
1 −

Pt(x, y)
π(y)

]
. (7.11)

�
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F 7.2. Two complete graphs (on 4 vertices), “glued” at a sin-
gle vertex. Loops have been added so that every vertex has the
same degree (count each loop as one edge).

Fig:TwoComplete

7.4. Examples
{Sec:TwoComplete}

7.4.1. Two glued complete graphs. Consider the graph G obtained by taking
two complete graphs on n vertices and “gluing” them together at a single vertex.
We analyze here a slightly modified simple random walk on G.

Let v? be the vertex where the two complete graphs meet. The degree at v?

has degree 2n − 2, while the degree at every other vertex has degree n − 1. We
modify the graph to make it regular and to have holding probabilities, by adding
1 loop at v? and n loops at at all other vertices. See Figure 7.2 for an illustration
when n = 4. The degree of every vertex is 2n − 1. Since the graph is regular, the
stationary distribution is uniform.

It is clear that when at v?, the next move is equally likely to be any of the 2n−1
vertices. For this reason, if τ is the time one step after v? has been visited for the
first time, then τ is a strong stationary time.

When the walk is not at v?, the chance of moving (in one step) to v? is 1/(2n−
1). This remains true at any subsequent move. That is, the first time τv? that the
walk visits v? is geometric with E (τv?) = 2n − 1.

E (τ) = 2n (7.12) {Eq:TwoCompExp}

Using Markov’s inequality and (7.12) shows that

Px{τ ≥ t} ≤
2n
t
. (7.13) {Eq:TTwoK}

Taking t = 8n in (7.13) and applying Proposition 7.3 shows that

tmix ≤ 8n.

A lower bound on tmix of order n is obtained in Exercise 7.11.
{Section:HC}

7.4.2. Random walk on the hypercube. We return to the lazy random walker
on {0, 1}n, discussed in Section 7.1.2. The time τ when each coordinate has been
selected at least once for the first time is a strong stationary time. This stopping
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time and the coordinate-by-coordinate coupling used in Section 6.4 are closely
related: the coupon collector’s time of Section 4.2 dominates the coupling time
and has the same distribution as τ. It is therefore not surprising that we obtain here
exactly the same upper bound for tmix as was found using the coupling method. In
particular, combining Proposition 4.3 and Proposition 7.3 give the bound tmix(ε) ≤
n log n + log(ε)n.

{Sec:TtoRUpper}
7.4.3. Top-to-random shuffle. Revisiting the top-to-random shuffle introduced

in Section 7.1.1, the time τ when the original bottom card is first placed in the deck
after rising to the top is a strong stationary time.

Consider the motion of the original bottom card. When there are k cards be-
neath it, the chance that it rises one card remains k/n until a shuffle puts the top
card underneath it. Thus, the distribution of τ is the same as the coupon collec-
tor’s time. As above for the lazy hypercube walker, combining Proposition 7.3 and
Proposition 4.3 yields

d(n log n + αn) ≤ e−α for all n. (7.14){eq.t2rdub}

Consequently,
tmix(ε) ≤ n log n + log(ε)n. (7.15){eq.t2rmtub}

7.5. The Move-to-Front Chain
{Sec:Transitive}{Sec:MTF}

7.5.1. Move-to-front chain. A certain professor owns many books, arranged
on his shelves. When he finishes with a book drawn from his collection, he does
not waste time reshelving it in its proper location. Instead, he puts it at the very
beginning of his collection, in front of all the shelved books.

If his choice of book is random, this is an example of the move-to-front chain.
It is a very natural chain which arises in many applied contexts. Any setting where
items are stored in a stack, removed at random locations, and placed on the top of
the stack can be modeled by the move-to-front chain.

Let P be the transition matrix (on permutations of {1, 2, . . . , n}) corresponding
to this method of rearranging elements.

The time-reversal P̂ of the move-to-front chain is the top-to-random shuffle,
as intuition would expect. It is clear from the definition that for any permissible
transition σ1 7→ σ2 for move-to-front, the transition σ2 7→ σ1 is permissible for
top-to-random, and both have probability n−1.

By Lemma 5.9, the mixing time for move-to-front will be identical to that of
the top-to-random shuffle. Consequently, the mixing time for move-to-front is not
more than n log n − log(ε)n.

7.6. Problems
{Exercise:T2R}

E 7.1. Show that the top-to-random shuffle just described is a Markov
chain with stationary distribution uniform on the n! card arrangements. [S]

E 7.2. Show that the time until the card initially one card from the
bottom rises to the top, plus one more move, is a strong stationary time, and find
its expectation.
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Drawing by Yelena Shvets

{Exercise:GluedKn}
E 7.3. Show that for the Markov chain on two complete graphs in Sec-

tion 7.4.1, the stationary distribution is uniform on all 2n − 1 vertices.
{Exer:TorusTransitive}

E 7.4. Show the lazy random walk on the torus (Section 6.3) is transi-
tive. [S]

{Exer:TransitiveUniform}
E 7.5. Show that the stationary distribution of a transitive chain must

be uniform.
{Exercise:ReversedChain}

E 7.6. Let (Xt) be a Markov chain with transition matrix P, and write
(X̂t) for the time-reversed chain with the matrix P̂ defined in (3.30).
(a) Check that π is stationary for P̂.
(b) Show that

Pπ{X0 = x0, . . . , Xt = xt} = Pπ{X̂0 = xt, . . . , X̂t = x0}. (7.16)

[S]
{Exercise:RevTrans}

E 7.7. Show that if P is transitive, then P̂ is also transitive.
{Exercise:SepIsSubM}

E 7.8. Let s(t) be defined as in (7.6).
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{It:Decomp}
(a) Show that there is a stochastic matrix Q so that Pt(x, ·) = [1 − s(t)] π+s(t)Q(x, ·)

and π = πQ.{It:SepSubM1}
(b) Using the representation in (a), show that

Pt+u(x, y) = [1 − s(t)s(u)] π(y) + s(t)s(u)
∑
z∈Ω

Qt(x, z)Qu(z, y). (7.17){Eq:SepSubM1}

(c) Using (7.17) establish that s is submultiplicative: s(t + u) ≤ s(t)s(u).
[S]

{Exer:SSTGeo}
E 7.9. Show that if maxx∈Ω Px{τ > t0} ≤ ε, then d(t) ≤ εt/t0 . [S]

{Exercise:WaldFull}
E 7.10 (Wald’s Identity). Let (Yt) be a sequence of independent and

identically distributed random variables.
(i) Show that if τ is a random time so that the event {τ ≥ t} is independent of Yt

and E(τ) < ∞, then

E
 τ∑

t=1

Yt

 = E(τ)E(Y1). (7.18){Eq:WaldFull}

Hint: Write
∑τ

t=1 Yt =
∑∞

t=1 Yt1{τ≥t}.
(ii) Let τ be a stopping time for the sequence (Yt). Show that {τ ≥ t} is indepen-

dent of Yt+1, so (7.18) holds provided that E(τ) < ∞.
[S]

{Exercise:TwoKnLowerBound}
E 7.11. Consider the Markov chain of Section 7.4.1 defined on two

glued complete graphs. By considering the set A ⊂ Ω of all vertices in one of the
two complete graphs, show that tmix ≥ (n/2) [1 + o(1)].

7.7. Notes

References on strong uniform times are Aldous and Diaconis (1986) and Al-
dous and Diaconis (1987).

A state x is a halting state for a stopping time τ if Xt = x implies τ ≤ t.
Lovasz and Winkler showed that a stationary time has minimal expectation among
all stationary times if and only if it has a halting state.



CHAPTER 8

Lower Bounds on Mixing Times and Cut-Off

{Ch:Lower}
8.1. Diameter Bound

Suppose that (Xt) is a random walk on a graph with vertex setΩ. If the possible
locations of the walker after t steps are not a significant fraction of Ω, then the
distribution of her position at time t cannot be close to stationary. We can make
this precise.

Define the diameter of a graph with vertex set Ω to be the maximum distance
between two vertices:

diam = max
x,y∈Ω

ρ(x, y). (8.1) {Eq:DiamDefn}

(The distance ρ(x, y) between vertices x and y in a graph is the minimum length
of a path connecting x and y.) Note that if x0 and y0 are vertices with ρ(x0, y0) =
diam, then P(diam−1)/2(x0, ·) and P(diam−1)/2(y0, ·) are positive on disjoint vertex sets.
Consequently, d̄((diam − 1)/2) = 1 and for any ε < 1/2,

tmix(ε) ≥
diam

2
. (8.2) {Eq:TMixDiameter}

8.2. Bottleneck Ratio
{Sec:BR}

Bottlenecks in the state-space Ω of a Markov chain are geometric features that
control mixing time. A bottleneck makes portions of Ω difficult to reach from
some starting locations, limiting the speed of convergence. See Figure 8.1 for the
illustration of a graph having an obvious bottleneck.
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F 8.1. A graph with a bottleneck.
Fig:Bottleneck

As usual, P is the transition matrix for a Markov chain on Ω with stationary
distribution π.
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The edge measure Q is defined by

Q(x, y) := π(x)P(x, y), Q(A, B) =
∑

x∈A,y∈B

Q(x, y). (8.3)

Q(A, B) is the probability of moving from A to B in one step when starting from
the stationary distribution.

The bottleneck ratio of the set S is defined as

Φ(S ) :=
Q(S , S c)
π(S )

, (8.4)

and the bottleneck ratio of the whole chain is

Φ? := min
S : π(S )≤ 1

2

Φ(S ). (8.5){Eq:BNDefn}

For simple random walk on a graph with vertices Ω and edge-set E,

Q(x, y) =

deg(x)
2|E|

1
deg(x) =

1
2|E| if {x, y} is an edge,

0 otherwise.

In this case, 2|E|Q(S , S c) is the size of the boundary ∂S of S , the collection of
edges having one vertex in S and one vertex in S c. The bottleneck ratio, in this
case, becomes

Φ(S ) =
|∂S |∑

x∈S deg(x)
. (8.6){Eq:BNRSRW}

If the graph is regular with degree d, then Φ(S ) = d−1|∂S |/|S |, which is propor-
tional to the ratio of the size of the boundary of S to the volume of S .

The relationship of Φ? to tmix is the following theorem:
{Thm:CheegerLower}

T 8.1. If Φ? is the bottleneck ratio defined in (8.5), then

tmix = tmix (1/4) ≥
1

4Φ?
. (8.7){Eq:CheegerLower}

P. Denote by πS the restriction of π to S , so that πS (A) = π(A ∩ S ), and
define µS to be π conditioned on S :

µS (A) =
πS (A)
π(S )

.

From Remark 5.1,

π(S ) ‖µS P − µS ‖TV = π(S )
∑
y∈Ω,

µS P(y)≥µS (y)

[
µS P(y) − µS (y)

]
. (8.8){Eq:Scompliment}

Because πS P(y) = π(S )µS P(y) and πS (y) = π(S )µS (y), the inequality µS P(y) ≥
µS (y) holds if and only if πS P(y) ≥ πS (y), and

π(S ) ‖µS P − µS ‖TV =
∑
y∈Ω,

πS P(y)≥πS (y)

[
πS P(y) − πS (y)

]
. (8.9){Eq:SCompliment2}



8.2. BOTTLENECK RATIO 79

Because πS (x) > 0 only for x ∈ S , and πS (x) = π(x) for x ∈ S ,

πS P(y) =
∑
x∈Ω

πS (x)P(x, y) =
∑
x∈S

π(x)P(x, y) ≤
∑
x∈Ω

π(x)P(x, y) = π(y). (8.10){Eq:PiSForward}

Again using that π(y) = πS (y) for y ∈ S , from (8.10) follows the inequality

πS P(y) ≤ πS (y) for y ∈ S . (8.11) {Eq:Bigger}

On the other hand, because πS vanishes on S c,

πS P(y) ≥ 0 = πS (y) for y ∈ S c. (8.12) {Eq:BiggerSc}

Combining (8.11) and (8.12) shows the the sum on the right in (8.9) can be taken
over S c:

π(S ) ‖µS P − µS ‖TV =
∑
y∈S c

[
πS P(y) − πS (y)

]
. (8.13)

Again because πS (y) = 0 for y ∈ S c,

π(S ) ‖µS P − µS ‖TV =
∑
y∈S c

∑
x∈S

π(x)P(x, y) = Q(S , S c).

Dividing by π(S ),
‖µS P − µS ‖TV = Φ(S ).

By Exercise 5.3, for any u ≥ 0,∥∥∥µS Pu+1 − µS Pu
∥∥∥

TV ≤ Φ(S ).

Using the triangle inequality on µS Pt − µS =
∑t−1

u=0(µS Pu+1 − µS Pu),∥∥∥µS Pt − µS
∥∥∥

TV ≤ tΦ(S ). (8.14) {Eq:TVtPhi}

Assume that π(S ) ≤ 1
2 . In this case,

‖µS − π‖TV ≥ µS (S c) − π(S c) ≥
1
2
.

Also,
1
2
≤ ‖µS − π‖TV ≤

∥∥∥µS − µS Pt
∥∥∥

TV +
∥∥∥µsPt − π

∥∥∥
TV . (8.15) {Eq:CLB1}

Taking t = tmix = tmix(1/4) in (8.15), by definition of tmix and using (8.14),
1
2
≤ tmixΦ(S ) +

1
4
.

Rearranging and minimizing over S establishes (8.7). �

{Example:TwoTorLB}
E 8.2 (Two glued tori). Consider the graph of two tori “glued” together

at a single vertex. This graph is a pair of two-dimensional tori sharing exactly one
common node, which we label v?; see Figure 8.2. Denote by V1 and V2 the vertices
in the right and left tori, respectively.

The set ∂V1 consists of all edges {v?, v}, where v ∈ V2. The size of ∂V1 is 2d.
Also,

∑
x∈V1 deg(x) = 2dn2. Consequently,

Φ? ≤ Φ(V1) =
2d

2dn2 = n−2.
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F 8.2. Two “glued” tori.
Fig:TwoTori

F 8.3. The star graph with 11 vertices.
Fig:StarGraph

Theorem 8.1 implies that tmix ≥ n2/4. We return to this example in Section 11.7,
where it is proved that tmix � n2 log n. Thus the lower bound here does not give the
correct order.

{Example:ColorStar}

E 8.3 (Coloring the star). Recall that a proper q-coloring of a graph G
with vertex set V and edge set E is a map x : V → {1, 2, . . . , q} so that x(v) , x(w)
for all {v,w} ∈ E. (See Section 14.3.1.) Ω is the set of all proper q-colorings of G,
and π is the uniform distribution on Ω. The Glauber dynamics for π is the Markov
chain which makes transitions as follows: At each unit of time, a vertex is chosen
from V uniformly at random, and the color at this vertex is chosen uniformly at
random from all feasible colors. The feasible colors at vertex v are all colors not
present among the neighbors of v.

In Chapter 14, an upper bound on tmix is proven when there are an abundance
of colors relative to the maximum degree of the graph. (Cf. Section 14.3.3.) In that
case, the Glauber dynamics is fast mixing, meaning that tmix is polynomial in |V |.
(Note that |V | is much smaller than |Ω|.)

Here we show by example that if the maximum degree is growing in n while
the number of colors q is fixed, then the mixing time grows at least exponentially
in |V |.
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The graph we study here is the star, as shown in Figure 8.3. This graph is a
tree of depth 1.

Let v? denote the root vertex, and let S be defined as the set of proper colorings
so that v? has color 1:

S = {x ∈ Ω : x(v?) = 1}.

Since the constraint x(v?) = 1 means that each leaf can be colored with any of
the remaining q − 1 colors, |S | = (q − 1)n−1. For (x, y) ∈ S × S c, the transition
probability P(x, y) is non-zero if and only if all leaves v satisfy x(v) = y(v) and
x(v) < {x(v?), y(v?)}. It follows that∑

x∈S ,y∈S c

Q(x, y) ≤
1
|Ω|

1
n

(q − 1)(q − 2)n−1,

and
Q(S , S c)
π(S )

≤
(q − 1)2

n(q − 2)

(
1 −

1
q − 1

)n

≤
(q − 1)2

n(q − 2)
e−n/(q−1).

Consequently, the mixing time is at least of exponential order:

tmix ≥
n(q − 2)
4(q − 1)2 en/(q−1).

R 8.1. In fact, this argument shows that if n/(q log q) → ∞, then tmix is
super-polynomial in n.

{Xmple:BinTreeLB}
E 8.4 (Binary Tree). A rooted binary tree of depth k, denoted by T2,k,

is a tree with a distinguished vertex v0, the root, so that
• v0 has degree 2,
• every vertex at distance j from the root, where 1 ≤ j ≤ k − 1, has degree

3,
• the vertices at distance k from v0, called leaves, have degree 1.

There are n = 2k+1 − 1 vertices in T2,k.
In this example, we consider the lazy random walk on T̃2,k; this walk remains

at its current position with probability 1/2.

F 8.4. A binary tree of height 3.
Fig:BTree
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Label the vertices adjacent to v0 as vr and v`. Call w a descendent of v if the
shortest path from w to v0 passes through v. Let S consist of the right-hand side of
the tree, that is, vr and all of its descendants.

We write |v| for the length of the shortest path from v to v0. The stationary
distribution is

π(v) =


2

2n−1 for v = v0,
3

2n−1 for 0 < |v| < k,
1

2n−1 for |v| = k.

Adding π(v) over v ∈ S shows that π(S ) = (n− 2)/(2n− 1). Since there is only one
edge from S to S c,

Q(S , S c) = π(vr)P(vr, v0) =
(

3
2n − 1

)
1
6
=

1
2(2n − 1)

,

and so

Φ(S ) =
1

2n − 4
.

Applying Theorem 8.1 establishes the lower bound

tmix ≥
n − 2

2
.

8.3. Distinguishing Statistics

One way to produce a lower bound on the mixing time tmix is to find a statistic
f (a real-valued function on Ω) so that the distance between the distribution of
f (Xt) and the distribution of f under the stationary distribution π can be bounded
from below.

Let µ and ν be two probability distributions on Ω, and let f be a real-valued
function defined on Ω. We write Eµ to indicate expectations of random variables
(on sample space Ω) with respect to the probability distribution µ:

Eµ( f ) =
∑
x∈Ω

f (x)µ(x).

(Note the distinction between Eµ with Eµ, the expectation operator correspond-
ing to the Markov chain (Xt) started with µ.) Likewise Varµ( f ) indicates variance
computed with respect to the probability distribution µ.

{Prop:ChebyshevLowerBound}
P 8.5. Let µ and ν be two probability distributions on Ω, and f a

real-valued function on Ω. If

|Eµ( f ) − Eν( f )| ≥ rσ, (8.16){Eq:SepBySDs}

where σ2 = max{Varµ( f ),Varν( f )}, then

‖µ − ν‖TV ≥ 1 −
4

4 + r2 . (8.17){Eq:TVLB}

Before proving this, we provide a useful lemma:
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{Lem:TVProj}
L 8.6. Let µ and ν be probability distributions onΩ, and let f : Ω→ Λ be

a function on Ω, where Λ is a finite set. Write µ f −1 for the probability distribution
on Λ defined by (µ f −1)(A) := µ( f −1(A)) for A ⊂ Λ. Then

‖µ − ν‖TV ≥
∥∥∥µ f −1 − ν f −1

∥∥∥
TV .

R 8.2. When X is a Ω-valued random variable with distribution µ and
f : Ω→ Λ is a function, then f (X) has distribution µ f −1 on Λ.

P. Since

|µ f −1(B) − ν f −1(B)| = |µ( f −1(B)) − ν( f −1(B))|,

it follows that

max
B⊂Λ
|µ f −1(B)) − ν f −1(B)| ≤ max

A⊂Ω
|µ(A) − ν(A)|.

�

If α is a probability distribution on a finite subsetΛ of R, the translation of α by
c is the probability distribution αc on Λ+c defined by x 7→ α(x−c). Total variation
distance is translation invariant: If α and β are two probability distributions on a
finite subset Λ of R, then ‖αc − βc‖TV = ‖α − β‖TV .

P  P 8.5. Suppose that α and β are probability distributions
on a finite subset Λ of R. Let

mα :=
∑
x∈Λ

xα(x), mβ :=
∑
x∈Λ

xβ(x)

be the mean of α and β, respectively; assume that mα > mβ. Define M by mα−mβ =

2M. By translating, we can assume that mα = M and mβ = −M. Let η = (α+ β)/2,
and define

f (x) :=
α(x)
η(x)

, g(x) :=
β(x)
η(x)

.

By Cauchy-Schwarz,

4M2 =

∑
x∈Λ

x[ f (x) − g(x)]η(x)

 ≤∑
x∈Λ

x2η(x)
∑
x∈Λ

[ f (x) − g(x)]2η(x). (8.18) {Eq:CM1}

Note that ∑
x∈λ

x2η(x) =
m2
α + Var(α) + m2

β + Var(β)

2
= M2 + v, (8.19) {Eq:CM2}

where v := (Var(α) + Var(β))/2. Since

| f (x) − g(x)| = 2
|α(x) − β(x)|
α(x) + β(x)

≤ 2,

we have∑
x∈Λ

[ f (x) − g(x)]2η(x) ≤ 4
1
2

∑
x∈Λ

| f (x) − g(x)|η(x) = 4
1
2

∑
x∈Λ

|α(x) − β(x)|. (8.20) {Eq:CM3}
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Putting together Equations (8.18) - (8.20) shows that

M2 ≤ (M2 + v) ‖α − β‖TV ,

and rearranging shows that

‖α − β‖TV ≥ 1 −
v

v + M2 .

If 2M ≥ r
√

v, then

‖α − β‖TV ≥ 1 −
4

4 + r2 . (8.21){Eq:ForAB}

If α = µ f −1, β = ν f −1, and Λ = f (Ω), then mµ f −1 = Eµ( f ), and (8.16) implies that
2M ≥ rσ ≥ r

√
v. Using (8.21) in this case shows that∥∥∥µ f −1 − ν f −1

∥∥∥
TV ≥ 1 −

4
4 + r2 .

This together with Lemma 8.6 establishes (8.17). �

8.3.1. Random walk on hypercube. We use Proposition 8.5 to bound below
the mixing time for the random walk on the hypercube, studied in Section 7.4.2.

First we record a simple lemma concerning the coupon collector problem.
{Lem:MeanVarCC}

L 8.7. Consider the coupon collecting problem with n distinct coupon
types (c.f. Section 4.2), and let I j(t) be the indicator of the event that the jth coupon
has not been collected by time t. The random variables I j(t) are negatively corre-
lated, and if Rt =

∑n
j=1 I j(t) is the number of coupon types not collected by time t,

then

E(Rt) = n
(
1 −

1
n

)t

, (8.22){Eq:CCRemExp}

Var(Rt) ≤
n
4
. (8.23){Eq:CCRemVar}

P. For j , k,

E
(
I j(t)

)
=

(
1 −

1
n

)t

E
(
I j(t)Ik(t)

)
=

(
1 −

2
n

)t

.

Thus, for j , k,

Cov(I j(t), Ik(t)) =
(
1 −

1
n

)2t

−

(
1 −

2
n

)t

≤ 0.

From this Equation 8.22 and Equation 8.23 follow. �
{Prop:LowerBoundRWHC}

P 8.8. For the lazy random walk on the n-dimensional hypercube,

d
(
1
2

n log n − αn
)
≥ 1 − 8e−2α+1 (8.24){Eq:LBHC}
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P. Let 1 denote the vector of ones (1, 1, . . . , 1), and let W(x) =
∑n

i=1 xi be
the Hamming weight of x = (x1, . . . , xn) ∈ {0, 1}n. We will apply Proposition 8.5
with f = W. The position of the walker at time t, started at 1, is denoted by
Xt = (X1

t , . . . , X
n
t ).

As π is uniform on {0, 1}n, the distribution of the random variable W under π is
binomial with parameters n and p = 1/2. In particular,

Eπ(W) =
n
2
, Varπ(W) =

n
4
.

Let Rt be the number of coordinates not update at least once by time t. When
starting from 1, the conditional distribution of W(Xt) given Rt = r is the same
as r + B, where B is a binomial random variable with parameters n − r and 1/2.
Consequently,

E1(W(Xt) | Rt) = Rt +
(n − Rt)

2
=

1
2

(Rt + n),

and using Equation 8.22,

E1(W(Xt)) =
n
2

[
1 +

(
1 −

1
n

)t]
.

Using the identity Var(W(Xt)) = Var(E(W(Xt) | Rt)) + E(Var(W(Xt) | Rt)),

Var1(W(Xt)) =
1
4

Var(Rt) +
1
4

[n − E1(Rt)].

By Lemma 8.7, Rt is the sum of negatively correlated indicators and consequently
Var(Rt) ≤ E(Rt). We conclude that

Var1(W(Xt)) ≤
n
4

Setting

σ =
√

max{Varπ(W),Var(W(Xt))} =
√

n
2
,

we have

|Eπ(W) − E1(W(Xt))| =
n
2

(
1 −

1
n

)t

= σ
√

n
(
1 −

1
n

)t

= σ exp
{
−t[− log(1 − n−1)] +

log n
2

}
≥ σ exp

{
−

t
n

(
1 +

1
n

)
+

log n
2

}
.

The inequality follows since log(1 − x) ≥ −x − x2 for 0 ≤ x ≤ 1/2. By Proposi-
tion 8.5, ∥∥∥Pt(1, ·) − π

∥∥∥
TV ≥ 1 − 8 exp

{
2t
n

(
1 +

1
n

)
+ log n

}
. (8.25) {Eq:HCDLowerBound}
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The inequality (8.24) follows because

1
2

n log n − αn ≤ tn =
[
1
2

n log n −
(
α −

1
2

)
n
] [

1 −
1

n + 1

]
,

and the right-hand side of (8.25) evaluated at t = tn equals 1 − 8e−2α+1. �

8.4. Top-to-random shuffle
{Sec:TtoRLower}

The top-to-random shuffle was introduced in Section 7.1.1, and upper bounds
on d(t) and tmix were obtained in Section 7.4.3. Here we now obtain matching
lower bounds.

The bound below, from Aldous and Diaconis (1986), uses only the definition
of total variation distance.

{Prop:TtoRlower}

P 8.9. Let (Xt) be the top-to-random chain on n cards. For any
ε > 0, there exists α0 so that for α > α0,

dn(n log n − αn) ≥ 1 − ε for all n large enough. (8.26){Eq:TtoRTV}

In particular, there is a constant α1 so

tmix ≥ n log n − α1n, (8.27){Eq:TtoRLowerMix}

provided n is sufficiently large.

P. The bound is based on the events

A j = {the original bottom j cards are in their original relative order}. (8.28)

Let id be the identity permutation; we will bound below
∥∥∥Pt(id, ·) − π

∥∥∥
TV .

Let τ j be the time for the card initially jth from the bottom to reach the top.
Then

τ j =

n−1∑
i= j

τ j,i,

where τ j,i is the time it takes the card initially jth from the bottom to ascend from
position i (from the bottom) to position i+1. The variables {τ j,i}

n−1
i= j are independent

and τ j,i has a geometric distribution with parameter p = j/n, whence E(τ j,i) = n/i
and Var(τ j,i) < n2/i2. We obain the bounds

E(τ j) =
n−1∑
i= j

n
j
≥ n(log n − log j − 1) (8.29){eq.ttre1}

and

Var(τ j) ≤ n2
∞∑
i= j

1
i(i − 1)

≤
n2

j − 1
. (8.30){eq.ttre2}
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Let α0 satisfy α0 > log j − 1. Using the bounds (8.29) and (8.30), together with
Chebyshev’s inequality,

P{τ j < n log n − α0n} ≤ P{τ j − E(τ j) < −n(α0 − log j − 1)}

≤
1

( j − 1)
.

Define tn(α) = n log n − αn. If τ j ≥ tn(α), then the original j bottom cards remain
in their original relative order at time tn(α), so for α > α0,

Ptn(α)(id, A j) ≥ P{τ j ≥ tn(α)} ≥ P{τ j ≥ tn(α0)} ≥ 1 −
1

( j − 1)
.

On the other hand, for the uniform stationary distribution π(A j) = 1/( j!), whence
for α > α0,

dn( tn(α) ) ≥
∥∥∥Ptn(α)(id, ·) − π

∥∥∥
TV ≥ Ptn(α)(id, A j) − π(A j) > 1 −

2
j − 1

. (8.31) {Eq:TtoR2}

Taking j = eα−2, provided n ≥ eα−2, we have

dn( tn(α)) ) > 1 −
2

eα−2 .

That is,
lim inf

n→∞
dn( tn(α) ) ≥ glower(α),

where glower(α)→ 1 as α→ ∞. �

8.5. The Cut-Off Phenomenon
{Sec:CO}

For the top-to-random shuffle on n cards, we obtained in Section 7.4.3 that

lim sup
n→∞

dn(n log n + αn) ≤ e−α, (8.32) {eq.t2raup}

while in Section 8.4, we showed that

lim inf
n→∞

dn(n log n − αn) ≥ 1 − 2[eα − 2]−1. (8.33) {eq.t2ralb}

In particular, the upper bound in (8.32) tends to 0 as α → ∞ and the lower bound
in (8.33) tends to 1 as α → ∞. Thus, in the window (n log n − αn, n log n + αn)
centered at n log n, the total variation distance drops from close to 1 to close to 0.
Note that the window size is of order n, which grows slower than its center, n log n.

If we rescale time by n log n, so we consider the function δn(t) = dn(tn log n),
then

δn(t)→

0 t < 1,
1 t > 1.

Thus, when viewed on the time-scale of n log n, the total variation “falls of a cliff”
at n log n.
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n

0

1

tnt −wn n nt +wn

d (t)

F 8.5. A graph of dn(t) against t; if the sequence of chains
exhibits a cut-off, then then window where the distance drops from
near 1 to near unity, is centered at tn and shrinks (on the time scale
of tn).

Fig:Cutoff

For each n ∈ {1, 2, . . .}, let Pn be an irreducible and aperiodic transition matrix
with stationary probability πn on state-space Ωn. We write dn(t) for d(t) as defined
in (5.22) to emphasize the dependence on n:

dn(t) = max
x∈Ωn

∥∥∥Pt
n(x, ·) − πn

∥∥∥
TV .

We say that the corresponding sequence of Markov chains exhibits a cut-off at {tn}
with window {wn} if wn = o(tn), and

lim
α→∞

lim inf
n→∞

dn(tn − αwn) = 1,

lim
α→∞

lim sup
n→∞

dn(tn + αwn) = 0.

See Figure 8.5.
As a consequence, if a sequence of Markov chains has a cut-off, then there is a

sequence tn so that for some c?,

lim
n→∞

dn(ctn) =

1 c < c?,
0 c > c?.

E 8.10 (Random walk on the cycle). The random walk on Zn does not
exhibit a cut-off.

We first establish that

min
x∈{0,1,...,n/8}

Px
{
τexit > n2/100 and Xn2/100 ∈ {−n/8, . . . ,−1, 0}

}
≥

1
2
, (8.34){Eq:RWCNCKey}

where τexit is the first time the walker exits the interval {−n/4, . . . ,−1, 0, 1, . . . , n/4}.
Iterating (8.34) shows that

P0{τexit > cn2} ≥

(
1
2

)100c

= g(c).
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Note that if A = {−n/2,−n/2 + 1, . . . , n/2}, then π(A) = 1
2 + o(1). Also,

P{Xt ∈ A | τ < t} =
1
2
+ o(1),

by symmetry. Thus

P{Xcn2 ∈ A} = [(1/2) + o(1)]P{τ < cn2} ≤ [(1/2) + o(1)][1 − g(c)],

and
π(A) − P{Xt ∈ A} = (1/2)g(c) + o(1).

It is thus clear that for any c > 0,

lim inf
n→∞

d(cn2) ≥ (1/2)g(c) > 0,

and there is no cut-off.

8.5.1. Random Walk on the Hypercube.

8.5.2. Cut-off for the hypercube. The Ehrenfest urn was defined in Section
4.3.2. Here we consider an upper bound on the mixing time via the reflection cou-
pling. We consider the lazy version of the chain, which has transition probabilities,
for 0 ≤ j ≤ n,

P( j, k) =


1
2 k = j,
n− j
2n k = j + 1,
j

2n k = j − 1.
(8.35) {Eq:LazyEhren}

As remarked in Section 4.3.2, if (Xt) is the lazy random walk on the n-dimensional
hypercube {0, 1}n, then the Hamming weight chain (Wt),

Wt = W(Xt) =
n∑

i=1

Xi
t ,

has the transition probabilities in (8.35).
It will be convenient to analyze the centered process (Zt), defined as Zt =

Wt − n/2 and with values in

Z = {−n/2,−n/2 + 1, . . . , n/2 − 1, n/2}.

The chain (Zt) has transition matrix

Q(z, z′) =


1
2 z′ = z,
n/2−z

2n z′ = z + 1,
n/2+z

2n z′ = z − 1,
(8.36) {Eq:ZMatrix}

If πQ(z) =
(

n
z+n/2

)
2−n, then it is easy to check that πQ is the stationary distribution

for Q and that

‖Pw{Wt ∈ ·} − π‖TV =
∥∥∥Pw−n/2{Zt ∈ ·} − πQ

∥∥∥
TV . (8.37) {Eq:WZ}

Thus it will suffice to analyze the distance on the right-hand side of (8.37).
Define

τ0 = min{t ≥ 0 : |Zt| ≤ 1/2}. (8.38) {Eq:Tau0Defn}

Note that if n is even, then Zτ0 = 0, while for n odd, Zτ0 = ±1/2.
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{Lem:EZ}
L 8.11. Let (Zt) be a Markov chain with transition matrix (8.36), and let

τ0 be the random time in (8.38). Then for z ∈ Z

Ez(Zt) = z(1 − n−1)t, (8.39){Eq:EZt}

and if z ≥ 0, then
Ez(Zt1{τ0>t}) ≤ z(1 − n−1)t. (8.40){Eq:EZtau}

P. Note that

E(Zt+1 | Zt = z) = (z + 1)
[
1
4
−

k
2n

]
+ z

1
2
+ (z − 1)

[
1
4
+

k
2n

]
= z

(
1 −

1
n

)
. (8.41){Eq:ZDrift}

If Mt = Zt/(1 − n−1)t, then it follows from (8.41) that

E(Mt+1 | M0, . . . ,Mt) = Mt. (8.42){Eq:MMart}

Taking expectations and iterating shows that

Ez(Mt) = Ez(M0) = z, (8.43){Eq:MConstE}

which establishes (8.39).
In fact, (8.43) remains true if we replace t by the random time τ0 ∧ t, which

we now show. (This is a special case of the Optional Stopping Theorem, which we
prove in more generality in Chapter 19 – cf. Theorem 19.6.) We write

Mt∧τ0 − M0 =

t∑
s=1

(Ms − Ms−1)1{τ0>s−1}. (8.44){Eq:MTele}

Equation 8.42, together with the fact that the random variable 1{τ0 > s − 1} is a
function of M0,M1, . . . ,Ms−1, shows that

Ez((Ms − Ms−1)1{τ0>s−1} | M0,M1, . . . ,Ms−1)
= 1{τ0>s−1}Ez(Ms − Ms−1 | M0, . . . ,Ms−1) = 0. (8.45){Eq:MIncZero}

Using (8.45) in (8.44) yields the identity

Ez(Mt∧τ0) = Ez(M0).

Since, Mτ0 ∈ {0, 1/2} when z > 0, and Ez(M0) = z,

z = Ez(Mt∧τ0) ≥ Ez(Mt1{τ0>t}) = Ez(Zt1{τ0>t})
[
1 − n−1

]−t
.

�
{Lem:RPforZ}

L 8.12. For the Markov chain (Zt), there is a constant C so that for z ∈
Z ∩ [0,∞),

Pz{τ0 > t} ≤
Cz
√

t
.
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P. We will define, on the same probability space as (Zt) and until time τ0,
a nearest-neighbor unbiased random walk (S t), with values in Z and initial value
S 0 = z, as follows: First, a fair coin is tossed; if heads, both chains move, and
if tails, neither chain moves. In the case where the coin lands heads, a uniform
random variable U is generated. The chains move based on U according to the
following table:

U Zt+1 − Zt S t+1 − S t

0 ≤ U < 1
2 −1 −1

1
2 ≤ U < 1

2 +
k
n −1 +1

1
2 +

k
n ≤ U < 1 +1 +1

Note that always, provided τ0 > t,

Zt+1 − Zt ≤ S t+1 − S t,

so that in particular, Zt ≤ S t for t < τ0. Consequently,

Pz{Z1 > 0, . . . ,Zt > 0} ≤ Pz{S 1 > 0, . . . , S t > 0}.

The conclusion follows then by Corollary 4.17. �
{Lem:ZHitTime}

L 8.13. Let (Zt) be the Markov chain with the transition probabilities
(8.36), and let τ0 be the time in (8.38). If z > 0, then

Pz{τ0 > (1/2)n log n + αn} ≤
C
√
α
.

P. Let s = (1/2)n log n. Then by Lemma 8.12, on the event {τ0 > s},

Pz{Zs+1 > 0, . . . ,Zs+t > 0 | Z0, . . . ,Zs} ≤
CZs
√

t
.

Since 1{τ0>s} is a function of Z0,Z1, . . . ,Zs,

Pz{τ0 > s,Zs+1 > 0, . . . ,Zs+t > 0 | Z0, . . . ,Zs} ≤
CZs1{τ0>s}
√

t
.

Taking expectation and using Lemma 8.11 shows that

Pz{τ0 > s + t} ≤
C
√

n
√

t
.

�
{Prop:ZMix}

P 8.14. For any z, u ∈ Z, there is a coupling of two chains, each with
the transition matrix defined in (8.36), one started from z and the other started from
u, so that the time τ when the chains first meet satisfies

Pz,u{τ > (1/2)n log n + αn} = O(α−1/2).

P. We assume, without loss of generality, that |z| ≥ |u|.
Let (Zt) be any chain started at z with transitions (8.36). We show how to define

a chain (Ut), using (Zt) and some additional randomness.
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0
τabs

t

t

τ

w

0

z
(Z )

(W )

F 8.6. Run (Ut) independently of (Zt) until the time τabs
when their absolute values first agree. After this time, if the chains
do not agree, run (Ut) as a reflection of (Zt) about the t-axis.

Fig:RefCoup

First, run (Ut) and (Zt) as follows: First toss a fair coin to decide which of
the two chains to move. For the chosen chain, make a “non-lazy” move using the
transition probabilities:

P( j, k) =

n−k
n k = j + 1,
j

2n k = j − 1.

Continue this way until the time

τabs = min{t ≥ 0 : |Ut| = |Zt|}.

If Uτabs = Zτabs , then let Ut = Zt for all t > τabs.
The time τ0 is as defined in (8.38). Since |z| ≥ |u|, we must have τabs ≤ τ0.
If Uτabs = −Zτabs , then for τabs ≤ t < τ0 set Ut+1 − Ut = −(Zt+1 − Zt). In this

case, (Ut) is a reflection of (Zt) for τabs ≤ t ≤ τ0. (See Figure 8.6.)
Case 1: n even. In this case, Zτ0 = Uτ0 = 0. Thus, the coupling time for the

two chains is simply τ0, and the conclusion of the Proposition follows from Lemma
8.13.

Case 2: n odd. If Uτabs = Zτabs , the chains will have coupled already by τ0, and
the Proposition again follows from Lemma 8.13.

Otherwise, suppose without loss of generality that Zτ0 = 1/2 = −Uτ0 . Toss
a fair coin; if heads move the Z-chain, and if tails move the U-chain. If the two
chains do not agree, start the coupling described in this proof anew with the current
states as the new starting states, wait again until the chains are at ±1/2, and again
flip a coin to decide which chain to move.

�
{Thm:EhrenMix}

T 8.15. Let (Wt) be the Ehrenfest chain with transition probabilities
(8.35). Then

d((1/2)n log n + αn) = O(α−1/2),
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and so
tmix = [1 + o(1)](1/2)n log n.

P. The proof follows from Proposition 8.14, Corollary 6.3, and Equation
8.37. �

We return now to the lazy random walk on the n-dimensional hypercube, (Xt).
Conditional on Wt = W(Xt) = w, the distribution of Xt is uniform over all

states x with W(x) = w. Using this fact, the reader should check that

‖Px{Xt ∈ ·} − π‖TV =
∥∥∥PW(x){Wt ∈ ·} − πW

∥∥∥
TV ,

where
πW(w) =

∑
x∈{0,1}n
W(x)=w

π(x).

Using this identity, Theorem 8.15 yields the following:
{Thm:RWHCMix}

T 8.16. Let (Xt) be the lazy simple random walk on the n-dimensional
hypercube. For this chain,

d((1/2)n log n + αn) = O(α−1/2).

Consider again the lazy random walk on {0, 1}d: at each move, a coordinate is
selected at random and replaced by an independent random bit.

If X(t) = (X1(t), . . . , Xd(t), let Yt :=
∑d

i=1 Xi(t) − d/2. As before, we can
calculate that

E1(Yt) =
d
2

(
1 −

1
d

)t

,

where 1 = (1, . . . , 1).
Letting t0 = (1/2)d log d,

E1(Yt0) ≤
de−t0/d

2
=

√
d

2
.

{Lem:RP3}
L 8.17. Let (S t)∞t=0 be a simple random walk.

Pk{τ0 > t} ≤
ch
√

t
. (8.46) {Eq:RP}

Thus,

P1{Yt0+ j ≥ 0, 1 ≤ j ≤ r | Yt0 = h} ≤
2ch
√

r
.

8.6. East Model

Let
Ω := {x ∈ {0, 1}n+1 : x(n + 1) = 1}.

The East model is the Markov chain on Ω which moves from x by selecting a
coordinate k from {1, 2, . . . , n} at random and flipping the value x(k) at k if and
only if x(k + 1) = 1. The reader should check that the uniform measure on Ω is
stationary for these dynamics.
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T 8.18. For the East model, tmix ≥ cn2.

P. If A = {x : x(1) = 1}, then π(A) = 1/2.
On the other hand, we now show that it takes order n2 steps until Xt(0) = 1 with

probability near 1/2 when starting from x0 = (0, 0, . . . , 0, 1). Consider the motion
of the left-most 1: it moves to the left by one if and only if the site immediately to
its left is chosen. Thus, the waiting time for the left-most 1 to move from k to k− 1
is bounded by a geometric random variable Gk with mean n. The sum G =

∑n
k=1 Gk

has mean n2 and variance (1 − n−1)n3. Thus if t(n, c) = n2 − cn3/2, then

P{Xt(n,c)(0) = 1} ≤ P{G − n2 ≤ −cn3/2} ≤
1
c2 ,

and so

|Pt(n,c)(x0, A) − π| ≥
1
2
−

1
c2 .

Thus, if t ≤ n2 − 2n3/2, then d(t) ≥ 1/4. In other words, tmix ≥ n2 − 2n3/2. �

8.7. Problems
{Exercise:NegCor}

E 8.1. Let Xt = (X1
t , . . . , X

n
t ) be the position of the lazy random walker

on the hypercube {0, 1}n, started at X0 = 1 = (1, . . . , 1). Show that the covari-
ance between Xi

t and X j
t is negative. Conclude that if W(Xt) =

∑n
i=1 Xi

t , then
Var(W(Xt)) ≤ n/4.

Hint: It may be easier to consider the variables Y i
t = 2Xi

t − 1.
{Exercise:QSym}

E 8.2. Show that Q(S , S c) = Q(S c, S ) for any S ⊂ Ω. (This is easy in
the reversible case, but holds generally.)

{Exercise:Diameter}
E 8.3. Suppose that (Xt) is a random walk on a graph with vertex set Ω

and let ∆ = maxx∈Ω deg(x). Show that for some constant c,

tmix ≥ c
log(|Ω|)
log(∆)

.

{Exercise:EmptyGraph}
E 8.4. An empty graph has no edges. A proper coloring of an empty

graph with vertex set V is an element of Ω = {1, . . . , q}V . Each element x ∈ Ω
can be thought of as an assignment of a color (an element of {1, 2, . . . , q}) to each
vertex v ∈ V . The Glauber dynamics for the uniform measure on Ω is the chain
which moves by selecting at each move a vertex v from V uniformly at random,
and changing the color at v to a uniform random element of {1, 2, . . . , q}.

Show that there is a constant c(q) so that

tmix ≥
1
2

n log n − c(q)n.

Hint: Copy the idea of the proof of Proposition 8.8.
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8.8. Notes

It is more common to relate the bottleneck ratio Φ? to the spectral gap of
a Markov chain. See Chapter 12 for some of the history of this relation. The
approach to the lower bound for tmix presented here is more direct and avoids re-
versibility. Results related to Theorem 8.1 can be found in Mihail (1989), Fill
(1991), and Chen, Lovász, and Pak (1998).

Hayes and Sinclair (2005) have recently shown that the Glauber dynamics for
many stationary distributions, on graphs of bounded degree, have mixing time or-
der n log n.

Upper bounds on the relaxation time (see Section 12.4) for the East model are
obtained in Aldous and Diaconis (2002).





CHAPTER 9

Shuffling Cards

{Ch:Shuffling}
Card shuffling is such an important example for the theory of Markov chains

that we have not been able to avoid it in earlier chapters. Here we study several
other natural methods of shuffling cards.

A stack of n cards can be viewed as an element of the symmetric group Sn. A
shuffling mechanism can then be specified by a probability distribution Q on Sn.
At each step, a permutation is chosen according to Q and applied to the deck. The
resulting Markov chain has transition matrix

P(ρ1, ρ2) = Q(ρ2ρ
−1
1 ) for ρ1, ρ2 ∈ Sn.

As long as the support of Q generates all of Sn, the resulting chain is irreducible.
If Q(id) > 0, then it is aperiodic. Every shuffle chain is transitive, and hence (by
Exercise 7.5) has uniform stationary distribution.

A warning to the reader: in this chapter, the stationary distributions of all
chains under consideration are uniform, and we often write U for the uniform dis-
tribution.

9.1. Random transpositions

Pick two cards at random; switch their locations in the deck. Repeat. It’s
difficult to imagine a simpler shuffle. How many shuffles are necessary before the
deck has been well-randomized?

Let’s be more precise about the mechanism. At each step, the shuffler chooses
two cards, independently and uniformly at random. If the same card is chosen
twice, nothing is done to the deck. Otherwise, the positions of the two chosen
cards are switched. The possible moves have weights

Q(σ) =


1/n ρ = id,
2/n2 ρ = (i j),
0 otherwise.

(9.1) {Eq:RandTransDist}

In Section 2.4, we gave a method for generating a uniform random permu-
tation that started with the set [n] sorted and used only transpositions. Thus the
set of transpositions generates S n, and the underlying Markov chain is therefore
irreducible. Since Q(id) > 0, it is aperiodic as well.

In each round of random transposition shuffling, (almost) two cards are se-
lected, and each is moved to an (almost) random location. In other examples, such
as the hypercube, we have been able to bound convergence by tracking how many
features have been randomized. If—if!—a similar analysis applies to the random

97
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Aligning one card:

2 4 1 3
3 1 4 2 =⇒

1 4 2 3
1 3 4 2

Aligning two cards:

2 3 1 4
3 1 4 2 =⇒

1 3 2 4
1 3 4 2

Aligning three cards:

2 3 1
3 1 2 =⇒

1 3 2
1 3 2

F 9.1.
Fig:RandTransCouple
Aligning cards using coupled random transpositions.

In each example, Xt = 1 and Yt = 1, so card 1 is transposed with
the card in position 1 in both decks.

transposition shuffle, we might hope that, since each step moves (almost) two cards,
half the coupon collector time of approximately n log n steps will suffice to bring
the distribution close to uniform.

In fact, as Diaconis and Shahshahani (1981) proved, the random transpositions
walk has a sharp cutoff of width O(n) at (1/2)n log n. They use Fourier analysis on
the symmetric group to achieve these extremely precise results. Here, we present
two upper bounds on the mixing time: a simple coupling that gives an upper bound
of order n2 for the mixing time, and a strong stationary time argument due to Broder
(see Diaconis (1988)) that gives an upper bound within a constant factor of the
correct answer. While the lower bound we give does not quite reach the cutoff, it
does have the correct lead term constant.

9.1.1. Upper bound via coupling. For the coupling, we take a slightly dif-
ferent view of generating the transpositions. At each time t, the shuffler chooses a
card Xt ∈ [n] and, independently, a position Yt ∈ [n]; she then transposes the card
Xt with the card in position Yt. Of course, if Xt already occupies Yt, the deck is left
unchanged. Hence this mechanism generates the measure described in (9.1).

To couple two decks, use the same choices (Xt) and (Yt) to shuffle both. Let
(σt) and (σ′t) be the two trajectories. What can happen in one step? Let at be the
number of cards that occupy the same position in both σt and σ′t .

• If Xt is in the same position in both decks, and the same card occupies
position Yt in both decks, then at+1 = at.
• If Xt is in different positions in the two decks, but position Yt is occupied

by the same card, then performing the specified transposition breaks one
alignment, but also forms a new one. We have at+1 = at.
• If Xt is in different positions in the two decks, and if the cards at position

Yt in the two decks do not match, then at least one new alignment is
made—and possibly as many as three. See Figure 9.1.

{Prop:RandTransCouple}
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P 9.1. Let τ be the time required for the two decks to couple. Then,
no matter the initial configurations of the two decks, E(τ) < π2

6 n2.

P. Decompose
τ = τ1 + · · · + τn,

where τi is the number of transpositions between the first time that at is greater than
or equal to i−1 and the first time that is at is greater than or equal to i. (Since a0 can
be greater than 0, and since at can increase by more than 1 in a single transposition,
it is possible that many of the τi’s are equal to 0.)

When t satisfies at = i, there are n − i unaligned cards and the probability of
increasing the number of alignments is (n− i)2/n2, since the shuffler must choose a
non-aligned card and a non-aligned position. In this situation τi+1 is geometric((n−
i)2/n2). We may conclude that under these circumstances

E(τi+1|at = i) = n2/(n − i)2.

When no value of t satisfies at = i, then τi+1 = 0. Hence

E(τ) < n2
n∑

i=1

1
(n − i)2 < n2

∞∑
l=1

1
l2
.

�

Markov’s inequality and Corollary 6.3 now give an O(n2) bound on tmix. However,
the strong stationary time we are about to discuss does much better.

{Sec:RandTransSST}
9.1.2. Upper bound via strong stationary time.

{Prop:RandTransSST}
P 9.2. In the random transposition shuffle, let Rt and Lt be the cards

chosen by the right and left hands, respectively, at time t. Assume that when t = 0,
no cards have been marked. At time t, mark card Rt if both of the following are
true:

• Rt is unmarked.
• Either Lt is a marked card, or Lt = Rt.

Let τ be the time when every card has been marked. Then τ is a strong uniform
time for this chain.

Here’s a heuristic explanation for why the scheme described above should give
a strong stationary time. One way to generate a uniform random permutation is to
build a stack of cards, one at a time, inserting each card into a uniformly random
position relative to the cards already in the stack. For the stopping time described
above, the marked cards are carrying out such a process.

P. It’s clear that τ is a stopping time. To show that it is a strong uniform
time, we prove the following subclaim by induction on t. Let Vt ⊆ [n] be the set of
cards marked at or before time t, and let Ut ⊆ [n] be the set of positions occupied
by Vt after the t-th transposition. We claim that given t, Vt, and Ut, all possible
permutations of the cards in Vt on the positions Ut are equally likely.

This is clearly true when t = 1 (and continues to clearly be true as long as at
most one card has been marked).
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Now, assume that the subclaim is true for t. The shuffler chooses cards Lt+1
and Rt+1.

• If no new card is marked, then Vt+1 = Vt. This can happen two ways:
– If Lt+1 and Rt+1 were both marked at an earlier round, then Ut+1 = Ut

and the shuffler applies a uniform random transposition to the cards
in Vt. All permutations of Vt remain equiprobable.

– Otherwise, Lt+1 is unmarked and Rt+1 was marked at an earlier round.
To obtain the position set Ut+1, we delete the position (at time t) of
Rt+1 and add the position (at time t) of Lt+1. For a fixed set Ut, all
choices of Rt+1 ∈ Ut are equally likely, as are all permutations of Vt
on Ut. Hence, once the positions added and deleted are specified, all
permutations of Vt on Ut+1 are equally likely.

• If the card Rt+1 gets marked, then Lt+1 is equally likely to be any element
of Vt+1 = Vt ∪ {Rt+1}, while Ut+1 consists of Ut along with the position
of Lt+1 (at time t). Specifying the permutation of Vt on Ut and the card
Lt+1 uniquely determines the permutation of Vt+1 on Ut+1. Hence all such
permutations are equally likely.

In every case, the collection of all permutations of the cards Vt on a specified set
Ut together make equal contributions to all possible permutations of Vt+1 on Ut+1.
Hence, to conclude that all possible permutations of a fixed Vt+1 on a fixed Ut+1
are equally likely, we simply sum over all possible preceding configurations. �

R. In the preceding proof, the two subcases of the inductive step for
which no new card is marked are essentially the same as checking that the uniform
distribution is stationary for the random transposition shuffle and the random-to-top
shuffle, respectively.

R. As Diaconis (1988) points out, for random transpositions some sim-
ple card-marking rules fail to give strong uniform times. See Exercise 9.5.

{Lem:RandTransSSTEst}
L 9.3. The stopping time τ defined in Proposition 9.2 satisfies

E(τ) = 2n(log n + O(1))

and
Var(τ) = O(n2).

P. As for the coupon collector time, we can decompose

τ = τ0 + · · · + τn−1,

where τk is the number of transpositions after the k-th card is marked, up to and
including when the (k+1)-st card is marked. The rules specified in Proposition 9.2
imply that τk is geometric

(
(k+1)(n−k)

n2

)
and that the τi’s are independent of each other.

Hence

E(τ) =
n−1∑
k=0

n2

(k + 1)(n − k)
.
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Substituting the partial fraction decomposition

1
(k + 1)(n − k)

=
1

n + 1

(
1

k + 1
+

1
n − k

)
and recalling that

n∑
j=1

1
j
= log n + O(1)

(see Exercise 4.5) completes the estimate.
Now, for the variance. We can immediately write

Var(τ) =
n−1∑
k=0

1 − (k+1)(n−k)
n2(

(k+1)(n−k)
n2

)2 <

n−1∑
k=0

n4

(k + 1)2(n − k)2 .

Split the sum into two pieces:

Var(τ) <
∑

0≤k<n/2

n4

(k + 1)2(n − k)2 +
∑

n/2≤k<n

n4

(k + 1)2(n − k)2

<
2n4

(n/2)2

∑
0≤k≤n/2

1
(k + 1)2 = O(n2).

�
{Thm:RandTrans}

C 9.4. For the random transposition chain on an n-card deck,

tmix ≤ (2 + o(1))n log n.

P. Let τ be the Broder stopping time defined in Proposition 9.2, and let
t0 = E(τ) + 2

√
Var(τ). By Chebyshev’s inequality,

P(τ > t0) ≤
1
4
.

Lemma 9.3 and Proposition 7.3 now imply the desired inequality. �

9.1.3. Lower bound.

P 9.5. Let 0 < ε < 1. For the random transposition chain on an
n-card deck,

tmix(ε) ≥
1
2

(
n log n − log

(
12

1 − ε

)
n
)

for sufficiently large n.

P. It is well-known (and easily proved using indicators) that the expected
number of fixed points in a uniform random permutation in Sn is 1, regardless of
the value of n.

Now let tn = 1
2

(
n log n − log

(
12

1−ε

)
n
)
, and choose σ according to Ptn(id, ·). The

number of fixed points ofσ is at least as large as the number of cards left untouched
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in 2tn independent uniform selections from the deck, which has a coupon collector
distribution. By Lemma 8.7, the number of untouched cards has expected value

µn = n
(
1 −

1
n

)2tn

and variance bounded by n/4.
Let A be the event that there are at least µn/2 fixed points in the permutation.

Let’s estimate the probability of A under the two measures. First of all,

PU(A) ≤
2
µn
,

by Markov’s inequality. On the other hand, Pt(id, A) is at least as large as the
probability that there are more than µn/2 cards left untouched by the first t shuffles.
By Chebyshev’s inequality and Lemma 8.7,

Ptn(id, A) ≥ 1 −
n/4

(µn/2)2 ≥ 1 −
4
µn
,

since µn > n/4 for sufficiently large n. By the definition (5.1) of total variation
distance, we have ∥∥∥Pt

n(id, ·) − U
∥∥∥

TV ≥ 1 −
6
µn
.

Recall that for 0 ≤ x ≤ 1/2, it’s true that log(1 − x) > −x − x2. It follows that for
n ≥ 2,

µn ≥ n
(
e−

1
n−

1
n2

)n(log n−log 12
1−ε )
= n

(
e−1− 1

n

)log n−log 12
1−ε
=

12
1 − ε

(1 + o(1))

as n→ ∞. In particular, for sufficiently large n, we have µn > 6/(1 − ε) and hence∥∥∥Pt
n(id, ·) − U

∥∥∥
TV > ε. �

9.2. Random adjacent transpositions

A reasonable restriction of the random transposition shuffle to consider is to
only interchange adjacent cards—see Figure 9.2. Restricting the moves in this
manner will slow the shuffle down. We present a coupling (described in Aldous
(1983) and also discussed in Wilson (2004)) that gives a sharp upper bound of
order n3 log n, and then give a lower bound of order n3.

Note: this shuffle is such a useful example that we discuss it in two other places.
In Section 12.7 we use Wilson’s method to obtain a lower bound that matches our
upper bound, up to constants. In addition, in Section 13.4.2 we use Theorem 13.5
to compare the convergence to stationarity of random adjacent transpositions to
that of random transpositions.
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9.2.1. Upper bound via coupling. We consider a lazy version of this shuf-
fle: at each step, with probability 1/2 do nothing, and with probability 1/2 choose
uniformly between the (n − 1) transpositions of adjacent pairs of cards.

In order to couple two copies (σt) and (σ′t) (the “left” and “right” decks) of this
lazy version, proceed as follows. First, choose a pair (i, i + 1) of adjacent locations
uniformly from the possibilities. Flip a coin to decide whether to perform the
transposition on the left deck. Now, examine the cards σt(i), σ′t(i), σt(i + 1) and
σ′t(i + 1) in locations i and i + 1 in the two decks.

• If σt(i) = σ′t(i+1), or if σt(i+1) = σ′t(i), then do the opposite to the right
deck: transpose if the left deck stayed still, and vice versa.
• Otherwise, perform the same action on the right deck as on the left deck.

We consider first τa, the time required for a particular card a to couple. Let
Xt be the (unsigned) distance between the positions of i in the two decks at time t.
Our coupling ensures that |Xt+1 − Xt| ≤ 1 and that if t ≥ τa, then Xt = 0.

Let M be the transition matrix of a random walk on the path with vertices
{0, . . . , n− 1} that moves up or down, each with probability 1/(n− 1), at all interior
vertices; from n − 1 it moves down with probability 1/(n − 1), and, under all other
circumstances, it stays where it is. In particular, it absorbs at state 0.

Note that for 0 ≤ i ≤ n − 1,

P(Xt+1 = i − 1|Xt = i, σt, σ
′) = M(i, i − 1).

However, since one or both of the cards might be at the top or bottom of a deck and
thus block the distance from increasing, we can only say

P(Xt+1 = i + 1|Xt = i, σ, σ′) ≤ M(i, i + 1).

Even though the sequence (Xt) is not a Markov chain, the above inequalities
imply that we can couple it to a random walk (Yt) with transition matrix M in such
a way that Y0 = X0 and Xt ≤ Yt for all t ≥ 0. Under this coupling τa is bounded by
the time τY

0 it takes (Yt) to absorb at 0.
The chain (Yt) is best viewed as a delayed version of a random walk on the

path {0, . . . , n− 1}, with a hold probability of 1/2 at n− 1 and absorption at 0. With
probability 1−2/(n−1), the chain (Yt) does nothing, and with probability 2/(n−1),
it takes a step in that walk. Exercises 4.3 and 4.2 imply that E(τY

0 ) is bounded by
(n − 1)n2/2, regardless of initial state. Hence

E(τa) <
(n − 1)n2

2
.

By Markov’s inequality,
P(τa > n3) < 1/2

for sufficiently large n. If we run 2 log2 n blocks, each consisting of n3 shuffles, we
can see that

P(τa > 2n3 log2 n) <
1
n2 .

Now let’s look at all the cards. After 2n3 log2 n steps, the probability of the decks
having not coupled is bounded by the sum of the probabilities of the individual
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F 9.2. An adjacent transposition swaps two neighboring
cards.

Fig:ART

cards having not coupled, so

P(τcouple > 2n3 log2 n) <
1
n
,

regardless of the initial states of the decks. Theorem 6.2 immediately implies that
tmix < 2n3 log2 n for sufficiently large n.

{Sec:RATransLower}
9.2.2. Lower bound for random adjacent transpositions. Consider the set

of permutations

A = {σ : σ(1) ≥ bn/2c}.

Under the uniform measure we have U(A) = bn/2c/n ≥ 1/2, because card 1 is
equally likely to be in any of the n possible positions. However, since card 1
can change its location by at most one place in a single shuffle, and since card 1
doesn’t get to move very often, it’s plausible that a large number of shuffles must be
applied to a sorted deck before the event A has reasonably large probability. Below
we formalize this argument.

How does card 1 moves under the action of the random adjacent transposition
shuffle? Each interior card (neither top nor bottom of the deck) moves with proba-
bility 2/(n − 1), and at each of the moves it is equally likely to jump one position
to the right or one position to the left. If the card is at an endpoint, it is selected
with probability 1/(n − 1), and always moves in the one permitted direction. This
means that

P(card 1 has visited position bn/2c by time t) ≤ P
(
max
1≤s≤t

|S̃ s| ≥ bn/2c
)
, (9.2){Eq:DomLRE}

where (S̃ t) is a random walk on Z which remains in place with probability 1 −
2/(n − 1) and increments by ±1 with equal probability when it moves. (There is
inequality in (9.2) instead of equality because the motion of card 1 at 0 is slower
than (|S̃ |t).)

Let (S t) be the simple random walk on Z: the walker moves one step right or
left with equal probability. Viewed only at the times where it moves, (S̃ t) has the
same distribution as (S t).
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By Exercise 9.1,

P
(

max
1≤s≤αn2

|S s| > bn/2c
)
≤ 2P

(
|S αn2 | > bn/2c

)
≤

8E
(
S 2
αn2

)
n2 = 8α.

Taking α0 = 1/(16
√

2), and letting τn/2 denote the first time (S t) visits bn/2c,

P
(
τn/2 ≤ α0n2

)
≤

1
8
. (9.3) {Eq:HitHalf}

Let Bt be the number of times that the delayed random walk (S̃ t) has moved after
t transitions. Bt is a binomial random variable with parameters t and 2/(n − 1). If
3β < α0, then

P{Bβn3 > α0n2} ≤ P{Bβn3 − E(Bβn3) > n2(α0 − 3β)}

≤
Var Bβn3

n4(α0 − 3β)2

≤
c
n2 .

For n large enough, taking β0 = 1/(64
√

2) so that 3β0 < α0,

P{Bβ0n3 > α0n2} ≤
1
8
. (9.4) {Eq:MovesBound}

Putting together equation 9.2 with equation (9.4) shows that

P
{

max
1≤s≤β0n3

|S̃ s| < bn/2c
}
≥ P

{
Bβ0n3 ≤ α0n3, τn/2 > α0n2

}
≥

7
8
,

for n large enough. In other words,

P{card 1 has visited position bn/2c by time β0n3} ≤
1
8
,

provided n is large enough.
Thus, Pβ0n3

(id, A) ≤ 1/8. Since π(A) ≥ 1/2, it follows that tmix ≥ β0n3.
{Exercise:RP}

E 9.1 (Reflection Principle). Let (S n) be the simple random walk on Z.
Show that

P
{

max
1≤ j≤n

|S j| ≥ c
}
≤ 2P {|S n| ≥ c} .

9.3. Riffle shuffles

The method most often used to shuffle real decks of 52 cards is the following:
first, the shuffler cuts the decks into two piles. Then, the piles are “riffled” together:
she successively drops cards from the bottom of each pile to form a new pile. There
are two undetermined aspects of this procedure. First, the numbers of cards in each
pile after the initial cut can vary. Second, real shufflers drop varying numbers of
cards from each stack as the deck is reassembled.

Fortunately for mathematicians, there is a tractable mathematical model for
riffle shuffling. Here are three ways to shuffle a deck of n cards:
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(1) Let M be a binomial(n, 1/2) random variable, and split the deck into its
top M cards and its bottom n−M cards. There are

(
n
M

)
ways to riffle these

two piles together, preserving the relative order within each pile (first
select the positions for the top M cards, then fill in both piles). Choose
one of these arrangements uniformly at random.

(2) Let M be a binomial(n, 1/2) random variable, and split the deck into its
top M cards and its bottom n−M cards. The two piles are then held over
the table and cards are dropped one by one, forming a single pile once
more, according to the following recipe: if at a particular moment, the
left pile contains a cards and the right pile contains b cards, then drop
the card on the bottom of the left pile with probability a/(a + b), and the
card on the bottom of the right pile with probability b/(a+b). Repeat this
procedure until all cards have been dropped.

(3) Label the n cards with n independent fairly chosen bits. Pull all the cards
labeled 0 to the top of the deck, preserving their relative order.

A rising sequence of a permutation π is a maximal set of consecutive values that
occur in the correct relative order in π. (For example, the final permutation in
Figure 9.3 has 4 rising sequences: (1, 2, 3, 4), (5, 6), (7, 8, 9, 10), and (11, 12, 13).
We claim that methods 1 and 2 generate the same distribution Q on permutations,
where

Q(σ) =


(n + 1)/2n σ = id,
1/2n σ has exactly two rising sequences,
0 otherwise.

(9.5){Eq:RiffleTrans}

It should be clear that method 1 generates Q; the only tricky detail is that the
identity permutation is always an option, no matter the value of M. Given M,
method 2 assigns probability M!(n−M)!/n! =

(
n
M

)−1
to each possible interleaving,

since each step drops a single card and every card must be dropped.
Recall that for a distribution R on Sn, the inverse distribution R satisfies R(ρ) =

R(ρ−1). We claim that method 3 generates Q. Why? The cards labeled 0 form
one increasing sequence in ρ−1, and the cards labeled 1 form the other. (Again,
there are n + 1 ways to get the identity permutation; here, all strings of the form
00 . . . 011 . . . 1.)

Thanks to Lemma 5.9 (which says that a random walk on a group and its in-
verse, both started from the identity, have the same distance from uniformity after
the same number of steps), it will suffice to analyze method 3.

Now, consider repeatedly inverse riffle shuffling a deck, using method 3. For
the first shuffle, each card is assigned a random bit, and all the 0’s are pulled ahead
of all the 1’s. For the second shuffle, each card is again assigned a random bit,
and all the 0’s are pulled ahead of all the 1’s. Considering both bits (and writing
the second bit on the left), we see that cards labeled 00 precede those labeled 01,
which precede those labeled 10, which precede those labeled 11 (see Figure 9.4).
After k shuffles, each card will be labeled with a string of k bits, and cards with
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First, cut the deck:

1 2 3 4 5 6 7 8 9 10 11 12 13

Then riffle together.

7 1 8 2 3 9 4 10 5 11 12 6 13

Now, cut again:

7 1 8 2 3 9 4 10 5 11 12 6 13

And riffle again.

5 7 1 8 11 12 2 6 3 13 9 4 10

F 9.3.
Fig:riffle
Riffle shuffling a 13-card deck, twice.

Initial order:
card 1 2 3 4 5 6 7 8 9 10 11 12 13

round 1 1 0 0 1 1 1 0 1 0 1 1 0 0
round 2 0 1 0 1 0 1 1 1 0 0 1 0 1

After one inverse riffle shuffle:
card 2 3 7 9 12 13 1 4 5 6 8 10 11

round 1 0 0 0 0 0 0 1 1 1 1 1 1 1
round 2 1 0 1 0 0 1 0 1 0 1 1 0 1

After two inverse riffle shuffles:
card 3 9 12 1 5 10 2 7 13 4 6 8 11

round 1 0 0 0 1 1 1 0 0 0 1 1 1 1
round 2 0 0 0 0 0 0 1 1 1 1 1 1 1

F 9.4.
Fig:RepRevRiffle
When inverse riffle shuffling, we first assign bits for

each round, then sort bit by bit.

different labels will be in lexicographic order (cards with the same label will be in
their original relative order).

{Prop:RevRiffleSUT}
P 9.6. Let τ be the number of inverse riffle shuffles required for all

cards to have different bitstring labels. Then τ is a strong uniform time.

P. Assume τ = t. Since the bitstrings are generated by independent fair
coin flips, every assignment of strings of length t to cards is equally likely. Since
the labeling bitstrings are distinct, the permutation is fully determined by the labels.
Hence the permutation of the cards at time τ is uniform, no matter the value of τ.

�

Now we need only estimate the tail probabilities for the strong uniform time.
However, our stopping time τ is an example of the birthday problem, with the slight
twist that the number of “people” is fixed, and we wish to choose an appropriate
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power-of-two “year length” so that all the people will, with high probability, have
different birthdays.

{Prop:RiffleUpper}
P 9.7. For the riffle shuffle on an n-card deck, tmix ≤ 2 log2(4n/3)

for sufficiently large n.

P. Consider inverse riffle shuffling an n-card deck and let τ be the stopping
time defined in Proposition 9.6. If τ ≤ t, then different labels have been assigned
to all n cards after t inverse riffle shuffles. Hence

P(τ ≤ t) =
n−1∏
k=0

(
1 −

k
2t

)
,

since there are 2t possible labels. Let t = 2 log2(n/c). Then 2t = n2/c2 and we have

log
n−1∏
k=0

(
1 −

k
2t

)
= −

n−1∑
k=0

c2k
n2 + O

(
k
n2

)2 = −n(n − 1)
2c2n2 + O

(
n3

n4

)
= −

c2

2
+ O

(
1
n

)
.

Hence

lim
n→∞

P(τ ≤ t)
e−c2/2

= 1.

Taking any value of c such that c <
√

2 log(4/3) ≈ 0.7585 will give a bound
on tmix = tmix(1/4). A convenient value to use is 3/4, which, combined with
Proposition 7.3, gives the bound stated in the proposition.

�

To give a lower bound of logarithmic order on the mixing time for the riffle
shuffle, we show that it is unlikely that a uniform random permutation will contain
a long rising sequence, but that after a suitable number of riffle shuffles the deck
must still contain a long rising sequence.

{Prop:RiffleLower}
P 9.8. Fix 0 < ε, δ < 1. Consider riffle shuffling an n-card deck. For

sufficiently large n,
tmix(ε) ≥ (1 − δ) log2 n.

P. Let A be the event that the deck contains a rising sequence of length
at least m = dlog ne. A uniform random permutation has n − m + 1 potential
rising sequences of length m (each is a run of m consecutive values) and each has
probability 1/m! of being increasing. By Stirling’s formula, for sufficiently large n
we have

m! ≥
(log n)log n

n
≥ n2. (9.6){Eq:StirEstm}

The probability of A under the uniform measure is thus bounded above by
1
n2 · n = o(1)

as n→ ∞.
Now, consider riffle shuffling a sorted deck s < (1− δ) log2 n times. Our earlier

discussion of the combinatorics of the riffle shuffle imply that the resulting deck has
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at most 2s < n(1−δ) rising subsequences. Since the deck is partitioned into disjoint
rising sequences, the pigeonhole principle implies that for sufficiently large n at
least one of those sequences contains at least nδ > m cards. Hence the event A has
probability 1 after s riffle shuffles. �

9.4. Problems
{Exer:PermDistFallacy}

E 9.2. True or false: let Q be a distribution onSn such that whenσ ∈ Sn
is chosen according to Q, we have

P(σ(i) > σ( j)) = 1/2

for every i, j ∈ [n]. Then Q is uniform on Sn. [S]
{Exer:PermDistFallacy2}

E 9.3. Kolata (January 9, 1990) writes: “By saying that the deck is
completely mixed after seven shuffles, Dr. Diaconis and Dr. Bayer mean that every
arrangement of the 52 cards is equally likely or that any card is as likely to be in
one place as in another.”

True or false: let Q be a distribution on Sn such that when σ ∈ Sn is chosen
according to Q, we have

P(σ(i) = j) = 1/n

for every i, j ∈ [n]. Then Q is uniform on Sn. [S]

E 9.4. Let Q be a distribution on Sn. Show that the random walk gen-
erated by Q is reversible if and only if Q(σ−1) = Q(σ) for all σ ∈ Sn.

{Exer:RandTransBadTime}
E 9.5. Consider the random transposition shuffle.

(a) Show that marking both cards of every transposition, and proceeding until ev-
ery card is marked, does not yield a strong uniform time.

(b) Show that marking the right-hand card of every transposition, and proceeding
until every card is marked, does not yield a strong uniform time.

{Exer:MaxProdPhi}
E 9.6. Let φ : [n] → R be any function. Let σ ∈ Sn. Show that the

value of
φσ =

∑
k∈[n]

φ(k)φ(σ(k))

is maximized when σ = id. [S]
{Exer:TrigComputation}

E 9.7. Show that for any positive integer n,∑
k∈[n]

cos2
(
(2k − 1)π

2n

)
=

n
2
.

[S]
{Exer:ashuffle}

E 9.8. Here’s a way to generalize the inverse riffle shuffle. Let a be
a positive integer. To perform an inverse a-shuffle, assign independent uniform
random digits chosen from {0, 1, . . . , a − 1} to each card. Then sort according to
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digit, preserving relative order for cards with the same digit. For example, if a = 3
and the digits assigned to cards are

1 2 3 4 5 6 7 8 9 10 11 12
2 0 2 1 2 0 1 0 1 0 0 0

then the shuffle will give

2 6 8 10 11 12 4 7 9 1 3 5

(a) Let a and b be positive integers. Show that an inverse a-shuffle followed by an
inverse b-shuffle is the same as an inverse ab-shuffle.

(b) Describe (mathematically) how to perform a forwards a-shuffle, and show that
its increment measure gives weight

(
a+n−r

n

)
/an to every π ∈ Sn with exactly r

rising sequences. (This is a generalization of (9.5).)
[S]

R. Exercise 9.8(b), due to Bayer and Diaconis (1992), is the key to nu-
merically computing the total variation distance from stationarity. A permutation
has r rising sequences if and only if its inverse has r − 1 descents. The number of a
permutations in Sn with r− 1 descents is the Eulerian number

〈 n
r−1

〉
. The Eulerian

numbers satisfy a simple recursion (and are built into modern symbolic computa-
tion software, such as Mathematica); see Graham et al. (1994, p. 267), for details.
It follows from Exercise 9.8 that the total variation distance from uniformity after t
Gilbert-Shannon-Reeds shuffles of an n-card deck is

n∑
r=1

〈 n
r−1

〉 ∣∣∣∣∣∣∣∣
(
2t+n−r

n

)
2nt −

1
n!

∣∣∣∣∣∣∣∣ .
See Figure 9.5 for the values when n = 52 and t ≤ 12.

9.5. Notes

9.5.1. Random transpositions. Our upper bound on the mixing time for ran-
dom transpositions is off by a factor of 4. Matthews (1988b) gives an improved
strong stationary time whose upper bound matches the lower bound. Here’s how it
works: again, let Rt and Lt be the cards chosen by the right and left hands, respec-
tively, at time t. Assume that when t = 0, no cards have been marked. As long as
at most dn/3e cards have been marked, use this rule: at time t, mark card Rt if both
Rt and Lt are unmarked. When k > dn/3e cards have been marked, the rule is more
complicated. Let l1 < l2 < · · · < lk be the marked cards, and enumerate the ordered
pairs of marked cards in lexicographic order:

(l1, l1), (l1, l2), . . . , (l1, lk), (l2, l1), . . . , (lk, lk). (9.7){Eq:MatthewsSST}

Also list the unmarked cards in order: u1 < un < · · · < un−k. At time t, if there
exists an i such that 1 ≤ i ≤ n− k and one of the three conditions below is satisfied,
then mark card i.

(i) Lt = Rt = ui.
(ii) Either Lt = ui and Rt is marked, or Rt = ui and Lt is marked.
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F 9.5.
Fig:Riffle52TV
The total variation distance from stationarity (with 4

digits of precision) after t riffle shuffles of a 52-card deck, for t =
1, . . . , 12.

(iii) The pair (Lt,Rt) is identical to the i-th pair in the list (9.7) of pairs of marked
cards.

(Note that at most one card can be marked per transposition; if case (iii) is invoked,
the card marked may not be either of the selected cards.) Compared to the Broder
time discussed earlier, this procedure marks cards much faster at the beginning,
and essentially twice as fast at the end. The analysis is similar in spirit to, but more
complex than, that presented in 9.1.2.

9.5.2. Semi-random transpositions. Consider shuffling by transposing cards.
However, we allow only one hand (the right) to choose a uniform random card.
The left hand picks a card according to some other rule—perhaps deterministic,
perhaps randomized—and the two cards are switched. Since only one of the two
cards switched is fully random, it is reasonable to call examples of this type shuffles
by semi-random transpositions. (Note that for this type of shuffle, the distribution
of allowed moves can depend on time.)

One particularly interesting variation first proposed by Thorp (1965) and men-
tioned as an open problem in Aldous and Diaconis (1986) is the cyclic-to-random
shuffle: at step t, the left hand chooses card t (mod n), the right hand chooses a
uniform random card, and the two chosen cards are transposed. This chain has
the property that every position is given a chance to be randomized once every n
steps. Might that speed randomization? Or does the reduced randomness slow it
down? (Note: Exercise 2.2 is about the state of an n-card deck after n rounds of
cyclic-to-random transpositions.)
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Mironov (2002) (who was interested in how many steps are needed to do a
good job of initializing a standard cryptographic protocol) gives an O(n log n) up-
per bound, using a variation of Broder’s stopping time for random transpositions.
Mossel et al. (2004) prove a matching (to within a constant) lower bound. Further-
more, the same authors extend the stopping time argument to give an O(n log n)
upper bound for any shuffle by semi-random transpositions.

9.5.3. Riffle shuffles. The most famous theorem in non-asymptotic Markov
chain convergence is what is often, and perhaps unfortunately, called the “seven
shuffles suffice” (for mixing a standard 52 card deck) result of Bayer and Diaconis
(1992), which was featured in the New York Times (Kolata, January 9, 1990).
Many elementary expositions of the riffle shuffle have been written. Our account is
in debt to Aldous and Diaconis (1986), Diaconis (1988), and Mann (1994).

The model for riffle shuffling that we have discussed was developed by Gilbert
and Shannon at Bell Labs in the 50’s, and later independently by Reeds. It is natural
to ask whether the Gilbert-Shannon-Reeds shuffle is a reasonable model for the
way humans riffle cards together. Diaconis (1988) reports that when he and Reeds
both shuffled repeatedly, Reeds’ shuffles had packet sizes that matched the GSR
model well, while Diaconis’ shuffles had more small packets. The difference is
not surprising, since Diaconis is an expert card magician who can perform perfect
shuffles—i.e., ones in which a single card is dropped at a time.

Far more is known about the GSR shuffle than we have discussed. Bayer and
Diaconis (1992) derived the exact expression for the probability of any particular
permutation after t riffle shuffles discussed in Exercise 9.8. Diaconis et al. (1995)
compute exact probabilities of various properties of the resulting permutations and
draw beautiful connections with combinatorics and algebra. See Diaconis (2003)
for a survey of mathematics that has grown out of the analysis of the riffle shuffle.

Is it in fact true that seven shuffle suffice to adequately randomize a 52 card
deck? Bayer and Diaconis (1992) were the first to give explicit values for the to-
tal variation distance from stationarity after various numbers of shuffles; see Fig-
ure 9.5. After seven shuffles, the total variation distance from stationarity is ap-
proximately 0.3341. That is, after 7 riffle shuffles the probability of a given event
can differ by as much as 0.3341 from its value under the uniform distribution. In-
deed, Peter Doyle has described a simple solitaire game for which the probability
of winning when playing with a uniform random deck is exactly 1/2, but whose
probability of winning with a deck that has been GSR shuffled 7 times from its
standard order is 0.801 (as computed in van Zuylen and Schalekamp (2004)).

Ultimately the question of how many shuffles suffice for a 52-card deck is
one of opinion, not mathematical fact. However, there exists at least one game
playable by human beings for which 7 shuffles clearly do not suffice. A more
reasonable level of total variation distance might be around 1 percent, comparable
to the house advantage in casino games. This threshold would suggest 11 or 12 as
an appropriate number of shuffles.



CHAPTER 10

Random Walks on Networks
{Ch:Networks}

10.1. Introduction

We have already met random walks on graphs in Section 3.4. We picture a
walker moving on a network of nodes connected by line segments, such as is shown
in Figure 10.1. At each move, the walker jumps to one of the nodes connected by a
single segment to his current position. How long must he wander before his current
location gives little clue about where he started? What is the expected time for him
to reach the top-right corner starting from the lower-left corner? Is it likely that
he will visit the top-right corner before he returns to his starting position? In this
chapter we take up these, and many other, questions.

F 10.1. A random walker on a small grid.
Fig:RWalker

10.2. Networks and Reversible Markov Chains

Electrical networks provide a different language for reversible Markov chains;
this point of view is useful because of the insight gained from the familiar physical
laws of electrical networks.

A network is a finite connected graph G = (V, E), endowed with non-negative
numbers {c(e)}, called conductances, that are associated to the edges of G. We
often write c(x, y) for c({x, y}); clearly c(x, y) = c(y, x). The reciprocal r(e) =
1/c(e) is called the resistance of the edge e. A network will be denoted by the pair
(G, {c(e)}). Vertices of G are often called nodes. V will denote the vertex set of G,
and for x, y ∈ V , we will write x ∼ y to indicate that {x, y} belongs to the edge set
of G.

Consider the Markov chain on the nodes of G with transition matrix

P(x, y) =
c(x, y)
c(x)

, (10.1) {Eq:WeightedRW}

113
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where c(x) =
∑

y : y∼x c(x, y). This process is called the weighted random walk
on G with edge weights {c(e)}, or the Markov chain associated to the network
(G, {c(e)}). This Markov chain is reversible with respect to the probability π defined
by π(x) := c(x)/c, where cG =

∑
x∈V c(x):

π(x)P(x, y) =
c(x)
cG

c(x, y)
c(x)

=
c(x, y)

cG
=

c(y, x)
cG

=
c(y)
cG

c(y, x)
c(y)

= π(y)P(y, x).

Note that
cG =

∑
x∈V

∑
y∈V
y∼x

c(x, y) = 2
∑
e∈E

c(e).

Simple random walk on G, defined in Section 3.4 as the Markov chain with transi-
tion probabilities

P(x, y) =

 1
deg(x) if y ∼ x,

0 otherwise,
(10.2)

is a special case of a weighted random walk: set the weights of all edges in G equal
to 1.

We now show that in fact every reversible Markov chain is a weighted random
walk on a network. Suppose P is a transition probability on Ω which is reversible
with respect to the probability π (that is, (3.27) holds.) Define a graph with ver-
tex set Ω by declaring {x, y} an edge if P(x, y) > 0. This is a proper definition,
since reversibility implies that P(x, y) > 0 exactly when P(y, x) > 0. Next, define
conductances on edges by c(x, y) = π(x)P(x, y). This is symmetric by reversibility.
With this choice of weights, we have c(x) = π(x), and thus the transition matrix
associated with this network is just P. The study of reversible Markov chains is
thus reduced to the study of random walks on networks.

10.3. Harmonic Functions and Voltage

Recall from Section 3.5.4 that we call a real-valued function h defined on the
vertices of G harmonic at a vertex x if

h(x) =
∑

y : y∼x

P(x, y)h(y), (10.3){eq:harmonic}

where P is the transition matrix defined in (10.1). This means that h(x) is the
weighted average of its neighboring values, where the weights are determined by
the conductances.

We distinguish two nodes, a and z, which are called the source and the sink
of the network. A function W which is harmonic on G \ {a, z} will be called a
voltage. A voltage is completely determined by its boundary values W(a) and
W(z). In particular, the following result, whose proof should remind you of that of
Lemma 3.9, is derived from the maximum principle.

{prop:6.1}
P 10.1. Let h be a function on a network (G, {c(e)}) which is har-

monic on G \ {a, z} and such that h(a) = h(z) = 0. Then h must vanish everywhere
on G.
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P. We will first show that h ≤ 0. Suppose this is not the case. Let x < {a, z}
belong to the set A = {x : h(x) = maxG h} and choose a neighbor y of x. By
harmonicity of h on G \ {a, z}, if h(y) < maxG h, then

h(x) =
∑

z : z∼x

h(z)P(x, z) = h(y)P(x, y) +
∑

z : z∼x,
z,y

h(z)P(x, z) < max
G

h,

a contradiction. It follows that h(y) = maxG h, that is, y ∈ A. By connectedness,
a, z ∈ A, hence h(a) = h(z) = maxG h > 0, contradicting our assumption. Thus
h ≤ 0. An application of this result to −h also yields h ≥ 0. �

If h and g are two harmonic functions satisfying the boundary conditions h(a) =
g(a) = x and h(z) = g(z) = y, then the function k = h − g is a harmonic function
with k(a) = k(z) = 0. By Proposition 10.1, k ≡ 0, that is, g = h. This proves that
given boundary conditions h(a) = x and h(z) = y, if there is a function harmonic
on G \ {a, z} satisfying these boundary conditions, it is unique. To prove that a
harmonic function with given boundary values exists, observe that the conditions
(10.3) in the definition of harmonic functions form a system of linear equations
with the same number of equations as unknowns, namely (number of nodes in
G) − 2; for such a system, uniqueness of solutions implies existence.

We can also prove existence more constructively, using random walk on the
underlying network. To get a voltage with boundary values 0 and 1 at z and a
respectively, set

W?(x) := Px {τa < τz} , (10.4)

where Px is the probability for the walk started at node x. (You should check that
W∗ is actually a voltage!) To extend to arbitrary boundary values Wa and Wz for
W(a) and W(z), respectively, define

W(x) = Wz +W?(x)
[
Wa −Wz

]
. (10.5) {Eq:HarmonicExists}

The reader should check that this function has all the required properties (Exer-
cise 10.2).

Until now, we have focused on undirected graphs. Now we need to consider
also directed graphs. An oriented edge is an ordered pair of nodes (x, y), which
we denote by ~e = ~xy. A directed graph consists of a vertex set together with a
collection of oriented edges. Of course, any network can be viewed as a directed
graph; for each unoriented edge in the network, include both orientations in the
directed graph.

A flow θ from a to z is a function on oriented edges which is antisymmetric,
θ( ~xy) = −θ( ~yx), and which obeys Kirchhoff’s node law:∑

w : w∼v

θ( ~vw) = 0 at all v < {a, z}. (10.6)

This is just the requirement “flow in equals flow out” for any node not a or z.
Observe that it is only flows that are defined on oriented edges. Conductance

and resistance are defined for unoriented edges; we may of course define them on
oriented edges by c( ~xy) = c( ~yx) = c(x, y) and r( ~xy) = r( ~yx) = r(x, y).
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Given a voltage W on the network, the current flow associated with W is de-
fined on oriented edges by

I( ~xy) =
W(x) −W(y)

r( ~xy)
= c(x, y)

[
W(x) −W(y)

]
. (10.7) {Eq:CFDef}

This definition immediately implies that the current flow satisfies Ohm’s law: if
~e = ~xy,

r(~e)I(~e) = W(x) −W(y). (10.8){Eq:OhmsLaw}

Also notice that I is antisymmetric and satisfies the node law at every x < {a, z}:∑
y : y∼x

I( ~xy) =
∑

y : y∼x

c(x, y)[W(x) −W(y)]

= c(x)W(x) − c(x)
∑

y : y∼x

W(y)P(x, y) = 0.

Thus the node law for the current is equivalent to the harmonicity of the voltage.
Finally, current flow also satisfies the cycle law: if the edges ~e1, . . . ,~em form a

cycle, i.e., ~ei = (xi−1, xi) and xn = x0, then

m∑
i=1

r(~ei)I(~ei) = 0 . (10.9)

Notice that adding a constant to all values of a voltage affects neither its har-
monicity nor the current flow it determines. Hence we may, without loss of gener-
ality, fix a voltage function W on our network for which W(z) = 0.

We define the strength of an arbitrary flow θ by

‖θ‖ =
∑

x : x∼a

θ( ~ax). (10.10)

A unit flow is a flow of strength 1.
{prop:6.3}

P 10.2 (Node law/cycle law/strength). If θ is a flow from a to z sat-
isfying the cycle law

m∑
i=1

r(~ei)θ(~ei) = 0 (10.11)

for any cycle ~e1 . . . , ~em, and if ‖θ‖ = ‖I‖, then θ = I.

P. The function f = θ − I satisfies the node law at all nodes and the cycle
law. Suppose f (e1) > 0 for some directed edge e1. By the node law, e1 must lead
to some directed edge e2 with f (e2) > 0. Iterate this process to obtain a sequence
of edges on which f is strictly positive. Since the underlying network is finite,
this sequence must eventually revisit a node. The resulting cycle violates the cycle
law. �
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10.4. Effective Resistance

Given a network, the ratio [W(a)−W(z)]/‖I‖, where I is the current flow corre-
sponding to the voltage W, is independent of the voltage W applied to the network.
Define the effective resistance between vertices a and z as

R(a↔ z) :=
W(a) −W(z)

‖I‖
. (10.12){Eq:ERDefn}

In parallel with our earlier definitions, we also define the effective conductance
C(a ↔ z) = 1/R(a ↔ z). Why is R(a ↔ z) called the “effective resistance” of the
network? Imagine replacing our entire network by a single edge joining a to z with
resistance R(a↔ z). If we now apply the same voltage to a and z in both networks,
then the amount of current flowing from a to z in the single-edge network is the
same as in the original.

Next, we discuss the probabilistic interpretation of effective resistance. By
(10.5), for any vertex x

Px{τz < τa} =
W(a) −W(x)
W(a) −W(z)

. (10.13) {Eq:HitBefore}

We have

Pa{τz < τ
+
a } =

∑
x∈V

P(a, x)Px{τz < τa} =
∑

x : x∼a

c(a, x)
c(a)

W(a) −W(x)
W(a) −W(z)

. (10.14)

Then using the definition of current flow (10.7), the above equals∑
x : x∼a I( ~ax)

c(a) [W(a) −W(z)]
=

‖I‖
c(a) [W(a) −W(z)]

=
1

c(a)R(a↔ z)
, (10.15)

showing that

Pa{τz < τ
+
a } =

1
c(a)R(a↔ z)

=
C(a↔ z)

c(a)
. (10.16) {Eq:EscapeResistance}

The Green’s function for the random walk stopped at a stopping time τ is de-
fined by

Gτ(a, x) = Ea (number of visits to x before τ) = Ea

 ∞∑
t=0

1{Xt=x,τ>t}

 . (10.17) {Eq:GreenFunctionDefn}

{Lem:GreensFunctionResistance}
L 10.3. If Gτz(a, a) is the Green’s function defined in (10.17), then

Gτz(a, a) = c(a)R(a↔ z). (10.18) {Eq:GreensFunctionResistance}

P. The number of visits to a before visiting z has a geometric distribution
with parameter Pa{τz < τ

+
a }. The lemma then follows from (10.16). �

It is often possible to replace a network by a simplified one without changing
quantities of interest, for example the effective resistance between a pair of nodes.
The following laws are very useful.

Parallel Law. Conductances in parallel add: suppose edges e1 and e2, with
conductances c1 and c2 respectively, share vertices v1 and v2 as endpoints. Then
both edges can be replaced with a single edge of conductance c1+c2 without affect-
ing the rest of the network. All voltages and currents in G \ {e1, e2} are unchanged
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and the current I(~e) equals I(~e1)+ I(~e2). For a proof, check Ohm’s and Kirchhoff’s
laws with I(~e) := I(~e1) + I(~e2).

Series Law. Resistances in series add: if v ∈ V \{a, z} is a node of degree 2 with
neighbors v1 and v2, the edges (v1, v) and (v, v2) can be replaced by a single edge
(v1, v2) of resistance rv1v + rvv2 . All potentials and currents in G \ {v} remain the
same and the current that flows from v1 to v2 equals I( ~v1v) = I( ~vv2). For a proof,
check again Ohm’s and Kirchhoff’s laws, with I( ~v1v2) := I( ~v1v) = I( ~vv2).

Gluing. Another convenient operation is to identify vertices having the same
voltage, while keeping all existing edges. Because current never flows between
vertices with the same voltage, potentials and currents are unchanged.

E 10.4. For a tree Γ with root ρ, let Γn be the vertices at distance n from
ρ. Consider the case of a spherically symmetric tree, in which all vertices of Γn
have the same degree for all n ≥ 0. Suppose that all edges at the same distance
from the root have the same resistance, that is, r(e) = ri if |e| = i, i ≥ 1. Glue all
the vertices in each level; this will not affect effective resistances, so we infer that

R(ρ↔ ΓM) =
M∑

i=1

ri

|Γi|
(10.19)

and

Pρ{τΓM < τ+ρ } =
r1/|Γ1|∑M
i=1 ri/|Γi|

. (10.20)

Therefore, limM→∞ Pρ{τΓM < τ+ρ } > 0 if and only if
∑∞

i=1 ri/|Γi| < ∞.

E 10.5 (Biased nearest-neighbor random walk). Consider the network
with vertices {0, 1, . . . , n}, edges ek = {k, k − 1} for k = 1, 2, . . . , n, and weights
c(ek) = αk. Then

P(k, k + 1) =
α

1 + α
,

P(k, k − 1) =
1

1 + α
.

If α = p/(1 − p), then this is the walk which when at interior vertices moves up
with probability p and down with probability 1 − p.

Using the series law, we can replace the k edges to the left of k by a single edge
of resistance

k∑
j=1

α− j =
α−(k+1) − α−1

1 − α−1 .

Likewise, we can replace the (n − k) edges to the right of k by a single edge of
resistance

n∑
j=k+1

α− j =
α−(n+1) − α−(k+1)

1 − α−1 .
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The probability Pk{τn < τ0} is not changed by this modification, so we can calculate
simply that

Pk{τn < τ0} =
(1 − α−1)/(α−(n+1) − α−(k+1))

(1 − α−1)/(α−(n+1) − α−(k+1)) + (1 − α−1)/(α−(k+1) − α−1)

=
α−k − 1
α−n − 1

.

In particular, for the biased random walk which moves up with probability p,

Pk{τn < τ0} =
[(1 − p)/p]k − 1
[(1 − p)/p]n − 1

. (10.21) {Eq:BiasedGR}

{Thm:ThompsonsPrinciple}
T 10.6 (Thomson’s Principle). For any finite connected graph,

R(a↔ z) = inf
{
E(θ) : θ a unit flow from a to z

}
, (10.22)

where E(θ) :=
∑

e[θ(e)]2r(e). The unique minimizer in the inf above is the unit
current flow.

R. The sum in E(θ) is over unoriented edges, so each edge {x, y} is only
considered once in the definition of energy. Although θ is defined on oriented
edges, it is antisymmetric and hence θ(e)2 is unambiguous.

P. By compactness, there exists a flow θ minimizing E(θ) subject to ‖θ‖ =
1. By Proposition 10.2, to prove that the unit current flow is the unique minimizer,
it is enough to verify that any unit flow θ of minimal energy satisfies the cycle law.

Let the edges ~e1, . . . ,~en form a cycle. Set γ(~ei) = 1 for all 1 ≤ i ≤ n and set γ
equal to zero on all other edges. Note that γ satisfies the node law, so it is a flow,
but

∑
γ(~ei) = n , 0. For any ε ∈ R, we have that

0 ≤ E(θ + εγ) − E(θ) =
n∑

i=1

[(
θ(~ei) + ε

)2
− θ(~ei)2

]
r(~ei)

= 2ε
n∑

i=1

r(~ei)θ(~ei) + O(ε2).

By taking ε → 0 from above and from below, we see that
∑n

i=1 r(ei)θ(~ei) = 0, thus
verifying that θ satisfies the cycle law.

To complete the proof, we show that the unit current flow I has E(I) = R(a ↔
z): ∑

e

r(e)I(e)2 =
1
2

∑
x

∑
y

r(x, y)
[
W(x) −W(y)

r(x, y)

]2

=
1
2

∑
x

∑
y

c(x, y)[W(x) −W(y)]2

=
1
2

∑
x

∑
y

[W(x) −W(y)]I( ~xy).
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Since I is antisymmetric,

1
2

∑
x

∑
y

[W(x) −W(y)]I( ~xy) =
∑

x

W(x)
∑

y

I( ~xy). (10.23) {eq:as}

By the node law,
∑

y I( ~xy) = 0 for any x < {a, z}, while
∑

y I( ~ay) = ‖I‖ = −
∑

y I(~zy),
so the right-hand side of (10.23) equals

‖I‖ (W(a) −W(z)) .

Recalling that ‖I‖ = 1, we conclude that the right-hand side of (10.23) is equal to
(W(a) −W(z))/‖I‖ = R(a↔ z). �

Let a, z be vertices in a network, and suppose that we add to the network an
edge which is not incident to a. How does this affect the escape probability from
a to z? From the point of view of probability, the answer is not obvious. In the
language of electrical networks, this question is answered by:

{thm:6.5}
T 10.7 (Rayleigh’s Monotonicity Law). If {r(e)} and {r′(e)} are sets of

resistances on the edges of the same graph G, and if r(e) ≤ r′(e) for all e, then

R(a↔ z; r) ≤ R(a↔ z; r′). (10.24)

[R(a ↔ z; r) is the effective resistance computed with the resistances {r(e)}, while
R(a↔ z; r′) is the effective resistance computed with the resistances {r′(e)}.]

P. Note that inf
θ

∑
e r(e)θ(e)2 ≤ inf

θ

∑
e r′(e)θ(e)2 and apply Thomson’s

Principle (Theorem 10.6). �
{cor:6.6}

C 10.8. Adding an edge does not increase the effective resistance
R(a↔ z). If the added edge is not incident to a, the addition does not decrease the
escape probability Pa{τz < τ

+
a } = [c(a)R(a↔ z)]−1.

P. Before we add an edge to a network we can think of it as existing
already with c = 0 or r = ∞. By adding the edge we reduce its resistance to a finite
number.

Combining this with the relationship (10.16) shows that the addition of an edge
not incident to a (which we regard as changing a conductance from 0 to 1) cannot
decrease the escape probability Pa{τz < τ

+
a }. �

{Cor:Glue}
C 10.9. The operation of gluing vertices cannot increase effective

resistance.

P. When we glue vertices together, we take an infimum over a larger class
of flows. �

Moreover, if we glue together vertices with different potentials, then effective
resistance will strictly decrease. A technique due to Nash-Williams (1959) often
gives simple but useful lower bounds on effective resistance.

An edge-cutset Π separating a from z is a set of edges with the property that
any path from a to z must include some edge in Π.
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{Prop:NW}
P 10.10 (Nash-Williams (1959)). If {Πn} are disjoint edge-cutsets

which separate nodes a and z, then

R(a↔ z) ≥
∑

n

∑
e∈Πn

c(e)

−1

. (10.25){eq:nw}

The inequality (10.25) is called the Nash-Williams inequality.

P. Let θ be a unit flow from a to z. For any n, by the Cauchy-Schwarz
inequality∑

e∈Πn

c(e) ·
∑
e∈Πn

r(e)θ(e)2 ≥

∑
e∈Πn

√
c(e)

√
r(e)|θ(e)|

2

=

∑
e∈Πn

|θ(e)|

2

The right-hand side is bounded below by ‖θ‖2 = 1 , because Πn is a cutset and
‖θ‖ = 1. Therefore∑

e

r(e)θ(e)2 ≥
∑

n

∑
e∈Πn

r(e)θ(e)2 ≥
∑

n

∑
e∈Πn

c(e)

−1

.

�

10.5. Escape Probabilities on a Square

Let Bn be the n×n two-dimensional grid graph: the vertices are pairs of integers
(z,w) such that 1 ≤ z,w ≤ n, while the edges are pairs of points at unit (Euclidean)
distance.

{Prop:ResisBn}

P 10.11. Let a = (1, 1) be the lower left-hand corner of Bn, and let
z = (n, n) be the upper right-hand corner of Bn. The effective resistance R(a ↔ z)
satisfies

log(n − 1)
2

≤ R(a↔ z) ≤ 2 log n. (10.26) {Eq:ResisBn}

We separate the proof into the lower and upper bounds.

z

a

F 10.2. The graph B5. The cutset Π3 contains the edges
drawn with dashed lines.

Fig:SquareCutset
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P     (10.26). Let Πk be the edge-set

Πk = {(v,w) : |v| = k − 1, |w| = k},

where |v| is the length of the shortest path from v to a (see Figure 10.2). Since every
path from a to z must use an edge in Πk, the set Πk is a cutset. Since each edge has
unit conductance,

∑
e∈Πk c(e) just equals the number of edges in Πk, namely 2k. By

Proposition 10.10,

R(a↔ z) ≥
n−1∑
k=1

1
2k
≥

log(n − 1)
2

. (10.27){Eq:BnLower}

�

We now establish the upper bound:

P     (10.26). Thomson’s Principle (Theorem 10.6) says that
the effective resistance is the minimal possible energy of a unit flow from a to z.
So to get an upper bound on resistance, we build a unit flow on the square.

Consider the Polya’s urn process, described in Section 4.3.3. The sequence of
ordered pairs listing the numbers of black and white balls is a Markov chain with
state space {1, 2, . . .}2.

Run this process on the square—note that it necessarily starts at vertex a =
(1, 1)—and stop when you reach the main diagonal x + y = n + 1. Direct all edges
of the square from bottom left to top right and give each edge e on the bottom left
half of the square the flow

f (e) = P{the process went through e}.

To finish the construction, give the the upper right half of the square the symmetri-
cal flow values.

From Lemma 4.4, it follows that for any k ≥ 0, the Polya’s urn process is
equally likely to pass through each of the k + 1 pairs (i, j) for which i + j = k + 2.
Consequently, when (i, j) is a vertex in the square for which i + j = k + 2, the sum
of the flows on its incoming edges is 1

k+1 . Thus the energy of the flow f can be
bounded by

E( f ) ≤
n−1∑
k=1

2
(

1
k + 1

)2

(k + 1) ≤ 2 log n.

�
{Exercise:PolyaHighD}

E 10.1. Generalize the flow in the upper bound of (10.26) to higher
dimensions, using an urn with balls of d colors. Use this to show that the resistance
between opposite corners of the d-dimensional box of side length n is bounded
independent of n, when d ≥ 3.

10.6. Problems
{Exercise:HarmonicExists}

E 10.2. Check that the the function W defined in (10.5) has all required
properties: that is, show it satisfies (10.3) at all vertices x < {a, z}, and show it
satisfies the boundary conditions W(a) = Wa and W(z) = Wz.
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{Exercise:Umbrella}
E 10.3. An Oregon professor has n umbrellas, of which initially k ∈

(0, n) are at his office and n − k are at his home. Every day, the professor walks to
the office in the morning and returns home in the evening. In each trip, he takes
an umbrella with him only if it is raining. Assume that in every trip between home
and office or back, the chance of rain is p ∈ (0, 1), independently of other trips.

{It:Umb12}
(a) For p = 1/2,

(i) How many states are needed to model this process as a Markov chain?
(ii) Determine the stationary distribution. Asymptotically, in what fraction of

his trips does the professor get wet?
(iii) Determine the expected number of trips until all n umbrellas are at the

same location.
(iv) Determine the expected number of trips until the professor gets wet. {It:UmbBias}

(b) Same as (a) but for arbitrary p.
Part (a) can be solved using the random walker in Figure 4.1. Part (b) requires
an analysis of a biased random walk, which moves right and left with unequal
probabilities.

{Exer:DDP}
E 10.4 (Discrete Dirichlet Problem). Let (G, {c(e)}) be a network, and

let A ⊂ V be a collection of vertices. Given a function g : A → R, show that there
is a unique extension of g to V so that g is harmonic on V \ A.

{Exercise:GambRuinResis}
E 10.5 (Gambler’s Ruin). Consider the simple random walk on {0, 1, 2, . . . , n}.

Use the network reduction laws to show that Px{τn < τ0} = x/n

E 10.6. Show that R(a↔ z) is a concave function of {r(e)}.

E 10.7. Let Bn be the subset of Z2 contained in the box of side length
2n centered at 0. Let ∂Bn be the set of vertices along the perimeter of the box.
Show that

lim
n→∞

P0{τ∂Bn < τ
+
a } = 0.

{Exercise:ResisMetric}
E 10.8. Show that effective resistances form a metric on any network

with conductances {c(e)}.
Hint: The only non-obvious statement is the triangle inequality

R(x↔ z) ≤ R(x↔ y) + R(y↔ z).

Adding the unit current flow from x to y to the unit current flow from y to z gives the
unit current flow from x to z (check Kirchoff’s laws!). Now use the corresponding
voltage functions.

10.7. Notes

The basic reference for the connection between electrical networks and random
walks on graphs is Doyle and Snell (1984), and we borrow here from Peres (1999).





CHAPTER 11

Hitting and Cover Times

11.1. Hitting Times

Global maps are often unavailable for real networks that have grown without
central organization, such as the Internet. However, sometimes the structure can
be queried locally, meaning that given a specific node v, for some cost all nodes
connected by a single link to v can be determined. How can such local queries be
used to determine whether two nodes v and w can be connected by a path in the
network?

Suppose you have limited storage, but are not concerned about time. In this
case, one approach to is to start a random walker at v, allow the walker to explore
the graph for some time, and observe whether the node w is ever encountered. If
the walker visits node w, then clearly v and w must belong to the same connected
component of the network. On the other hand, if node w has not been visited by the
walker by time t, it is possible that w is not accessible from v—but perhaps the the
walker was simply unlucky. It is of course important to distinguish between these
two possibilities! In particular, when w is connected to v, we desire an estimate of
expected time until the walker visits w starting at v.

With this in mind, it is natural to define the hitting time τA of a subset A of
nodes to be the first time one of the nodes in A is visited by the random walker: If
(Xt) is the random walk, let

τA := min{t ≥ 0 : Xt ∈ A}.

We will simply write τw for τ{w}, consistent with our notation in Section 3.5.2.
We have already seen the usefulness of hitting times. In Section 3.5.2 we used

a variant

τ+x = min{t ≥ 1 : Xt = x}

(called the first return time in the situation that X0 = x) to build a candidate sta-
tionary distribution. In Section 6.3, we used the expected absorption time for the
“gambler’s ruin” problem (computed in Section 4.1) to bound the expected cou-
pling time for the torus.

To connect our discussion of hitting times for random walks on networks to our
leitmotif of mixing times, we mention now the problem of estimating the mixing
time for two “glued” tori, the graph considered in Example 8.2.

Let V1 be the collection of nodes in the right-hand torus, and let v? be the node
connecting the two tori.

125
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When the walk is started at a node x in the left-hand torus, we have

‖Pt(x, ·) − π‖TV ≥ π(V1) − Pt(x,V1) =
1
2
− Px{Xt ∈ V1} ≥

1
2
− Px{τv? ≤ t}. (11.1) {Eq:DistanceTwoTori}

If the walker is unlikely to have exited the left-hand torus by time t, then (11.1)
shows that d(t) is not much smaller 1/2. In view of this, it is not surprising that
estimates for Ex(τv?) are useful for bounding tmix for this chain. These ideas are
developed in Section 11.7.

11.2. Hitting times and random target times
{Sec:HitTarg}{Lem:RandomTarget}

L 11.1 (Random Target Lemma). For an irreducible Markov chain with
state space Ω, transition matrix P, and stationary distribution π, the quantity∑

x∈Ω

Ea(τx)π(x)

does not depend on a ∈ Ω.

P. For notational convenience, let hx(a) = Ea(τx). Observe that if x , a,

hx(a) =
∑
y∈Ω

Ea(τx | X1 = y)P(a, y) =
∑
y∈Ω

(1 + hx(y)) P(a, y) = (Phx)(a) + 1,

so that
(Phx)(a) = hx(a) − 1. (11.2){Eq:RT1}

If x = a, then

Ea(τ+a ) =
∑
y∈Ω

Ea(τ+a | X1 = y)P(a, y) =
∑
y∈Ω

(1 + ha(y)) P(a, y) = 1 + (Pha)(a).

Since Ea(τ+a ) = π(a)−1,

(Pha)(a) =
1
π(a)

− 1. (11.3){Eq:RT2}

Thus, letting h(a) :=
∑

x∈Ω hx(a)π(x), (11.2) and (11.3) show that

(Ph)(a) =
∑
x∈Ω

(Phx)(a)π(x) =
∑
x,a

(hx(a) − 1)π(x) + π(a)
(

1
π(a)

− 1
)
.

Simplifying the right-hand side and using that ha(a) = 0 yields

(Ph)(a) = h(a).

That is, h is harmonic. Applying Lemma 3.9 shows that h is a constant function.
�

Consider choosing a state y ∈ Ω according to π. Lemma 11.1 says that the
expected time to hit the “random target” state y from a specified starting state a
does not depend on a. Hence we can define the target time of an irreducible chain
by

ttrgt =
∑
x∈Ω

Ea(τx)π(x) = Eπ(τπ)
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v
w

x

u

F 11.1.
Fig:CompleteLeaf
For random walk on this family of graphs, thit � ttrgt.

(the last version is a slight abuse of our notation for hitting times). Since ttrgt does
not depend on the state a, it is true that

ttrgt =
∑

x,y∈Ω

π(x)π(y)Ex(τy) = Eπ(τπ). (11.4){Eq:ttarg}

We will often find it useful to estimate the worst-case hitting times between
states in a chain. Define

thit = max
x,y∈Ω

Ex(τy). (11.5) {Eq:ThitDef}

{Lem:HitBound}
L 11.2. For an irreducible Markov chain with state space Ω and station-

ary distribution π,
thit ≤ 2 max

w
Eπ(τw).

P. For any a, y ∈ Ω, we have

Ea(τy) ≤ Ea(τπ) + Eπ(τy), (11.6) {Eq:HitBound}

since we can insist that the chain go from x to y via a random state x chosen
according to π. By Lemma 11.1,

Ea(τπ) = Eπ(τπ) ≤ max
w

Eπ(τw).

It is now clear that (11.6) implies the desired inequality. �

Note that for a transitive chain,

ttrgt = Eπ(τπ) =
∑
x∈Ω

Ea(τx)π(x) =
∑

x,y∈Ω

π(y)Ey(τx)π(x) = Eπ(τb).

Hence we have
{Cor:TransHitTargBound}

C 11.3. For an irreducible transitive Markov chain,

thit ≤ 2ttrgt.

E 11.4. When the underlying chain is not transitive, it is possible for
thit to be much larger than ttrgt. Consider the example of simple random walk on a
complete graph on n vertices with a leaf attached to one vertex (see Figure 11.1).
Let v be the leaf and let w be the neighbor of the leaf; call the other vertices ordi-
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nary. Let the initial state of the walk be v. The first return time from v to v satisfies
both

Evτ
+
v = Evτw + Ewτv = 1 + Ewτv

(since the walk must take its first step to w) and

Evτ
+
v =

1
π(v)

=
2
(
n
2

)
+ 1

1
= n2 − n + 2,

by Exercise 3.20 and Example 3.6. Hence Ewτv = n2 − n + 1 ≤ thit.
By the random target lemma, we can use any state to estimate ttrgt. Let’s start

at v. Clearly Evτv = 0, while Evτw = 1 and Evτu = 1 + Ewτu, where u is any
ordinary vertex. How long does it take to get from w to u, on average? Let x be any
other ordinary vertex. By conditioning on the first step of the walk, and exploiting
symmetry, we have

Ewτu = 1 +
1
n

(Evτu + (n − 2)Exτu)

= 1 +
1
n

(1 + Ewτu + (n − 2)Exτu)

and

Exτu = 1 +
1

n − 1
(Ewτu + (n − 3)Exτu)

We have two equations in the two “variables” Ewτu and Exτu. Solving yields

Ewτu =
n2 − n + 4

n
= O(n) and Exτu =

n2 − n + 2
n

= O(n)

(we only care about the first equation right now). Combining these results with
Example 3.6 yields

ttrgt = Evτπ = π(v)(0) + π(w)(1) + (n − 1)π(u)O(n)

=
1(0) + n(1) + (n − 1)2O(n)

2
((

n
2

)
+ 1

) = O(n) � thit.

11.3. Commute Time

The commute time between nodes a and b in a network is the time to move
from a to b and then back to a:

τa,b = min{t ≥ τb : Xt = a}, (11.7){Eq:CommuteTimeDefn}

where we assume that X0 = a. The commute time is of intrinsic interest and can
be computed or estimated using resistance (the commute time identity, Proposition
11.6). In graphs for which Ea(τb) = Eb(τa), the expected hitting time is half the
commute time, so estimates for the commute time yield estimates for hitting times.
Transitive networks enjoy this property (Proposition 11.7).

The following lemma will be used in the proof of the commute time identity:
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{Lem:Renewal}
L 11.5 (Aldous, Fill). If τ is a stopping time for a finite and irreducible

Markov chain satisfying Pa{Xτ = a} = 1, and Gτ(a, x) is the Green’s function (as
defined in (10.17)) then

Gτ(a, x)
Ea(τ)

= π(x) for all x.

E 11.1. Prove Lemma 11.5 by copying the proof in Proposition 3.8 that
π̃ as defined in (3.18) satisfies π̃ = π̃P, substituting Gτ(a, x)/Ea(τ) in place of π̃.

{Prop:CommuteTimeIdentity}
P 11.6 (Commute Time Identity). Let (G, {c(e)}) be a network, and

let (Xt) be the random walk on this network. For any nodes a and b in V, let τa,b
be the commute time defined in (11.7) between a and b. Then

Ea(τa,b) = Ea(τb) + Eb(τa) = cGR(a↔ b). (11.8) {Eq:CommuteTimeIdentity}

(Recall that c(x) =
∑

x∈V c(x) and that cG =
∑

x∈V c(x) = 2
∑

e∈E c(e).)

P. By Lemma 11.5,
Gτa,b(a, a)

Ea(τ)
= π(a) =

c(a)
cG

.

By definition, after visiting b the chain does not visit a until time τa,b, so Gτa,b(a, a) =
Gτb(a, a). The conclusion follows from Lemma 10.3. �

Note that Ea(τb) and Eb(τa) can be very different for general Markov chains,
and even for reversible chains (see Exercise 11.6). However, for certain types of
random walks on networks they are equal. A network 〈G, {c(e)}〉 is transitive if for
any pair of vertices x, y ∈ V there exists a permutation ψx,y : V → V with

ψx,y(x) = y, and c(ψx,y(u), ψx,y(v)) = c(u, v) for all u, v ∈ V. (11.9) {Eq:psidef}

R. In Section 7.5 we defined transitive Markov chains. The reader
should check that a random walk on a transitive graph is a transitive Markov chain.

{Prop:Eabba}
P 11.7. For a simple random walk on a transitive connected graph

G, for any vertices a, b ∈ V,

Ea(τb) = Eb(τa) (11.10) {Eq:Eabba}

Before proving this, it is helpful to establish the following identity:
{Lem:CycleIdentity}

L 11.8. For any three states a, b, c of a reversible Markov chain,

Ea(τb) + Eb(τc) + Ec(τa) = Ea(τc) + Ec(τb) + Eb(τa)

P. We can reword this lemma as

Ea(τbca) = Ea(τcba), (11.11) {reword}

where τbca is the time to visit b, then visit c, and then hit a. It turns out that it
is much easier to start at stationarity, since it allows us to use reversibility easily.
Recall that we use Eπ(·) to denote the expectation operator for the chain started
with initial distribution π.
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Adding Eπ(τa) to both sides of (11.11), we find it is enough to show that

Eπ(τabca) = Eπ(τacba).

In fact, we will show equality in distribution, not just expectation. Suppose ξ and
ξ? are finite strings with letters in V , meaning ξ ∈ Vm and ξ? ∈ Vn with m ≤ n. We
say that ξ � ξ? if and only if ξ is a subsequence of ξ?, that is, there exist indices
1 ≤ i1 < · · · < im ≤ n with ξ(k) = ξ?(ik) for all 1 ≤ k ≤ m. Using the identity
(3.29) for reversed chains,

Pπ{τabca > k} = Pπ{abca � X0 . . . Xk} = Pπ{abca � Xk . . . X0}. (11.12){Eq:abca1}

Clearly, abca � Xk . . . X0 is equivalent to acba � X0 . . . Xk (just read from right-to-
left!), so the right-hand side of (11.12) equals

Pπ{acba � X0 . . . Xk} = Pπ{τacba > k}.

�

P  P 11.7. Let ψ be a map satisfying the conditions (11.9)
with u = a and v = b. Let a0 = a, and a j = ψ( j)(a0) for j ≥ 1, where ψ( j) de-
notes the j-th iterate of ψ. The sequence a0, a1, . . . will return to a0 eventually; say
am = a0, where m > 0. The function ψ( j) takes a, b to a j, a j+1, so for any j,

Ea j(τa j+1) = Ea(τb), (11.13)

Summing over j from 0 to m − 1 we obtain

Ea0(τa1a2...am−1a0) = mEa(τb). (11.14){Eq:cycle}

For the same reason,
Ea0(τam−1am−2...a1a0) = mEb(τa) (11.15){Eq:cyclereverse}

By the same argument as we used for (11.11), we see that the left hand sides of
equation (11.14) and (11.15) are the same. This proves (11.10). �

11.4. Hitting Times for the Torus
{Sec:HitTimeTorus}

Putting together Exercise 11.8, Proposition 11.7, and the Commute Time Iden-
tity (Proposition 11.6), it follows that for random walk on the d-dimensional torus,

Ea(τb) = 2ndR(a↔ b). (11.16){Eq:HitTimeTorusResistance}

(For an unweighted graph, c = 2 × |edges|.) Thus, to get estimates on the hitting
time Ea(τb), it is enough to get estimates on the effective resistance.

{Prop:HitForTorus}
P 11.9. Let x and y be two points at distance k in the torus Zd

n, and
let τy be the time of the first visit to y. There exist constants 0 < cd ≤ Cd < ∞ such
that

cdnd ≤ Ex(τy) ≤ Cdnd uniformly in k if d ≥ 3, (11.17){Eq:TorHit3d}

c2n2 log(k) ≤ Ex(τy) ≤ C2n2 log(k) if d = 2. (11.18){Eq:TorHit2d}
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P. First, the lower bounds. Choose Π j to be the box centered around x of
side-length 2 j. There is a constant κ1 so that for j ≤ κ1k, the box Π j is a cutset
separating x from y. Note Π j has order jd−1 edges. By Proposition 10.10,

R(a↔ z) ≥
κ1k∑
j=1

κ2 j1−d ≥

κ3 log(k) if d = 2,
κ3 if d ≥ 3.

The lower bounds in (11.17) and (11.18) are then immediate from (11.16).
If the points x and y are the diagonally opposite corners of a square, the upper

bound in (11.18) follows using the flow constructed from Polya’s urn in Proposition
10.11.

Now consider the case where x and y are in the corners of a non-square rec-
tangle. Examine Figure 11.2. Connect x and y via a third point z, where z is on a
vertical line segment going through x and on a horizontal line segment through y.
Suppose that the path connecting x to z has 2i edges, and the path connecting z to
y has 2 j segments. (Note 2i + 2 j = k, since x and y are at distance k.) Now let u
be the point diagonal to x in a 2i × 2i square on one side of the path from x to z
(see again Figure 11.2.) Define v similarly. We construct 4 flows and concatenate
them: flow from x to u, from u to z, from z to v, and from v to y. Each of these
flows is constructed via Polya’s urn, as in Proposition 10.11. Note that the edges
in these four flows are disjoint, so we find the energy E by adding the energies of
the four individual flows. Each has energy bounded by c log(k). Using Thomson’s
Principle, the resistance is then bounded above by c log(k). If the path lengths are
not even, just direct the flow all along the last edge in the path. This establishes the
upper bound (11.18).

The upper bound in (11.17) uses the resistance bound in Exercise 10.1.

v

z

x

y

u

F 11.2. Constructing a flow from a to z.
Fig:Flow

�
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11.5. Hitting Times for Birth-and-Death Chains

A birth-and-death chain has state-space Ω = {0, 1, 2, . . . , n}, and moves only
to neighboring integers (or remains in place.) The transition probabilities are spec-
ified by {(pk, rk, qk)}nk=0, where pk + rk + qk = 1 and

• pk is the probability of moving from k to k + 1 when 0 ≤ k < n,
• qk is the probability of moving from k to k − 1 when 0 < k ≤ n,
• rk is the probability of remaining at k when 0 < l < n,
• At 0, the chain remains at 0 with probability r0 + q0,
• At n, the chain remains at n with probability rn + pn.

To find the stationary distribution of the chain, we need to solve the equations

π(k) = π(k)rk + π(k − 1)pk−1 + π(k + 1)qk+1 for 1 < k < n,

π(0) = π(0)
[
r0 + q0

]
+ π(1)q1

π(n) = π(n)
[
rn + qn

]
+ π(n − 1)pn−1.

Solving,

π(1) =
(1 − r0 − q0)π(0)

q1
=

p0

q1
π(0)

π(2) =
π(1) [1 − rk] − π(0)p0

q2
=

p0 p1

q1q2
π(0)

...

π(n) =
π(n − 1)pn−1

1 − rn − pn
=

p0 p1 · · · pn−2 pn−1

q1 · · · qn−1qn
π(0)

That is,

π(k) = cp,r,q

k∏
j=1

p j

q j
,

where cp,r,q :=
[∑n

k=0
∏k

j=1
p j
q j

]−1
is a normalizing constant.

Fix ` ∈ {0, 1, . . . , n} and consider the restriction of the original chain to {0, 1, . . . , `}:
• For any k ∈ {0, 1, . . . , ` − 1}, the chain makes transitions from k as before

– moving down with probability qk, remaining in place with probability
rk, and moving up with probability pk.
• At `, the chain either moves down or remains in place, with probabilities

q` and r` + p`, respectively.
We write Ẽ for expectations for this new chain. The stationary probability π̃ is
given by

π̃(k) =
π(k)

π({0, 1, . . . , `})
.

Thus,
π({0, 1, . . . , `})

π(`)
=

1
π̃(`)

= Ẽ`(τ+` ) = 1 + q`Ẽ`−1(τ`) (11.19){Eq:BDHit1}
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Note that Ẽ`−1(τ`) = E`−1(τ`), and rearranging (11.19) shows that

E`−1(τ`) =
π({0, 1, . . . , `})/π(`) − 1

q`
=
π({0, 1, . . . , ` − 1})

π(`)q`

=

∑`−1
k=0

∏k
j=1

(
p j
q j

)
∏`

j=1

(
p j
q j

)
q`

.

In the special case that (pk, rk, qk) does not depend on k and p , q, we get

E`−1(τ`) =
1

p − q

1 − (
q
p

)`
When pk = qk, we get

E`−1(τ`) =
`

(` + 1)q`
.

To find Ea(τb) for a < b, just sum:

Ea(τb) =
b∑

`=a+1

E`−1(τ`)

=

b∑
`=a+1

∑`−1
k=0

∏k
j=1

(
p j
q j

)
∏`

j=1

(
p j
q j

)
q`

.

{Xmpl:EhrUrnHit}
E 11.10 (Ehrenfest Urn). Suppose d balls are split between two urns,

labelled A and B. At each move, a ball is selected at random and moved from its
current urn to the other urn. If the location of each ball is recorded, the chain has
state-space {0, 1}d and is the familiar random walk on the hypercube. We consider
instead the chain which just tracks the number of balls in urn A. The transition
probabilities are, for 0 ≤ k ≤ d,

P(k, k + 1) =
d − k

d

P(k, k − 1) =
k
d
.

This is a birth-and-death chain with pk = (d − k)/d and qk = k/d.

11.6. Bounding Mixing Times via Hitting Times

The goal of this section is to prove the following:
{thm:mixhit}

T 11.11. Consider a finite reversible chain with transition matrix P and
stationary distribution π on Ω.

{It:HitMix1}
(i) For all m ≥ 0 and x ∈ Ω, we have

‖Pm(x, ·) − π‖2TV ≤
1
4

[
P2m(x, x)
π(x)

− 1
]
. (11.20) {cauchy}
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{It:HitMix2}
(ii) If the chain satisfies P(x, x) ≥ 1/2 for all x, then

tmix(1/4) ≤ 2 max
x∈Ω

Eπ(τx) + 1. (11.21) {eq:mixhit}

R 11.1. (i) says that the total variation distance to stationarity starting
from x, for reversible chains, can be made small just by making the return time to
x close to its stationary probability.

R 11.2. Note that by conditioning on X0,

Eπ(τx) =
∑
y∈Ω

Ey(τx)π(y) ≤ max
y∈Ω

Ey(τx) = thit.

Thus the bound (11.21) implies

tmix(1/4) ≤ 2thit + 1. (11.22){eq:mixhitmax}

To prove this, we will need a few preliminary results.
{Prop:Mono}

P 11.12. Let P be the transition matrix for a finite reversible chain
on state-space Ω with stationary distribution π.

{It:PmMono}
(i) For all t ≥ 0 and x ∈ Ω we have P2t+2(x, x) ≤ P2t(x, x).{It:PmMonoL}

(ii) If the chain PL is lazy, that is PL(x, x) ≥ 1/2 for all x, then for all t ≥ 0 and
x ∈ Ω we have Pt+1

L (x, x) ≤ Pt
L(x, x).

See Exercise 12.4 in Chapter 12 for a proof using eigenvalues. Here, we give
a direct proof using the Cauchy-Schwarz inequality.

P. (i) Since P2t+2(x, x) =
∑

y,z∈Ω Pt(x, y)P2(y, z)Pt(z, x), we have

π(x)P2t+2(x, x) =
∑

y,z∈Ω

Pt(y, x)π(y)P2(y, z)Pt(z, x) =
∑

y,z∈Ω

ψ(y, z)ψ(z, y), (11.23){decomp}

where ψ(y, z) = Pt(y, x)
√
π(y)P2(y, z). (By Exercise 3.14, the matrix P2 is re-

versible with respect to π.)
By Cauchy-Schwarz, the right-hand side of (11.23) is at most∑

y,z∈Ω

ψ(y, z)2 =
∑
y∈Ω

[Pt(y, x)]2π(y) = π(x)P2t(x, x).

(ii) Given a lazy chain PL = (P+ I)/2, enlarge the state space by adding a new
state mxy = myx for each pair of states x, y ∈ Ω. (See Figure 11.3.)

On the larger state space ΩK define a transition matrix K by

K(x,mxy) = P(x, y) for x, y ∈ Ω,
K(mxy, x) = K(mxy, y) = 1/2 for x , y,

K(mxx, x) = 1 for all x,

other transitions having K-probability 0. Then K is reversible with stationary mea-
sure πK given by πK(x) = π(x)/2 for x ∈ Ω and πK(mxy) = π(x)P(x, y). Clearly
K2(x, y) = PL(x, y) for x, y ∈ Ω, so K2t(x, y) = Pt

L(x, y), and the claimed mono-
tonicity follows. �
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xyx

mwx

mw zwz

myz

m y

F 11.3. Adding states mxy for each pair x, y ∈ Ω.
Fig:mxy

The following proposition, that does not require reversibility, relates the mean
hitting time of a state x to return probabilities.

{Prop:Warm}
P 11.13 (Hitting time from stationarity). Consider a finite irreducible

aperiodic chain with transition matrix P with stationary distribution π on Ω. Then
for any x ∈ Ω,

π(x)Eπ(τx) =
∞∑

t=0

[Pt(x, x) − π(x)]. (11.24) {Eq:Warm}

We give two proofs, one using generating functions and one using stopping
times, following (Aldous and Fill, in progress, Lemma 11, Chapter 2).

P  P 11.13   . Define

fk := Pπ{τx = k} and uk := Pk(x, x) − π(x).

Since Pπ{τx = k} ≤ Pπ{τx ≥ k} ≤ Cαk for some α < 1 (see (3.17)), the power series
F(s) :=

∑∞
k=0 fksk converges in an interval [0, 1 + δ1] for some δ1 > 0.

Also, since |Pk(x, x) − π(x)| ≤ d(k), and d(k) decays at least geometrically
fast (Theorem 5.6), U(s) :=

∑∞
k=0 uksk converge in an interval [0, 1 + δ2] for some

δ2 > 0. Note that F′(1) =
∑∞

k=0 k fk = Eπ(τx) and U(1) equals the right-hand side
of (11.24).

For every m ≥ 0,

π(x) = Pπ{Xm = x} =
m∑

k=0

fkPm−k(x, x) =
m∑

k=0

fk
[(

Pm−k(x, x) − π(x)
)
+ π(x)

]
=

m∑
k=0

fk[um−k + π(x)].

Thus, the constant sequence with every element equal to π(x) is the convolution
of the sequence { fk}∞k=0 with the sequence {uk − π(x)}∞k=0, so its generating function∑∞

m=0 π(x)sm = π(x)(1 − s)−1 equals the product of the generating function F with
the generating function

∞∑
m=0

[um − π(x)]sm = U(s) − π(x)
∞∑

m=0

sm = U(S ) −
π(x)
1 − s

.
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(See Exercise 11.15.) That is, for 0 < s < 1,

π(x)
1 − s

=

∞∑
m=0

π(x)sm = F(s)
[
U(s) +

π(x)
1 − s

]
,

and multiplying by 1 − s gives π(x) = F(s)[(1 − s)U(s) + π(x)], which clearly
holds also for s = 1. Differentiating the last equation at s = 1, we obtain that
0 = F′(1)π(x) − U(1), and this is equivalent to (11.24). �

P  P 11.13   . Define

τ(m)
x := min{t ≥ m : Xt = x},

and write µm := Pm(x, ·). By the Convergence Theorem (Theorem 5.6), µm tends
to π as m→ ∞. By Lemma (11.5), we can represent the expected number of visits
to x before time τ(m)

x as
m−1∑
k=0

Pk(x, x) = π(x)Ex
(
τ(m)

x

)
= π(x)[m + Eµm(τx)].

Thus
∑m−1

k=0 [Pk(x, x) − π(x)] = π(x)Eµm(τx).
Taking m→ ∞ completes the proof. �

We are now able to prove Theorem 11.11.

P  T 11.11. (i) By Cauchy-Schwarz,1
2

∑
y∈Ω

π(y)
∣∣∣∣∣Pm(x, y)
π(y)

− 1
∣∣∣∣∣


2

≤
∑
y∈Ω

π(y)
[
Pm(x, y)
π(y)

− 1
]2

.

Therefore

‖Pm(x, ·) − π‖2TV ≤
1
4

∑
y∈Ω

[
Pm(x, y)Pm(y, x)

π(x)
− 2Pm(x, y) + 1

]
=

1
4

[
P2m(x, x)
π(x)

− 1
]
.

(ii) By the identity (11.24) in Proposition 11.13 and the monotonicity in Proposi-
tion 11.12(ii), for any m > 0 we have

π(x)Eπ (τx) ≥
2m∑
k=1

[Pk(x, x) − π(x)] ≥ 2m[P2m(x, x) − π(x)].

Dividing by 8m π(x) and invoking (11.20) gives
Eπ (τx)

8m
≥ ‖Pm(x, ·) − π‖2TV,

and the left-hand side is less than 1/16 for m ≥ 2Eπ(τx). �
{Xmpl:CycleMixHit}

E 11.14 (Random walks on cycles). We have already derived an O(n2)
bound for the mixing time of the lazy random walk on the cycle Cn, using coupling—
it is the dimension 1 case of Theorem 6.4. However, Theorem 11.11 can also be
used, and gives a result for the simple (non-lazy) random walk on odd cycles.
(Simple random walk on even cycles is periodic; see Example 3.4.)
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Label the states of Cn with {0, 1, . . . , n − 1}. By identifying the states 0 and n,
we can see that Ekτ0 for the simple random walk on the cycle must be the same
as the expected time to ruin or success in a gambler’s ruin on the path {0, 1, . . . , n}.
Hence, for simple random walk on the cycle, Exercise 4.1 implies

thit = max
x,y

Exτy = max
0≤k≤n

k(n − k) =
bn2c

4
.

For odd n, (11.22) gives

tmix ≤
n2 − 1

2
+ 1 =

n2 + 1
2

.

For lazy random walk on any cycle, whether even or odd, we have thit = bn2c/2, so

tmix ≤ n2 + 1.

E 11.15 (Random walk on binary trees). In Example 8.4 the lazy ran-
dom walk on the binary tree of depth k was defined, and a lower bound on tmix
was obtained via the bottleneck ratio. Here we obtain an upper bound of the same
order.

The maximal hitting time between two vertices is obtained for `1 and `2 two
leaves whose most recent common ancestor is the root v0. This hitting time is equal
to the commute time from the root to one of the leaves, say `1. For convenience,
we first consider the simple random walk without holding. Using the Commute
Time Identity in Equation 11.8, cG is the number of edges and equals 2(n− 1), and
the effective resistance equals the depth k. Thus,

max
x,y∈Ω

Ey(τx) = E`1(τ`1) = Ev0(τ`1) + E`1(τv0) = 2(n − 1)k.

For the lazy walk, this expected time is doubled, since at each move the chain
remains in place with probability 1/2.

Using Theorem 11.11(ii), this shows that tmix = O(n log n). (The number of
vertices n and the depth k are related by n = 2k+1 − 1.) The lower bound obtained
in Example 8.4 was of order n – which is indeed the correct order for tmix.

11.6.1. Cesaro mixing time. Let the Markov chain (Xt)t≥0 have stationary
distribution π. The stopping time τ is a stationary time for the chain if Px{Xτ =
y} = π(y) for arbitrary states x, y.

The simplest stationary time is the first hitting time of a state chosen indepen-
dently according to π.

Consider a finite chain (Xt) with transition matrix P and stationary distribution
π on Ω. Given t ≥ 1, suppose that we choose uniformly a time σ ∈ {0, 1, . . . , t− 1},
and run the Markov chain for σ steps. Then the state Xσ has distribution

νt
x :=

1
t

t−1∑
s=0

Ps(x, ·). (11.25) {cesaro}

The Cesaro mixing time t?mix(ε) is defined as the first t such that for all x ∈ Ω,

‖νt
x − π‖TV ≤ ε .
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See Exercises 11.17 through 11.19 for some properties of the Cesaro mixing time.
The following general result due to Lovász and Winkler (1998) shows that the

expectation of any stationary time yields an upper bound for t?mix(1/4). Remark-
ably, this does not need reversibility or laziness. Lovász and Winkler also prove a
converse of this result.

{thm:lovwink}

T 11.16. Consider a finite chain with transition matrix P and station-
ary distribution π on Ω. If τ is a stationary time for the chain, then t?mix(1/4) ≤
4 maxx∈Ω Ex(τ) + 1.

P. Denote by νt
x the Cesaro average (11.25). Since τ is a stationary time,

so is τ + s for every s ≥ 1. Therefore, for every y ∈ Ω,

tπ(y) =
t−1∑
s=0

Px {Xτ+s = y} =
∞∑
`=0

Px {X` = y, τ ≤ ` < τ + t} .

Consequently,

tνt
x(y) − tπ(y) ≤

t−1∑
`=0

Px {X` = y, τ > `} .

Summing the last inequality over all y ∈ Ω such that the right-hand side is positive,

t‖νt
x − π‖TV =

t−1∑
`=0

Px {τ > `} ≤ Ex (τ) .

Thus for t ≥ 4Ex(τ) we have ‖νt
x − π‖TV ≤ 1/4. �

11.7. Mixing for the Walker on Two Glued Graphs
{Sec:TwoGraphMix}

We state the main result of this section:
{Prop:ConvergeTwo}

P 11.17. Suppose that the graph H is obtained by taking two disjoint
copies of a graph G and identifying two corresponding vertices, one from each
graph. Let τG

couple be the time for a coupling of two walkers on G to meet. Then
there is a coupling of two walkers on H which has a coupling time τH

couple satisfying

max
u,v∈H

Eu,v(τH
couple) ≤ 16

[
max
x,y∈G

Ex(τG
y ) + max

x,y∈G
E(τG

couple)
]
. (11.26)

(Here τG
y is the hitting time of y in the graph G.)

P. Let v? be the one vertex shared by the two copies of G. We couple
two walkers, labeled A and B, started at vertices u and v in H. Initially, let the two
walks move independently.

Denote the hitting time of y by walker A by τA
y and define the event N1 :=

{τA
v? > 2t1}, where t1 := maxx,y∈G Ex(τy). By Markov’s inequality, Pu,v(N1) ≤ 1/2.

At time τA
v? , couple together A and B in the projected space identifying the

two graphs, according to the original coupling in the graph G. Let τP
couple be the

time until the particles couple in the projected space. The distribution of τP
couple
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is the same as the distribution of τG
couple. Letting t2 = maxx,y∈G Ex,y(τG

couple) and
N2 = {τ

P
couple > 2t1}, we have

max
v∈H

Pv?,v(N2) ≤
1
2
.

Finally, let N3 be the event that when the particles couple in the projected space, the
actual particles are in different copies of G. By symmetry, maxu,v∈H Pu,v(N3) ≤ 1/2.
We conclude that maxu,v∈H P{Nc

1∩Nc
2∩Nc

3} ≥ 1/8. In other words, with probability
at least 1/8, the two particles couple by time 2(t1 + t2). To finish, apply Exercise
6.2. �

{Exercise:TwoSST}

E 11.2. Suppose that τ is a strong stationary time for simple random
walk started at the vertex v on the graph G. Let H consist of two copies G1 and G2
of G, glued at v. Note that degH(v) = 2 degG(v). Let τv be the hitting time of v:

τv = min{t ≥ 0 : Xt = v}.

Show that starting from any vertex x in H, the random time τv + τ is a strong
stationary time for H (where τ is applied to the walk after it hits v.)

R 11.3. It is also instructive to give a general direct argument controlling
mixing time in the graph H described in Exercise 11.2:

Let hmax be the maximum expected hitting time of v in G, maximized over
starting vertices. For t > 2khmax + tmixG(ε) we have in H that

|Pt(x, A) − π(A)| < 2−k + ε. (11.27) {Eq:DirectSt1}

Indeed for all x in H, we have Px{τv > 2hmax} < 1/2 and iterating, Px{τv >
2khmax} < (1/2)k. On the other hand, conditioning on τv < 2khmax, the bound
(11.27) follows from considering the projected walk.

We can now return to the example mentioned in this chapter’s introduction:
{Cor:ConvergenceTwoTori}

C 11.18. Consider the lazy random walker on two tori glued at a
single vertex. (See Example 8.2 and in particular Figure 8.2.) There are constants
c1, c2 such that

c1n2 log n ≤ tmix ≤ c2n2 log n, (11.28) {Eq:TwoToriMix}

where tmix is the mixing time defined in (5.33).

P     (11.28). Applying Proposition 11.17, using the bounds
in Proposition 11.9 and the bound (6.11) for the coupling on the torus used in The-
orem 6.4 shows that there is a coupling with

max
x,y∈G

Ex,y(τcouple) ≤ C1n2 log n. (11.29)

Applying Theorem 6.2 shows that

d̄(t) ≤
C1n2 log n

t
,

proving the right-hand inequality in (11.28). �



140 11. HITTING AND COVER TIMES

11.8. Cover Times

Herb Wilf, in the American Mathematical Monthly, offers the following ac-
count of waiting for a random walk to visit every pixel of his first personal com-
puter’s screen:

For a while, near the start of such a program, the walk is almost
always quickly visiting pixels that it hasn’t visited before, so one
sees an irregular pattern that grows in the center of the screen.
After a while, though, the walk will more often visit pixels that
have previously been visited. Since they have already been lit up,
and once they are lit up they are never turned off, the viewer sees
no change on the screen.

Hence there are periods when the screen seems frozen, and
then suddenly the walk will visit some new pixel in another corner
of the pattern, and more of them will be lit up.

After quite a long while, when the screen is perhaps 95% illu-
minated, the growth process will have slowed down tremendously,
and the viewer can safely go read War and Peace without miss-
ing any action. After a minor eternity, every cell will have been
visited, the screen will be white, and the game will be over. Any
mathematician who watched this will want to know how long, on
average, it will take before, for the first time, all pixels have been
visited. (Wilf, 1989).

Let (Xt) be a finite Markov chain with state space Ω. The cover time C of (Xt)
is the first time at which all the states have been visited. More formally, C is the
minimal value such that, for every state x ∈ Ω, there exists t ≤ C with Xt = x.

The cover time of a Markov chain is a natural concept. As Wilf (1989) ob-
served (quoted above), it can be large enough for relatively small chains to arouse
mathematical curiosity. Of course, there are also “practical” interpretations of the
cover time. For instance, we might view the progress of a web crawler as a random
walk on the graph of World Wide Web pages: at each step, the crawler chooses a
linked page at random and goes there. The time taken to scan the entire collection
of pages is the cover time of the underlying graph.

{Xmpl:covercycle}
E 11.19. Lovász (1993) gives an elegant computation of the expected

cover time of simple random walk on the n-cycle. This walk is simply the remain-
der modulo n of a simple random walk on Z. The walk on the remainders has
covered all n states exactly when the walk on Z has first visited n distinct states.

Let cn be the expected value of the time when a simple random walk on Z has
first visited n states, and consider a walk which has just reached its (n − 1)-st new
state. The visited states form a subsegment of the number line and the walk must
be at one end of that segment. Reaching the n-th new state is now a gambler’s
ruin situation: the walker’s position corresponds to a fortune of 1 (or n − 1), and
we are waiting for her to reach either 0 or n. Either way, the expected time is
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(1)(n − 1) = n − 1, as shown in Exercise 4.1. It follows that

cn = cn−1 + (n − 1) for n ≥ 1.

Since c1 = 0 (the first state visited is X0 = 0), we may conclude that cn = n(n−1)/2.

11.9. The Matthews method

It is not surprising that there is an essentially monotone relationship between
hitting times and cover times: the longer it takes to travel between states, the longer
it should take to visit all of them. Of course, a walk covering all the states can visit
them in many different orders. This indeterminacy can be exploited: randomizing
the order in which we check whether states have been visited (which, following
Aldous and Fill (in progress), we will call the Matthews method—see Matthews
(1988a) for the original version) allows us to prove both upper and lower bounds
on expected cover times. Despite the simplicity of the arguments, these bounds are
often remarkably good.

{th:covertime}
T 11.20 (Matthews (1988a)). Let (Xt) be an irreducible finite Markov

chain on n states. Then, for any initial state x,

Ex(C) ≤
[
max

a,b
Ea(τb)

] [
1 +

1
2
+ · · · +

1
n

]
.

P. Without loss of generality, we may assume that our state space is {1, . . . , n}.
Let σ ∈ S n be a uniform random permutation, chosen independently of the chain;
we will look for states in orderσ. Let Tk be the first time that the statesσ(1), . . . , σ(k)
have all been visited, and let Lk = XTk be the last state among σ(1), . . . , σ(k) to be
visited.

Of course, when σ(1) = x, we have T1 = 0. We will not usually be so lucky.
In general,

Ex(T1 | σ(1) = s1) = Ex(τs1)
≤ max

a,b
Ea(τb).

By Exercise 11.3, immediately below, Ex(T1) ≤ maxa,b Ea(τb).
How much further along is T2 than T1?
• When the chain visits σ(1) before σ(2), then T2 − T1 is the time required

to travel from σ(1) to σ(2), and L2 = σ(2).
• When the chain visits σ(2) before σ(1), we have T2 − T1 = 0 and L2 =

σ(1).
Let’s analyze the first case a little more closely. For any two distinct states r, s ∈ Ω,
define the event

A2(r, s) = {σ(1) = r, σ(2) = L2 = s}.
Clearly

Ex(T2 − T1 | A2(r, s)) = Er(τs)
≤ max

a,b
Ea(τb).
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Conveniently,
A2 =

⋃
r,s

A2(r, s)

is simply the event that σ(2) is visited after σ(1), that is, L2 = σ(2). By Exer-
cise 11.3,

Ex(T2 − T1 | A2) ≤ max
a,b

Ea(τb).

Just as conveniently, Ac
2 is the event that σ(2) is visited before σ(1). It immediately

follows that
Ex(T2 − T1 | Ac

2) = 0.

Since σ was chosen uniformly and independently of the chain trajectory, it is
equally likely for the chain to visit σ(2) before σ(1), or after σ(1). Thus

Ex(T2 − T1) = Px(A2)Ex(T2 − T1 | A2) + Px(Ac
2)Ex(T2 − T1 | Ac

2)

≤
1
2

max
a,b

Ea(τb).

We can estimate Tk−Tk−1 for 3 ≤ k ≤ n in the same fashion; here, we carefully
track whether Lk = σ(k) or not. For any distinct r, s ∈ Ω, define

Ak(r, s) = {σ(k − 1) = r, σ(k) = Lk = s},

so that
Ex(Tk − Tk−1 | Ak(r, s)) = Er(τs) ≤ max

a,b
Ea(τb)

and
Ak =

⋃
r,s

Ak(r, s)

is the event that Lk = σ(k). Just as above, exercise 11.3 implies that

Ex(Tk − Tk−1 | Ak) ≤ max
a,b

Ea(τb),

while
Ex(Tk − Tk−1 | Ac

k) = 0.

As in the k = 2 case, independence and symmetry ensure that each ofσ(1), . . . , σ(k)
is equally likely to be the last visited. Thus Px(Ak) = 1/k and

Ex(Tk − Tk−1) = Px(Ak)Ex(Tk − Tk−1 | Ak) + Px(Ac
k)Ex(Tk − Tk−1 | Ac

k)

≤
1
k

max
a,b

Ea(τb).

Finally, summing all these estimates yields

Ex(C) = Ex(Tn)
= Ex(T1) + Ex(T2 − T1) + · · · + Ex(Tn − Tn−1)

≤ max
a,b

Ea(τb)
(
1 +

1
2
+ · · · +

1
n

)
.

�
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{ex:condprobpartitionbound}

E 11.3. Let Y be a random variable on some probability space, and let
B = ∪ jB j be a partition of an event B into (finitely or countably many) disjoint
subevents B j.
(a) Prove that when E(Y | B j) ≤ M for every j, then E(Y | B) ≤ M.
(b) Give an example to show that the conclusion of part (a) can fail when the events

B j are not disjoint.
[S]

E 11.21. The proof above strongly parallels the standard argument for
the coupon collecting problem, which we discussed in Section 4.2 and have applied
several times: for instance, coupon collector bounds were used to lower bound mix-
ing times for both random walk on the hypercube (Proposition 8.8) and Glauber
dynamics on the graph with no edges (Exercise 8.4). For random walk on a com-
plete graph with self-loops, the cover time coincides with the time to “collect” all
coupons. In this case Eα(τβ) = n is constant for α , β, so the upper bound is tight.

A slight modification of this technique can be used to prove lower bounds:
instead of looking for every state along the way to the cover time, we look for the
elements of some subset of Ω. As long as the elements of the subset are far away
from each other, in the sense that the hitting time between any two of them is large,
we can get a good lower bound on the cover time.

{ex:Matthewslowerbound}
E 11.4. For A ⊂ X let CA denote the first time such that every state of

A has been visited. Let τA
min = mina,b∈A,a,b Ea(τb).

(a) Show that for any state x ∈ A,

Ex(CA) ≥ τA
min

(
1 +

1
2
+ · · · +

1
|A − 1|

)
.

(Hint: begin by considering a uniform random permutation σ of the elements
of A, and be careful when estimating the time to get to its first state.)

(b) Conclude that

Ex(C) ≥ max
x∈A⊆Ω

τA
min

(
1 +

1
2
+ · · · +

1
|A − 1|

)
.

[S]

R. While any subset A yields a lower bound, some choices for A are
uninformative. For example, when the underlying graph of (Yt) contains a leaf,
τA

min = 1 for any set A containing both the leaf and its (unique) neighbor.
{Xmpl:TorusCover}

E 11.22. In Section 11.4 we derived fairly sharp (up to constants) es-
timates for the hitting times of simple random walks on finite tori of various di-
mensions. Let’s use these bounds and the Matthews method to determine equally
sharp bounds on the expected cover times of tori. Since Wilf (1989) (quoted at the
beginning of this chapter) allowed his random walker to wrap around the edges of
his slowly-whitening computer screen, the resulting random walk took place on a
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discrete 2-torus. Below we provide a fairly precise answer to his question. How-
ever, we discuss the case of dimension at least 3 first, since the details are a bit
simpler.

When the dimension d > 3, Proposition 11.9 tells us that there exist constants
cd and Cd such that for any distinct vertices x, y of Zd

n,

cdnd ≤ Ex(τy) ≤ Cdnd

Remarkably, this bound does not depend on the distance between x and y! By
Theorem 11.20, the average cover time satisfies

EC ≤ Cdnd
(
1 +

1
2
+ · · · +

1
nd

)
(11.30){eq:bigtoruscoverupper}

= Cddnd log n(1 + o(1)). (11.31)

To derive an almost-matching lower bound out from Exercise 11.4, we must
choose a set A large enough that the sum of reciprocals in the second factor is
substantial. Let’s take A to be Zd

n itself (any set containing a fixed positive fraction
of the points of the torus would work as well). Then

EC ≥ τA
min

(
1 +

1
2
+ · · · +

1
|A − 1|

)
≥ cddnd log n(1 + o(1)),

which is only a constant factor away from our upper bound.
In dimension 2, Proposition 11.9 says that when x and y are vertices of Z2

n at
distance k,

c2n2 log(k) ≤ Ex(τy) ≤ C2n2 log(k).

In this case the Matthews upper bound gives

E(C) ≤ 2C2n2(log n)2(1 + o(1)), (11.32){Eq:2dtoruscoverupper}

since the furthest apart two points can be is n.
To get a good lower bound, we must choose a set A which is as large as possi-

ble, but for which the minimum distance between points is also large. Assume for
simplicity that n is a perfect square, and let A be the set of all points in Z2

d both of
whose coordinates are multiples of

√
n. Then Exercise 11.4 and Proposition 11.9

imply

E(C) ≥ c2n2 log(
√

n)
(
1 +

1
2
+ . . .

1
n − 1

)
=

c2

2
n2(log n)2(1 + o(1)).

Exercises 11.23 and 11.24 use improved estimates on the hitting times to get
our upper and lower bounds for cover times on tori even closer together. The exact
asymptotics of the expected cover time on Z2

n have only recently been determined.
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F 11.4.
Fig:CoverTorus
Black squares show the unvisited states in a single

trajectory of simple random walk on a 100×100 torus, after 54004,
108008, 162012, 216016, and 270020 steps, respectively.

Zuckerman (1992) was the first to estimate the expected cover time to within a
constant, while Dembo et al. (2004) show that

E(C) ∼
4
π

n2(log n)2.

Figure 11.4 shows the points of a 100×100 torus left uncovered by a single random
walk trajectory at approximately 20%, 40%, 60%, 80%, and 100% of this time.

11.10. Problems
{Exercise:Patterns}

E 11.5. Consider the problem of waiting for sequence TTT to appear in
a sequence of fair coin tosses. Is this the same as the waiting time for the sequence
HT H?

These waiting times are hitting times for a Markov chain: let Xt be the triplet
consisting of the outcomes of tosses (t, t + 1, t + 2). Then (Xt) is a Markov chain,
and the waiting time for TTT is a hitting time. Find E(τTTT ) and E(τHT H).

{Exer:UnequalHit}
E 11.6. Let G be a connected graph on at least 3 vertices in which the

vertex v has only one neighbor, namely w. Show that in for the simple random
walk on G, Evτw , Ewτv.

{Exer:CycleMixHit}
E 11.7. Compute Eπτ0 for random walk (lazy or not) on the cycle Cn,

and apply Theorem 11.11 directly to bound tmix for this walk. How much does this
improve on the results of Example 11.14 (which relied upon (11.22))?

{Exercise:TorusIsTransitive}
E 11.8. Check that the torus Zd

n is transitive.
{Exercise:cubecount}

E 11.9.

(a) Show that in the m-dimensional hypercube there are exactly m2m−1 edges.
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(b) Show that there are k
(
m
k

)
edges that connect a node with Hamming weight k−1

to a node with Hamming weight k. (The Hamming weight is the sum of the
coordinates.)

[S]
{Exercise:cubehit}

E 11.10. Let 0 = (0, 0, . . . , 0) be the all zero vector in the m-dimensional
hypercube {0, 1}m, and let v be a vertex with Hamming weight k. Write hm(k) for
the expected hitting time from v to 0 for simple (that is, not lazy) random walk
on the hypercube. Determine hm(1) and hm(m). Deduce that both mink>0 hm(k)
and maxk>0 hm(k) are asymptotic to 2m as m tends to infinity. (We say that f (m) is
asymptotic to g(m) if their ratio tends to 1.)

Hint: Consider the multigraph Gm obtained by gluing together all vertices of
Hamming weight k for each k between 1 and m − 1. This is a graph on the vertex
set {0, 1, 2, . . . ,m} with k

(
m
k

)
edges from k − 1 to k. [S]

{Exercise:TwoHypercubes}
E 11.11. Use Proposition 11.17 to bound the mixing time for two hy-

percubes identified at a single vertex.
{Exercise:taubca}

E 11.12. Let (Xt) be a random walk on a network with conductances
{ce}. Show that

Ea(τbca) = [R(a↔ b) + R(b↔ c) + R(c↔ a)]
∑
e∈E

ce,

where τbca is the first time that the sequence (b, c, a) appears as a subsequence of
(X1, X2, . . .). [S]

{Exercise:HitStatesEx}
E 11.13. Show that for a random walk (Xt) on a network, for every

three vertices a, x, z,

Px{τz < τa} =
R(a↔ x) − R(x↔ z) + R(a↔ z)

2R(a↔ z)
.

Hint: Run the chain from x until it first visits a and then z. This will also be the
first visit to z from x, unless τz < τa. In the latter case the path from x to a to z
involves an extra commute from z to a beyond time τz. Thus, starting from x we
have

τaz = τz + 1{τz<τa}τ
′
az, (11.33){Eq:HTI1}

where the variable τ′az refers to the chain starting from its first visit to z. Now take
expectations and use the cycle identity (Lemma 11.8). [S]

{Exer:NodeCycleAltProof}
E 11.14. Let θ be a flow from a to z which satisfies both the cycle law

and ‖θ‖ = ‖I‖. Define a function h on nodes by

h(x) =
m∑

i=1

[
θ(~ei) − I(~ei)

]
r(~ei), (11.34)

where ~ei, . . . ,~em is an arbitrary path from a to x.
(a) Show that h is well-defined and harmonic at all nodes.
(b) Use part (a) to give an alternate proof of Proposition 10.2.
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{Exercise:ConvGF}
E 11.15. Suppose that {ak} is sequence with generating function A(s) :=∑∞

k=0 aksk, and {bk} is a sequence with generating function B(s) :=
∑∞

k=0 bksl. Let
{ck} be the sequence defined as ck :=

∑k
j=0 a jbk− j, called the convolution of {ak}

and {bk}. Show that the generating function of {ck} equals A(s)B(s). [S]
{Exercise:Even}

E 11.16.
(i) Let τ]x denote the first even time that the Markov chain visits x. Prove that the

inequality
tmix(1/4) ≤ 8 max

x∈Ω
Eπ

(
τ
]
x

)
+ 1

holds without assuming the chain is lazy (cf. Theorem 11.11).
(ii) Prove an analog of (11.21) for continuous time chains without assuming lazi-

ness.
{Exercise:CM1}

E 11.17. Show that t?mix(1/4) ≤ 6tmix(1/8).
{Exercise:CM2}

E 11.18. Show that t?mix(2−k) ≤ kt?mix(1/4) for all k ≥ 1.
{Exercise:CM3}

E 11.19. Consider a lazy biased random walk on the n-cycle. That is,
at each time t ≥ 1, the particle walks one step clockwise with probability p ∈
(1/4, 1/2), stays put with probability 1/2, and walks one step counter-clockwise
with probability 1/2 − p.

Show that tmix(1/4) is bounded above and below by constant multiples of n2,
but t?mix(1/4) is bounded above and below by constant multiples of n.

{Exer:LastVertexCycle}
E 11.20. For a graph G, let W be the (random) vertex visited at the

cover time for the simple random walker on G. That is, W is the last new vertex to
be visited by the random walk. Prove the following remarkable fact: for random
walk on an n-cycle, W is uniformly distributed over all vertices different from the
starting vertex.

Hint: Exercise 10.5, on further aspects of the gambler’s ruin problem, may be
helpful.

R 11.4. Let W be the random vertex defined in Exercise 11.20. Lovász
and Winkler (1993) demonstrate that cycles and complete graphs are the only
graphs for which W is this close to uniformly distributed. More precisely, these
families are the only ones for which W is equally likely to be any vertex other than
the starting state.

{Exer:CycleCover}
E 11.21. What upper and lower bounds does the Matthews method give

for cycle Zn? Compare to the actual value, computed in Example 11.19, and ex-
plain why the Matthews method gives a poor result for this family of chains.

{Exer:HypercubeCover}
E 11.22. Show that the cover time of the m-dimensional hypercube is

asymptotic to m2m log(2) as m→ ∞.
{Exer:covertorussharp}

E 11.23. In this exercise, we demonstrate that for tori of dimension
d ≥ 3, just a little more information on the hitting times suffices to prove a matching
lower bound.
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(a) Show that when a sequence of pairs of points xn, yn ∈ Z
d
n has the property

that the distance between them tends to infinity with n, then the upper-bound
constant Cd of (11.17) can be chosen so that Exn(τyn)/nd → Cd.

(b) Give a lower bound on EC that has the same initial constant as the upper bound
of (11.30).

{Exer:cover2Dtorussharp}
E 11.24. Following the example of Exercise 11.23, derive a lower bound

for E(C) on the two-dimensional torus that is within a factor of 4 of the upper
bound (11.32).

Notes

[compare results for tmix = tmix(1/4) on the cycle from Example 11.14 and
Exercise 11.7 to actual asymptotic constant?]

For much more on waiting times for patterns in coin tossing, see Li (1980).
The mean commute identity appears in Chandra, Raghavan, Ruzzo, Smolen-

sky, and Tiwari (1996/97).
A graph similar to our glued tori was analyzed in Saloff-Coste (1997, Sec-

tion 3.2) using other methods. This graph originated in Diaconis and Saloff-Coste
(1996, Remark 6.1).



CHAPTER 12

Eigenvalues

{Ch:Eigenvalues}
In this chapter we assume, unless stated otherwise, that the transition matrix P

is reversible with respect to the stationary measure π (recall the definition (3.27)),
aperiodic, and irreducible.

12.1. The Spectral Representation of a Transition Matrix

We begin by collecting some facts about the eigenvalues of transition matrices:
{Exercise:Spectrum}

E 12.1.
(a) Show that for any transition matrix P (not necessarily reversible, irreducible,

or aperiodic), all eigenvalues λ satisfy |λ| ≤ 1.
Hint: Letting ‖ f ‖∞ := maxx∈Ω | f (x)|, show that ‖P f ‖∞ ≤ ‖ f ‖∞. Apply this

with the eigenfunction ϕ corresponding to the eigenvalue λ.
(b) Suppose P is irreducible and aperiodic. Show that −1 is not an eigenvalue, and

that the vector space of eigenfunctions corresponding to the eigenvalue 1 is all
scalar multiples of the vector 1 := (1, 1, . . . , 1).

Hint: Check directly or use the Convergence Theorem.

Exercise 12.1 shows that 1 is always an eigenvalue and the remaining n − 1
eigenvalues lie in the interval (1,−1). We label the eigenvalues in decreasing order:

1 = λ1 > λ2 ≥ · · · ≥ λ|Ω| > −1. (12.1) {Eq:OrderEigen}

Define
λ? := max{|λ| : λ is an eigenvalue of P, λ , 1}. (12.2) {Eq:Lambda2Defn}

The difference γ? := 1 − λ? is called the absolute spectral gap; Exercise 12.1
shows that γ? is strictly positive.

If at each move, the chain holds its current position with probability at least
1/2, then γ? = 1 − λ2:

{Exercise:Lazy}
E 12.2. Show that if P̃ = (1/2)P+(1/2)I, where I is the identity matrix,

then all eigenvalues of P̃ are non-negative. This is the lazy version of P: at each
move, depending on the outcome of a fair coin toss, the chain either transitions
according to P or remains in its current state.

Denote by 〈·, ·〉 the usual inner product onR|Ω|, given by 〈 f , g〉 =
∑

x∈Ω f (x)g(x).
We will need a different inner product, denoted by 〈·, ·〉π and defined as

〈 f , g〉π :=
∑
x∈Ω

f (x)g(x)π(x). (12.3) {Eq:DefInnerProd}

The reason for introducing this new inner product is:

149
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{Lem:SpectralDecomp}
L 12.1. The inner-product space (R|Ω|, 〈·, ·〉π) has an orthonormal basis

{ f j} of eigenfunctions of P so that

Pt(x, y)
π(y)

=

|Ω|∑
j=1

f j(x) f j(y)λt
j, (12.4){Eq:SpecDec}

where 1 = λ1 > λ2 ≥ · · · ≥ λ|Ω| > −1 are the eigenvalues of P. The eigenfunction
f1 is taken to be the constant vector 1.

P. Define A(x, y) := π(x)1/2π(y)−1/2P(x, y). Reversibility of P implies that
A is symmetric. The Spectral Theorem (Theorem B.6) guarantees that the inner
product space (R|Ω|, 〈·, ·〉) has an orthonormal basis {ϕ j}

|Ω|

j=1 of eigenfunctions of A.
We write {λ j} for the eigenvalues of A.

The reader should directly check that
√
π is an eigenfunction of A with corre-

sponding eigenvalue 1; we set ϕ1 :=
√
π and λ1 := 1.

Letting Π be the diagonal matrix with diagonal entries Π(x, x) = π(x), by
definition A = Π

1
2 PΠ−

1
2 . If f j := Π−

1
2ϕ j, then f j is an eigenfunction of P with

eigenvalue λ j:

P f j = PΠ−
1
2ϕ j = Π

− 1
2 (Π

1
2 PΠ−

1
2 )ϕ j = Π

− 1
2 Aϕ j = Π

− 1
2λ jϕ j = λ j f j.

Although these eigenfunctions are not necessarily orthonormal with respect to the
usual inner product, they are orthonormal with respect to 〈·, ·〉π defined in (12.3):

δi j = 〈ϕi, ϕ j〉 = 〈Π
1
2 fi,Π

1
2 f j〉 = 〈 fi, f j〉π. (12.5){Eq:NewOrth}

(The first equality follows since {ϕ j} is orthonormal with respect to the usual inner
product.)

Let δy be the function

δy(x) =

1 if y = x,
0 if y , x.

Considering (R|Ω|, 〈·, ·〉π) with its orthonormal basis of eigenfunctions { f j}
|Ω|

j=1, the
function δy can be written via basis decomposition as

δy =

|Ω|∑
j=1

〈δy, f j〉π f j =

|Ω|∑
j=1

f j(y)π(y) f j. (12.6){Eq:DeltaDecomp}

Since Pt f j = λ
t
j f j and Pt(x, y) = (Ptδy)(x),

Pt(x, y) =
|Ω|∑
j=1

f j(y)π(y)λt
j f j(x).

Dividing by π(y) completes the Lemma. �
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12.2. Spectral Representation of Simple Random Walks

The simple random walk on the n-cycle was introduced in Example 3.2. We
discuss here the eigenfunctions and eigenvalues for this chain, along with the ran-
dom walk on the interval.

The nth roots of unity are the complex numbers z which solve the equation zn =

1. There are n such solutions, given by ωk = exp(i2πk/n) for k = 0, 1, 2, . . . , n − 1.
Geometrically, these are the points in the complex plane which lie on the unit circle
with angles 2πk/n.

Observe that
ωkω j = exp(i2π( j ⊕ k)/n) = ωk⊕ j,

where j ⊕ k := ( j + k) mod n. Thus, the set {ω0, . . . , ωn−1} together with complex
multiplication is a group isomorphic to the group Zn of integers {0, 1, 2, . . . , n − 1}
with the operation of addition modulo n.

{Sec:RWCSpectral}
12.2.1. The cycle. The simple random walk on the cycle can be realized as a

random walk on the nth roots of unity, where at each step the current position is
multiplied by a random choice from {ω1, ω

−1
1 }.

A (possibly complex-valued) eigenfunction f satisfies

λ f (ωk) = P f (ωk) =
f (ωk	1) + f (ωk⊕1)

2
for all ωk.

For j = 0, 1, 2, . . . , n − 1, define f j(ωk) := ω j
k = ω jk, where the multiplication

jk is modulo n. Then

P f j(ωk) =
f j(ωk⊕1) + f j(ωk	1)

2
=
ω jk⊕ j + ω jk	 j

2
(12.7) {Eq:CircAve}

For any ` and j, the average of the vectors ω`	 j and ω`⊕ j is a scalar multiple of ω`;
this is illustrated on the left-hand side of Figure 12.1 for j = 1. Note that the cord
connecting ω`⊕ j with ω`	 j intersects ω` at a right angle, so the projection of ω`⊕ j
onto ω` has length cos(2π j/n). In view of this,

P f j(ωk) = cos(2π j/n)ω jk = cos(2π j/n) f j(ωk).

In other words, f j is an eigenfunction with eigenvalue λ j = cos(2π j/n).
Because f j is an eigenvector with a real eigenvalue λ j, both its real part and its

imaginary parts are (real-valued) eigenfunctions. In particular,

Re( f j(ωk)) = Re(ei2π jk/n) = cos(2π jk/n)

is an eigenfunction.
{Sec:PathEigs}

12.2.2. Lumped chains and the path. Consider the random walk on the (4n)th
roots of unity {ωk}

4n
k=1, where at each move the current position is multiplied by a

random element of {ω2, ω
−1
2 }. Suppose the walker is started at ω2k0+1 for some k0.

The state-space for this chain is {ω2k+1}
2n−1
k=0 , of size 2n.

Denote by z̄ the complex conjugate of z: if z = x + iy, then z̄ := x − iy. If the
states ω2k+1 and ω̄2k+1 are identified with each other for k = 0, 1, . . . , n − 1, then
resulting chain is a random walk on the interval {0, 1, . . . , n−1} with holding at the
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F 12.1.
Fig:RWCycEig
The eigenvalues must be the cosines.

F 12.2.
Fig:RWPathEig
Random walks on cycles project to random walks

on paths. On the left, the walk reflects at the end points. On the
right, it holds with probability 1/2.

end points. That is, when the walk is at 0, it moves to 1 with probability 1/2 and
stays at 0 with probability 1/2, and when the walk is at n−1, it moves to n−2 with
probability 1/2 and stays at n − 1 with probability 1/2.

Consider for j = 0, 1, . . . , 2n − 1 the function φ j defined by

φ j(ωk) := ω j
k = exp

(
i
π

2n
jk
)
, k = 1, 3, . . . , 4n − 1.

Now let ⊕ and 	 denote addition and subtraction modulo 4n. Then

Pφ j(ωk) =
φ j(ωk⊕2) + φ j(ωk	2)

2

=
exp

[
i π2n ( jk ⊕ 2 j)

]
+ exp

[
i π2n ( jk 	 2 j)

]
2

= λ jφ j(ωk),
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where λ j is the projection of the unit vector with angle π
2n ( jk + 2 j) onto the unit

vector with angle π
2n jk. Indeed, for j = 0, 1, . . . , 2n − 1,

λ j = cos
(
π j
n

)
.

Since λ j is real, the real part f j of φ j is a real eigenfunction. Using the identities
Re(z) = (z + z̄)/2 and z̄ j = z̄ j,

f j(ωk) =
1
2

[
ω

j
k + ω̄

j
k

]
= cos

(
π jk
2n

)
. (12.8) {Eq:RePartEig}

We return now to the random walk on the path, obtained by identifying the two
states ω2k+1 and ω̄2k+1 with k + 1 for 1 ≤ k ≤ n. We first give a general lemma on
projecting a Markov chain onto equivalence classes.

{Lem:EquivChain}
L 12.2. Let Ω be a the state-space of a Markov chain (Xt) with transition

matrix P. Let ∼ on Ω be an equivalence relation on X with equivalence classes
Ω′ = {[x] : x ∈ Ω}, and assume that the measures P(x, ·) and P(x′, ·) satisfy

P(x, [y]) = P(x′, [y]) (12.9) {Eq:Lump}

whenever x ∼ x′. Then:
(i) [Xt] is a Markov chain with transition matrix P′([x], [y]) = P(x, [y]).

(ii) Let f : Ω → R be an eigenfunction of P with eigenvalue λ which is constant
on equivalence classes. Then the natural projection f ′ : Ω′ → R of f ,defined
by f ′([x]) = f (x), is an eigenfunction of P′ with eigenvalue λ.

(iii) Conversely, if f ′ : Ω′ → R is an eigenfunction of P′ with eigenvalue λ, then
its lift f : Ω → R, defined by f (x) = f ′([x]), is an eigenvector of P with
eigenvalue λ.

P. The first assertion is an immediate consequence of (12.9). For the sec-
ond, we can simply compute:

(P′ f ′)([x]) =
∑

[y]∈Ω′
P′([x], [y]) f ′([y]) =

∑
[y]∈Ω′

P(x, [y]) f (y)

=
∑

[y]∈Ω′

∑
z∈[y]

P(x, z) f (z) =
∑
z∈Ω

P(x, z) f (z) = (P f )(x) = λ f (x) = λ f ([x]).

To prove the third assertion, just run the same computations in reverse:

(P f )(x) =
∑
z∈Ω

P(x, z) f (z) =
∑

[y]∈Ω′

∑
z∈[y]

P(x, z) f (z) =
∑

[y]∈Ω′
P(x, [y]) f (y)

=
∑

[y]∈Ω′
P′([x], [y]) f ′([y]) = (P′ f ′)([x]) = λ f ′([x]) = λ f (x).

�

R. The process of constructing a new chain by taking equivalence classes
for an equivalence relation compatible with the transition matrix is sometimes
called lumping.
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Returning to the example of the path: it is clear from (12.8) that the eigen-
function f j is constant on equivalence classes when ωk and ω̄k are identified. By
part (ii) of Lemma 12.2 it thus becomes an eigenfunction for the lumped chain. If
we identify the pair {ω2k+1, ¯ω2k+1} with the integer k + 1, we get a chain with state
space [n] = {1, 2, . . . , n}. Its eigenfunctions are given by

k 7→ cos
(
π j(2k − 1)

2n

)
, (12.10){Eq:PathEvecs}

which has eigenvalue 2π j/2n = π j/n, for j = 0, . . . , n − 1.

12.3. Product chains
{Sec:ProductChains}

For each j = 1, 2, . . . , d, let P j be a transition matrix on the state-space Ω j.
Consider the chain on Ω1 × Ω2 · · · × Ωd which moves by selecting a coordinate at
each step and moving only in the chosen coordinate according to the corresponding
transition matrix. The transition matrix P̃ for this chain is

P̃((x1, . . . , x j, . . . xd), (x1, . . . , y j, . . . , xd)) =
P j(x j, y j)

d
. (12.11){Eq:ProdMatrix}

See Exercise 12.6 for a different product chain.
If f j is a function on Ω j for each j = 1, 2, . . . , d, the tensor product of { f j}

d
j=1

is the function on Ω1 × · · · ×Ωd defined by

( f1 ⊗ f2 ⊗ · · · ⊗ fd)(x1, . . . , xd) := f1(x1) f2(x2) · · · fd(xd).
{Lem:ProdChain}

L 12.3. Suppose that for each j = 1, 2, . . . , d, the transition matrix P j on
state-space Ω j has eigenfunction φ j with eigenvalue λ j. Then φ̃ := φ1 ⊗ · · · ⊗ φd
is an eigenfunction of the transition matrix P̃ defined in (12.11), with eigenvalue
d−1 ∑d

j=1 λ j.

P. Lift P j from Ω j to Ω1 × · · · ×Ωd by defining P̃ j by

P̃ j((x1, . . . , x j, . . . , xd), (x1, . . . , y j, . . . , xd)) = P j(x j, y j).

This corresponds to the chain on Ω1 × · · · × Ωd which makes moves in the jth
coordinate according to P j.

Letting x = (x1, . . . , xd), it is simple to check that

P̃ jφ̃(x) = λ jφ̃(x).

From this and noting that P̃ = d−1 ∑d
j=1 P̃ j it follows that

P̃φ̃(x) = d−1
d∑

j=1

P̃ jφ̃(x) =

d−1
d∑

j=1

λ j

 φ̃(x).

�
{Example:EigenHC}

E 12.4 (Random walk on n-dimensional hypercube). Consider the chain
(Xt) on Ω := {−1, 1} which is an i.i.d. sequence of random signs. That is, the
transition matrix is

P(x, y) =
1
2

for all x, y ∈ {−1, 1}. (12.12){Eq:TwoState}
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Let I1(x) = x, and note that

PI1(x) =
1
2
+
−1
2
= 0.

Thus there are two eigenfunction: I1 (with eigenvalue 0), and 1, the constant func-
tion (with eigenvalue 1).

Consider the lazy random walker on the n-dimensional hypercube, but for con-
venience write the state-space as {−1, 1}n. In this state-space, the chain moves by
selecting a coordinate uniformly at random and refreshing the chosen coordinate
with a new random sign, independent of everything else. The transition matrix is
exactly (12.11), where each P j is the two-state transition matrix in (12.12).

By Lemma 12.3, the eigenfunctions are of the form

f (x1, . . . , xk) =
k∏

j=1

f j(x j)

where f j is either I1 or 1. In other words, for each subset of coordinates J ⊂
{1, 2, . . . , k},

fJ(x1, . . . , xk) :=
∏
j∈J

x j

is an eigenfunction. The corresponding eigenvalue is

λJ =

∑k
i=1(1 − 1{i∈J})

k
=

k − |J|
k

.

We take f∅(x) := 1, which is the eigenfunction corresponding to the eigenvalue 1.

12.4. The Relaxation Time
{Sec:Gap}

The relaxation time trel is defined as γ−1
? , where γ? is the absolute spectral gap

1 − max j≥1 |λ j|. The connection between the relaxation time and mixing times is
the following:

{Thm:MixRelax}
T 12.5. Let trel be the relaxation time 1/γ? for a reversible, irreducible

Markov chain, and let πmin := minx∈Ω π(x). Then

tmix(ε) ≤ − log(επmin)trel. (12.13) {Eq:MixingLambdaTwo}

P  T 12.5. By Lemma 12.1, since f1 = 1,

Pt(x, y)
π(y)

= 1 +
|Ω|∑
j=2

f j(x) f j(y)λt
j.

By the Cauchy-Schwarz inequality,∣∣∣∣∣∣Pt(x, y)
π(y)

− 1

∣∣∣∣∣∣ ≤ |Ω|∑
j=2

| f j(x) f j(y)|λt
? ≤ λ

t
?

 |Ω|∑
j=2

f 2
j (x)

|Ω|∑
j=2

f 2
j (y)


1/2

. (12.14) {Eq:WeighedAver1}
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Using (12.6) and the orthonormality of { f j} shows that

π(x) = 〈δx, δx〉π =

〈 |Ω|∑
j=1

f j(x)π(x) f j,

|Ω|∑
j=1

f j(x)π(x) f j

〉
π

= π(x)2
|Ω|∑
j=1

f j(x)2.

Consequently,
∑|Ω|

j=2 f j(x)2 ≤ π(x)−1. This together with (12.14) proves that∣∣∣∣∣∣Pt(x, y)
π(y)

− 1

∣∣∣∣∣∣ ≤ λt
?√

π(x)π(y)
≤

λt
?

πmin
=

(1 − γ?)t

πmin
≤

e−γ?t

πmin
.

Applying Lemma 7.5 shows that d(t) ≤ π−1
min exp(−γ?t). The conclusion now fol-

lows from the definition of tmix(ε). �

E 12.6 (Random walk on n-dimensional hypercube). The eigenvalues
for the lazy random walk on the hypercube {0, 1}n were computed in Example
12.4. (We used the more convenient state-space {−1, 1}n, but the eigenvalues are
the same.)

In particular, the eigenfunction f{1,...,n} has eigenvalue 0 and the eigenfunction
f∅ has λ1 = 1. Each fJ with |J| = 1 has λ2 = 1 − 1/n, and consequently γ? = 1/n.

Theorem 12.5 gives

tmix(ε) ≤ n
(
− log ε + log(2n)

)
= n2

(
log 2 − n−1 log ε

)
= O(n2).

Note that this bound is not as good as the bound obtained previously in Section
7.4.2.

{Thm:LBSGMix}

T 12.7. For a reversible and irreducible Markov chain

tmix(ε) ≥ (trel − 1) log
(

1
2ε

)
.

In particular,

tmix ≥
log 2

2
trel.

{Rmk:SG}
R 12.1. If γ? is small because the smallest eigenvalue λ|Ω| is near −1,

the slow mixing suggested by this lower bound can be rectified by passing to a
lazy chain to make the eigenvalues positive. For such lazy chains, γ? = γ, where
γ := 1 − λ2. (See Exercise 12.2.) If γ is near 0, then the mixing may be very slow
indeed. Therefore, we are mainly concerned with γ, not γ?.

P. Suppose that f is an eigenfunction of P with eigenvalue λ , 1, so that
P f = λ f . Note that since the eigenfunctions are orthogonal with respect to 〈·, ·〉π,
and 1 is an eigenfunction, ∑

y∈Ω

π(y) f (y) = 〈1, f 〉π = 0.

Then

|λt f (x)| = |Pt f (x)| =

∣∣∣∣∣∣∣∣
∑
y∈Ω

[
Pt(x, y) f (y) − π(y) f (y)

]∣∣∣∣∣∣∣∣ ≤ ‖ f ‖∞2d(t).
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With this inequality, we can obtain a lower bound on the mixing time. Taking x
with | f (x)| = ‖ f ‖∞ yields |λ|tmix(ε) ≤ 2ε, and so

tmix(ε)
(

1
|λ|
− 1

)
≥ tmix(ε) log

(
1
|λ|

)
≥ log

(
1
2ε

)
.

Minimizing the left-hand side over eigenvalues different from 1 and rearranging
finishes the proof. �

12.5. Bounds on Spectral Gap via Contractions

Suppose that Ω is a metric space with distance ρ.
{Thm:Contraction}

T 12.8 (M.F. Chen (1998)). Let P be a transition matrix for a Markov
chain, not necessarily reversible. Suppose there exists a constant θ < 1 and for
each x, y ∈ Ω there is a coupling (X1,Y1) of P(x, ·) and P(y, ·) satisfying

Ex,y (ρ(X1,Y1)) ≤ θρ(x, y). (12.15) {Eq:ContrHyp}

If λ is an eigenvalue of P different from 1, then |λ| ≤ θ. In particular, the absolute
spectral gap satisfies

γ? ≥ 1 − θ.

The lipschitz constant of a function f on a metric space (Ω, ρ) is defined as

lip( f ) := max
x,y∈Ω
x,y

| f (x) − f (y)|
ρ(x, y)

.

P. For any function f ,

|P f (x) − P f (y)| =
∣∣∣Ex,y ( f (X1) − f (Y1))

∣∣∣ ≤ Ex,y (| f (X1) − f (Y1)|) .

By the definition of lip( f ) and the hypothesis (12.15),

|P f (x) − P f (y)| ≤ lip( f )Ex,y (d(X1,Y1)) ≤ θ lip( f )d(x, y).

This proves that
lip(P f ) ≤ θ lip( f ).

Taking φ to be a non-constant eigenfunction with eigenvalue λ,

|λ| lip(φ) = lip(λφ) = lip(Pφ) ≤ θ lip(φ).

�

E 12.9. Consider again the lazy random walker on the hypercube {0, 1}n,
taking the metric to be the Hamming distance ρ(x, y) =

∑d
i=1 |xi − yi|.

Let (X1,Y1) be the coupling which updates the same coordinate in both chains.
The distance decreases by one if one among the ρ(x, y) disagreeing coordinates is
selected, and otherwise remains the same. Thus,

Ex,y (ρ(X1,Y1)) ≤
(
1 −

ρ(x, y)
n

)
ρ(x, y) +

ρ(x, y)
n

(ρ(x, y) − 1) =
(
1 −

1
n

)
ρ(x, y).

Applying Theorem 12.8 yields the bound γ? ≥ n−1. In Example 12.4 it was shown
that γ? = n−1, so the bound of Theorem 12.8 is sharp in this case.
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12.6. An `2 Bound and Cut-Off for the Hypercube
{Sec:L2CutOff}

For each p ≥ 0, the `p(π) norm is defined as

‖ f ‖p :=

∑
x∈Ω

| f (x)|pπ(x)

1/p

.

An important case is ` = 2, as `2(π) is the inner-product space with ‖ f ‖2 =√
〈 f , f 〉π.

{Exercise:ellp}
E 12.3. Show that the function p 7→ ‖ f ‖p is non-decreasing for p ≥ 1.

{Lem:L2Bound}
L 12.10. Let P be a reversible transition matrix, with eigenvalues

1 = λ1 > λ2 ≥ · · · ≥ λ|Ω| ≥ −1,

and associated eigenfunctions { f j}, orthonormal with respect to 〈·, ·〉π. Then
{It:L2Bound}

(i)

4‖Pt(x, ·) − π‖2TV ≤

∥∥∥∥∥∥Pt(x, ·)
π(·)

− 1

∥∥∥∥∥∥2

2
=

|Ω|∑
j=2

f j(x)2λ2t
j .

{It:L2Trans}
(ii) If the chain is transitive, then

4‖Pt(x, ·) − π‖2TV ≤

∥∥∥∥∥∥Pt(x, ·)
π(·)

− 1

∥∥∥∥∥∥2

2
=

|Ω|∑
j=2

λ2t
j .

P. By Lemma 12.1,∥∥∥∥∥∥Pt(x, ·)
π(·)

− 1

∥∥∥∥∥∥2

2
=

∥∥∥∥∥∥∥∥
|Ω|∑
j=2

λt
j f j(x) f j

∥∥∥∥∥∥∥∥
2

2

=

|Ω|∑
j=2

f j(x)2λ2t
j . (12.16){Eq:UsingSpDe}

By Exercise 12.3,

4‖Pt(x, ·) − π‖2TV =

∥∥∥∥∥∥Pt(x, ·)
π(·)

− 1

∥∥∥∥∥∥2

1
≤

∥∥∥∥∥∥Pt(x, ·)
π(·)

− 1

∥∥∥∥∥∥2

2
, (12.17){Eq:TVandL2}

which with (12.16) establishes (i).
Suppose the Markov chain is transitive. Then π is uniform, and the left-hand

side of (12.16) does not depend on x. Summing over x,

|Ω|

∥∥∥∥∥∥Pt(x, ·)
π(·)

− 1

∥∥∥∥∥∥2

2
= |Ω|

|Ω|∑
j=2

∑
x∈Ω

f j(x)2π(x)

 λ2t
j ,

where we have multiplied and divided by π(x) = 1/|Ω| on the right-hand side.
Since ‖ f j‖2 = 1, the inner sum on the right-hand side equals 1, and so∥∥∥∥∥∥Pt(x, ·)

π(·)
− 1

∥∥∥∥∥∥2

2
=

∑
j=2

λ2t
j .

Combining with (12.17) establishes (ii). �
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{Xmpl:HCcutoff}
E 12.11. For lazy simple random walk on the hypercube {0, 1}n, the

eigenvalues and eigenfunctions were found in Example 12.4. This chain is transi-
tive, so applying Lemma 12.10 shows that

4‖Pt(x, ·) − π‖2TV ≤

n∑
k=1

(
1 −

k
m

)2t (n
k

)
≤

n∑
k=1

e−2tk/n
(
n
k

)
=

(
1 + e−2t/n

)n
− 1.

Taking t = (1/2)n log n + cn,

4‖Pt(x, ·) − π‖2TV ≤

(
1 +

1
n

e−2c
)n

− 1 ≤ ee−2c
− 1.

On the other hand, the argument in Proposition 8.8 shows that

d((1/2)n log n − cn) ≥ 1 −
8

e2c [1 + o(1)] .

Thus we see that d(t) exhibits a sharp cut-off at (1/2)n log n.

Suppose that for each n ∈ Z+, there is a transition matrix Pn on state-space Ωn
with stationary distribution πn. Define

dn(t) := max
x∈Ωn

∥∥∥Pt
n(x, ·) − πn

∥∥∥
TV

We say this family of Markov chains has a cut-off at {tn} with window wn if wn =

o(tn) and for any sequence {w̃n} with w̃n/wn → ∞,

lim
n→∞

dn(tn − w̃n) = 1,

and

lim
n→∞

dn(tn + w̃n) = 0.

L 12.12. A family of Markov chains has a cut-off if and only if

lim
n→∞

t(n)
mix(ε)

t(n)
mix(1 − ε)

= 1.

P. �

12.7. Wilson’s method and random adjacent transpositions
{Sec:WilsonRAT}

The lower bound we present is due to David Wilson (see Wilson (2004)). The-
orem 12.13 is the key. In its proof an eigenfunctionΦ of a chain is used to construct
a distinguishing statistic; Proposition 8.5 then bounds the distance from stationar-
ity.

{Thm:WilsonLower}
T 12.13. Let (Xt) be an irreducible aperiodic Markov chain with state

space Ω and transition matrix P. Let Φ be an eigenvector of P with eigenvalue λ
satisfying 1/2 < λ < 1. Fix 0 < ε < 1 and let R > 0 satisfy

Ey |Φ(X1) − Φ(y)|2 ≤ R (12.18) {Eq:DefR}
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for all y ∈ Ω. Then for any x ∈ Ω

t <
log (1−ε)(1−λ)Φ(x)2

2εR

2 log(1/λ)
(12.19) {Eq:WilsonLower}

implies ∥∥∥Pt(x, ·) − π
∥∥∥

TV ≥ ε.

At first glance, Theorem 12.13 appears daunting! Yet it gives sharp lower
bounds in many important examples. Let’s take a closer look, and work through an
example, before proceeding with the proof.

R. In applications, ε may not be tiny. For instance, when proving a
family of chains has a cutoff, we will need to consider all values 0 < ε < 1.

R. Generally λ will be taken to be the second largest eigenvalue in situ-
ations where γ? = γ = 1−λ is small. Under these circumstances a one-term Taylor
expansion yields

1
log(1/λ)

=
1

γ? + O(γ?)2 = trel(1 + O(γ?)). (12.20){Eq:WilsonDiscussion}

According to Theorems 12.5 and 12.7,

log
(

1
2ε

)
(trel − 1) ≤ tmix(ε) ≤ − log(επmin)trel,

where πmin = minx∈Ω π(x). One way to interpret (12.20) is that the denominator
of (12.19) gets us up to the relaxation time (ignoring constants, for the moment).
The numerator, which depends on the geometry of Φ, determines how much larger
a lower bound we can get.

R. Note that multiplying Φ by a scalar c multiplies the minimum pos-
sible value of the bound R by a factor of c2. Hence the numerator of (12.19) is
invariant under multiplication of Φ by a scalar.

{Xmpl:HypercubeWilson}
E 12.14. Recall from Example 12.4 that the second-largest eigenvalue

of the lazy random walk on the n-dimensional hypercube {0, 1}n is 1 − 1
n . The

corresponding eigenspace has dimension n, but a convenient representative to take
is

Φ(x) = W(x) −
n
2
,

where W(x) is the Hamming weight (i.e. the number of 1’s) in the bitstring x. For
any bitstring y, we have

Ey((Φ(X1) − Φ(y))2) =
1
2

(1) +
1
2

(0) =
1
2
,

since the value changes by exactly 1 whenever the walker actually moves. Now
apply Theorem 12.13, taking the initial state to be the all-ones vector 1 and R =
1/2. We get

tmix(ε) ≥
log (1−ε)(1/n)(n/2)2

2ε(1/2)

2 log(1/(1 − 1/n))
=

n log n
2
− log

(
4ε

1 − ε

)
n + O(log n).
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In Example 12.11, we showed that this family of chains has a sharp cutoff at
(1/2)n log n. The argument, given in Proposition 8.8 and using the Hamming
weight directly as a distinguishing statistic, was actually quite similar; the major
difference is that we used the structure of the hypercube walk to bound the vari-
ances. Wilson’s method can be seen as a natural (in hindsight!) extension of that
argument. What makes Theorem 12.13 widely applicable is the simple form of its
implicit bound on the variance.

P  T 12.13. Since

E(Φ(Xt+1)|Xt = z) = λΦ(z) (12.21) {Eq:Evec}

for all t ≥ 0 and z ∈ Ω, we have

ExΦ(Xt) = λtΦ(x) for t ≥ 0 (12.22) {Eq:ExpectedPhi}

by induction. Fix a value t, let z = Xt, and define ∆ = Φ(Xt+1) − Φ(z). By (12.21)
and (12.18), respectively, we have

Ex(∆|Xt = z) = (λ − 1)Φ(z)

and

Ex(∆2|Xt = z) ≤ R.

Hence

Ex(Φ(Xt+1)2|Xt = z) = Ex((Φ(z) + ∆)2|Xt = z)

= Φ(z)2 + 2Ex(∆Φ(z)|Xt = z) + Ex(∆2|Xt = z)

≤ (2λ − 1)Φ(z)2 + R.

Averaging over the possible values of z ∈ Ω with weights Pt(x, z) = Px(Xt = z)
gives

ExΦ(Xt+1)2 ≤ (2λ − 1)ExΦ(Xt)2 + R.

At this point, we could apply this estimate inductively, then sum the resulting geo-
metric series. It is equivalent (and neater) to subtract R/(2(1 − λ)) from both sides,
obtaining

ExΦ(Xt+1)2 −
R

2(1 − λ)
≤ (2λ − 1)

(
ExΦ(Xt)2 −

R
2(1 − λ)

)
,

from which it is clear that

ExΦ(Xt)2 ≤ (2λ − 1)tΦ(x) +
R

2(1 − λ)
. (12.23) {Eq:ExpectedPhiSquared}

Combining (12.22) and (12.23) gives

VarxΦ(Xt) ≤
[
(2λ − 1)t − λ2t

]
Φ(x)2 +

R
2(1 − λ)

<
R

2(1 − λ)
, (12.24) {Eq:WilsonVar}

since 2λ − 1 < λ2 ensures the the first term is negative.



162 12. EIGENVALUES

Now, let X∞ ∈ Ω have distribution π and let t → ∞ in (12.22). Then The-
orem 5.6 implies that E(Φ(X∞)) = 0 (as does the orthogonality of eigenvectors).
Similarly, letting t → ∞ in (12.24) gives

VarxΦ(X∞) ≤
R

2(1 − λ)
.

Applying Proposition 8.5 with r2 =
2(1−λ)λ2tΦ(x)2

R gives∥∥∥Pt(x, ·) − π
∥∥∥

TV ≥
r2

4 + r2 =
(1 − λ)λ2tΦ(x)2

2R + (1 − λ)λ2tΦ(x)2 .

When t satisfies (12.19), we have

(1 − λ)λ2tΦ(x)2 >
ε

1 − ε
(2R)

and hence ∥∥∥Pt(x, ·) − π
∥∥∥

TV ≥ ε.

�

R. The variance estimate of 12.24 may look crude, but only O(λ2t) is
being discarded. In applications this is generally quite small.

In order to apply Wilson’s method to the random adjacent transpositions shuf-
fle, we must specify an eigenvector and initial state.

First, some generalities on eigenvalues and eigenfunctions of shuffle chains.
Let (σt) be a shuffle chain with state space Sn and shuffle distribution Q (that
is, at each step a permutation is chosen according to Q and composed with σt to
generate σt+1). Fix k ∈ [n]. Then Lemma 12.2(i) implies that the sequence (σt(k))
is itself a Markov chain, which we will call the single-card chain. Its transition
matrix P′ does not depend on k. In addition, Lemma 12.2(iii) tells us that when
Φ′ : [n] → R is an eigenfunction of the single-card chain with eigenvalue λ, then
Φ : Sn → R defined by Φ(σ) = Φ′(σ(k)) is an eigenfunction of the shuffle chain
with eigenvalue λ.

For the random adjacent transpositions chain, the single-card chain is an ex-
tremely lazy version of a random walk on the path whose eigenvectors and eigen-
values were determined in Section 12.2.2. Let M be the transition matrix of simple
random walk on the n-path with holding probability 1/2 at the endpoints. Then we
have

P′ =
1

n − 1
M +

n − 2
n − 1

I.

It follows from (12.10) that

φ(k) = cos
(
(2k − 1)π

2n

)
is an eigenfunction of P′ with eigenvalue

λ =
1

n − 1
cos

(
π

n

)
+

n − 2
n − 1

= 1 −
π2

2n3 + O
(

1
n3

)
.
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Hence, for any k ∈ [n] the function σ 7→ φ(σ(k)) is an eigenfunction of the random
transposition walk with eigenvalue λ. Since these eigenfunctions all lie in the same
eigenspace, so will any linear combination of them. We set

Φ(σ) =
∑
k∈[n]

φ(k)φ(σ(k)). (12.25) {Eq:EvecDef}

R. See Exercise 9.6 for some motivation on our choice of Φ. By making
sure that Φ(id) is as large as possible, we ensure that when Φ(σt) is small, then σt
is in some sense likely to be far away from the identity.

Now consider the effect of a single adjacent transposition (k − 1 k) on Φ. Only
two terms in (12.25) change, and we compute:

|Φ(σ(k − 1 k)) − Φ(σ)| = |φ(k)φ(σ(k − 1)) + φ(k − 1)φ(σk) − φ(k − 1)φ(σ(k − 1)) − φ(k)φ(σ(k))|
= |(φ(k) − φ(k − 1))(φ(σ(k)) − φ(σ(k − 1))|.

Since dφ(x)/dx is bounded in absolute value by π/n and φ(x) itself is bounded in
absolute value by 1, we may conclude that

|Φ(σ(k − 1 k)) − Φ(σ)| ≤
π

n
(2) =

2π
n
. (12.26) {Eq:ComputeR}

Combining (12.26) with Theorem 12.13 and the fact that Φ(id) = n/2 (see Exer-
cise 9.7) tells us that when the random adjacent transposition shuffle is started with
a sorted deck, after

t =
n3 log n
π2 +Cεn3

steps the variation distance from stationarity is still at least ε. (Here Cε can be
taken to be log

(
1−ε
64ε

)
.)

12.8. Time Averages
{Lem:AveSecMom}

L 12.15. Let (Xt) be a reversible Markov chain, and f an eigenfunction
of the transition matrix P with eigenvalue λ and with 〈 f , f 〉π = 1. Then

Eπ


 t−1∑

s=0

f (Xs)


2 ≤ 2t

1 − λ
. (12.27) {Eq:EigAve}

If f is any real-valued function defined on Ω, then

Eπ


 t−1∑

s=0

f (Xs)


2 ≤ 2tEπ( f 2)

γ
. (12.28) {Eq:TimeAve}

P. For r < s,

Eπ
[
f (Xr) f (Xs)

]
= Eπ

[
Eπ ( f (Xr) f (Xs) | Xr)

]
= Eπ

[
f (Xr) Eπ ( f (Xs) | Xr)

]
= Eπ

[
f (Xr) (Ps−r f )(Xr)

]
.

Since f is an eigenfunction and Eπ( f 2) = 〈 f , f 〉π = 1,

Eπ
[
f (Xr) f (Xs)

]
= λs−rEπ

[
f (Xr)2

]
= λs−rEπ( f 2) = λs−r.
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Then by considering separately the diagonal and cross terms when expanding the
square,

Eπ


 t−1∑

s=0

f (Xs)


2 = t + 2

t−1∑
r=0

t−1−r∑
s=1

λs.

Summing the geometric sum,

Eπ


 t−1∑

s=0

f (Xs)


2 = t +

2tλ − (λ − λt)/(1 − λ)
1 − λ

.

Equation (12.27) follows from the inequality |(λ − λm)/(1 − λ)| ≤ 1.
Let { f j}

Ω
j=1 be the orthonormal eigenfunctions of P of Lemma 12.1. Decompose

a general f as f =
∑|Ω|

j=1 a j f j. By Parseval’s Identity, Eπ( f 2) =
∑n

j=1 a2
j .

Defining G j :=
∑t−1

s=0 a j f j(Xs), we can write

t−1∑
s=0

f (Xs) =
|Ω|∑
j=1

a jG j

If r ≤ s then

Eπ

[
f j(Xs) fk(Xr)

]
= Eπ

[
fk(Xr) Eπ( f j(Xs) | Xr)

]
= Eπ

[
fk(Xr)(Ps−r f j)(Xr)

]
= λs−r

j Eπ

[
fk(Xr) f j(Xr)

]
= λs−r

j Eπ( fk f j)

= 0.

Consequently, Eπ

(
G jGk

)
= 0 for j , k. It follows that

Eπ


 t−1∑

s=0

f (Xs)


2 = |Ω|∑

i=1

a2
i Eπ

(
G2

i

)
. (12.29)

By (12.27), the right-hand side is bounded by

|Ω|∑
j=1

2ta2
j

1 − λ j
≤

2tEπ( f 2)
γ

.

�

T 12.16. Let (Xt) be an reversible Markov chain. If r ≥ tmix(ε/2) and
t ≥ [4 Varπ( f )/(η2ε)]trel, then for any starting state x ∈ Ω,

Px


∣∣∣∣∣∣∣1t

t−1∑
s=0

f (Xr+s) − Eπ( f )

∣∣∣∣∣∣∣ ≥ η
 ≤ ε.
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P. Assume without loss of generality that Eπ( f ) = 0; if not, replace f by
f − Eπ( f ).

Let pr be the optimal coupling of Pr(x, ·) with π so that∑
x,y

pr(x, y) =
∥∥∥Pr(x, ·) − π

∥∥∥
TV .

Define a Markov chain (Ys,Zs)s≥0 by starting (Y0,Z0) with pr and using the transi-
tion matrix

Q((x, y), (z,w)) =


P(x, z) if x = y and z = w,
P(x, z)P(y,w) if x , y,
0 otherwise.

The sequences (Ys) and (Zs) are each Markov chains with transition matrix P,
started in state x and with π, respectively. The chains (Ys) and (Zs) move indepen-
dently until they meet, after which they move together. Because the distribution of
(Y0,Z0) is pr,

P{Y0 , Z0} =
∥∥∥Pr(x, ·) − π

∥∥∥
TV .

Since (Ys)s≥0 and (Xr+s)r≥0 have the same distribution, we rewrite the probability
in the statement as

Px


∣∣∣∣∣∣∣1t

t−1∑
s=0

f (Xr+s) − Eπ( f )

∣∣∣∣∣∣∣ > η
 = P


∣∣∣∣∣∣∣1t

t−1∑
s=0

f (Ys) − Eπ( f )

∣∣∣∣∣∣∣ > η
 .

By considering whether or not Y0 = Z0, this probability is bounded above by

P {X0 , Z0} + P


∣∣∣∣∣∣∣1t

t−1∑
s=0

f (Zs) − Eπ( f )

∣∣∣∣∣∣∣ > η
 .

By definition of tmix(ε), if r ≥ tmix(ε/2), then the first term is bounded by ε/2.
We use Chebyshev on the second term along with Lemma 12.15 to show that if
t ≥ 4 Varπ( f )/(η2ε)trel then the second term is bounded by ε/2. �

12.9. Problems
{Exer:MonoSelfTran}

E 12.4. Let P be a reversible transition matrix with stationary distribu-
tion π. Use Lemma 12.1 to prove that P2t+2(x, x) ≤ P2t(x, x).

{Exercise:RWInt}
E 12.5. Consider the random walk on the interval {0, 1, . . . , n−1}which

moves with equal probability left and right when at the interior points, and has
“inelastic” boundary behavior:

P(0, 1) = 1 and P(n − 1, n − 2) = 1.

By considering the simple random walk on the (2n − 2)th roots of unity, find the
eigenvalues and eigenfunctions for this chain.
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S  12.5. The simple random walk on the (2n − 2) roots of unity at
each move multiplies by a random choice from {ω1, ω

−1
1 }. As shown in Sec-

tion 12.2.1, the eigenvalues for this walk are

λ j = cos
(
π j

n − 1

)
.

When ωk and ω̄k are identified, the walk on the interval with inelastic boundary
conditions is obtained. �

{Exercise:ProdChain}

E 12.6. Let P1 and P2 by transition matrices on state-spaces Ω1 and Ω2
respectively. Consider the chain onΩ1×Ω2 which moves independently in the first
and second coordinates according to P1 and P2 respectively. Its transition matrix
is the tensor product P1 ⊗ P2, defined as

P1 ⊗ P2((x, y), (z,w)) = P1(x, z)P2(y,w).

The tensor product of a function φ on Ω1 and a function ψ on Ω2 is the function on
Ω1 × X2 defined by (φ ⊗ ψ)(x, y) = φ(x)ψ(y).

Let φ and ψ be eigenfunctions of P1 and P2 respectively, with eigenvalues λ
and µ. Show that φ ⊗ ψ is an eigenfunction of P1 ⊗ P2 with eigenvalue λµ.

12.10. Notes

The connection between the spectral gap of the Laplace-Beltrami operator on
Riemannian manifolds and an isoperimetric constant is due to Cheeger (1970),
hence the bottleneck ratio is often called the Cheeger constant. The relationship
between the bottleneck ratio and the spectral gap for random walks on graphs was
observed by Alon and Milman (1985) and further developed in Alon (1986). For
general Markov chains this was independently exploited by Sinclair and Jerrum
(1989) and Lawler and Sokal (1988).

Theorem 12.8 can be combined with Theorem 12.5 to get a bound on mixing
time when there is a coupling which contracts, in the reversible case: If for each
pair of states x, y, there exists a coupling (X1,Y1) of P(x, ·) and P(y, ·) satisfying

Ex,y(ρ(X1,Y1)) ≤ θρ(x, y),

then
tmix(ε) ≤

− log(ε) − log(πmin)
1 − θ

(12.30){Eq:BadBound}

Compare with Corollary 14.3, which bounds mixing time directly from a con-
tractive coupling. Since πmindiam ≤ πmin|Ω| ≤ 1, it follows that − log(πmin) ≥
log(diam) and the bound in (12.30) is never better than the bound given by Corol-
lary 14.3. In fact, (12.30) can be much worse. For example, for the hypercube,
π−1

min = 2d, while the diameter is d.



CHAPTER 13

The Variational Principle and Comparison of Chains

{Ch:VPC}
In this chapter, we will always assume that P is a reversible transition matrix

with stationary distribution π.

13.1. The Dirichlet Form

The Dirichlet form associated to the pair (P, π) is defined for functions f and g
on Ω by

E( f , h) := 〈(I − P) f , h〉π.
We write simply E( f ) for E( f , f ).

{Lem:DFAlt}
L 13.1. For a reversible transition matrix P with stationary distribution

π,

E( f ) =
1
2

∑
x,y∈Ω

[
f (x) − f (y)

]2 π(x)P(x, y). (13.1) {Eq:DirForm}

P. First write

〈(I − P) f , f 〉π =
∑
x∈Ω

[
f (x) − P f (x)

]
f (x)π(x)

=
∑
x∈Ω

 f (x) −
∑
y∈Ω

f (y)P(x, y)

 f (x)π(x).

Since
∑

y∈Ω P(x, y) = 1, the right-hand side above equals∑
x∈Ω

∑
y∈Ω

P(x, y) f (x) −
∑
y∈Ω

f (y)P(x, y)

 f (x)π(x).

Simplifying,
E( f ) =

∑
x∈Ω

∑
y∈Ω

[ f (x) − f (y)] f (x)π(x)P(x, y) (13.2) {Eq:OnePartDF}

By reversibility, the right-hand side of (13.2) equals∑
x∈Ω

∑
y∈Ω

[ f (x) − f (y)] f (x)π(y)P(y, x).

Reindexing shows that

E( f ) =
∑
x∈Ω

∑
y∈Ω

[ f (y) − f (x)] f (y)π(x)P(x, y). (13.3) {Eq:OtherPartDF}

Adding together (13.2) and (13.3) establishes (13.1). �
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We write v ⊥π w to mean 〈v,w〉π = 0.
{Lem:GapVar}

L 13.2. The spectral gap γ = 1 − λ2 satisfies

γ = min
f : Eπ( f )=0,
Varπ( f )=1

〈(I − P) f , f 〉π = min
f : Eπ( f )=0,

f.0

〈(I − P) f , f 〉π
〈 f , f 〉π

. (13.4){Eq:RayleighGap}

P. As noted in the proof of Lemma 12.1, if f1, f2, . . . , fn are the eigen-
functions of P associated to the eigenvalues ordered as in (12.1), then { fk} is an
orthonormal basis for the inner-product space (Rn, 〈·, ·〉π). Therefore, any func-
tion f can be written as f =

∑n
j=1〈 f , f j〉π f j. Recall that Parseval’s identity is the

equality
|Ω|∑
j=1

|〈 f , f j〉π|
2 =

∑
x∈Ω

| f (x)|2π(x).

Accordingly, if
∑

x∈Ω f (x)2π(x) = 1 and Eπ( f ) = 0, then f =
∑|Ω|

j=2 a j f j where∑|Ω|
j=2 a2

j = 1. Thus,

〈(I − P) f , f 〉π =
|Ω|∑
j=2

a2
j(1 − λ j) ≥ 1 − λ2,

from which follows (13.4). �

The Dirichlet form appears in the variational characterization of g = 1 − λ2;
The statement of Lemma 13.2 can be rewritten as

g = min
f : Eπ( f )=0,

f.0

E( f )
〈 f , f 〉π

. (13.5){Eq:GapDF}

13.2. The Bottleneck Ratio Revisited

We have already met the bottleneck ratio Φ? in Section 8.2, where we estab-
lished a lower bound on tmix directly in terms of Φ?.

We define the spectral gap as γ = 1−λ2. The reader should note the distinction
with the absolute spectral gap γ? defined earlier. As mentioned previously, for lazy
chains, γ = γ?.

The following theorem bounds γ in terms of the bottleneck ratio:
{t.cheeger}

T 13.3 (Alon (1986), Jerrum and Sinclair (1989), and Lawler and Sokal
(1988)). Let λ2 be the second largest eigenvalue of a reversible transition matrix
P, and let γ = 1 − λ2. Then

Φ2
?

2
≤ γ ≤ 2Φ?. (13.6){Eq:Cheeger}

P      13.6. By Lemma 13.2 and the identity in Ex-
ercise ??,

γ = min
f.0

Eπ( f )=0

∑
x,y∈Ω π(x)P(x, y)

[
f (x) − f (y)

]2∑
x,y∈Ω π(x)π(y)

[
f (x) − f (y)

]2 . (13.7){Eq:GapRatio}
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For any S with π(S ) ≤ 1/2 define the function fS by

fS (x) =

−π(S c) for x ∈ S ,
π(S ) for x < S .

Since Eπ( fs) = 0, it follows from (13.7) that

γ ≤
2Q(S , S c)

2π(S )π(S c)
≤

2Q(S , S c)
π(S )

≤ 2ΦS .

Since this holds for all S , the upper bound is proved. �

13.3. Proof of Lower Bound in Theorem 13.3*

We need the following lemma:
{l.helplemma}

L 13.4. Given a non-negative function ψ defined on Ω, order Ω so that ψ
is non-increasing. If π{ψ > 0} ≤ 1/2, then

Eπ(ψ) ≤ Φ−1
?

∑
x,y∈Ω
x<y

[
ψ(x) − ψ(y)

]
Q(x, y).

P. Recalling that Φ? is defined as a minimum in (8.5), letting S = {x :
ψ(x) > t} with t > 0 shows that

Φ? ≤
Q(S , S c)
π(S )

=

∑
x,y∈Ω Q(x, y)1{ψ(x)>t≥ψ(y)}

π{ψ > t}
.

Rearranging, and noting that ψ(x) > ψ(y) only for x < y,

π{ψ > t} ≤ Φ−1
?

∑
x<y

Q(x, y)1{ψ(x)>t≥ψ(y)}.

Integrating over t, noting that
∫ ∞

0 1{ψ(x)>t≥ψ(y)}dt = ψ(x) − ψ(y), and using Exer-
cise 13.1 shows that

Eπ(ψ) ≤ Φ−1
?

∑
x<y

[
ψ(x) − ψ(y)

]
Q(x, y).

�

Let f2 be an eigenfunction corresponding to the eigenvalue λ2, so that P f2 =
λ2 f2. Assume that π{ f2 > 0} ≤ 1/2. (If not, use − f2 instead.) Defining f :=
max{ f2, 0},

(I − P) f (x) ≤ γ f (x) for all x. (13.8) {Eq:IPf}

This is verified separately in the two cases f (x) = 0 and f (x) > 0. In the former
case, (13.8) reduces to −P f (x) ≤ 0, which holds because f (x) ≥ 0. In the case
f (x) > 0, note that since f ≥ f2,

(I − P) f (x) ≤ (I − P) f2(x) = (1 − λ2) f2(x) = γ f (x).

Because f ≥ 0,
〈(I − P) f , f 〉π ≤ γ〈 f , f 〉π.
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Equivalently,

γ ≥
〈(I − P) f , f 〉π
〈 f , f 〉π

.

Note there is no contradiction to (13.4) because Eπ( f ) , 0. Applying Lemma 13.4
with ψ = f 2 shows that

〈 f , f 〉2π ≤ Φ
−2
?

∑
x<y

[
f 2(x) − f 2(y)

]
Q(x, y)

2

.

By the Cauchy-Schwarz inequality,

〈 f , f 〉2π ≤ Φ
−2
?

∑
x<y

[
f (x) − f (y)

]2 Q(x, y)


∑

x<y

[
f (x) + f (y)

]2 Q(x, y)

 .
Using the identity (13.1) of Exercise ?? and[

f (x) + f (y)
]2
= 2 f 2(x) + 2 f 2(y) −

[
f (x) − f (y)

]2 ,

we find that

〈 f , f 〉2π ≤ Φ
−2
? 〈(I − P) f , f 〉π

[
2〈 f , f 〉π − 〈(I − P) f , f 〉π

]
.

Let R := 〈(I − P) f , f 〉π/〈 f , f 〉π and divide by 〈 f , f 〉2π to show that

Φ2
? ≤ R(2 − R)

and

1 − Φ2
? ≥ 1 − 2R + R2 = (1 − R)2 ≥ (1 − γ)2.

Finally, (
1 −
Φ2
?

2

)2

≥ 1 − Φ2
? ≥ (1 − γ)2,

proving that γ ≥ Φ2
?/2, as required.

13.4. Comparison of Markov Chains

Recall that for lazy simple random walk on the d-dimensional torus Zd
n, we

used coupling to show that tmix ≤ Cdn2 and g−1 ≤ Kdn2 for constants Cd and Kd. If
some edges are removed from the graph (e.g. some subset of the horizontal edges
at even heights), then coupling cannot be applied due to the irregular pattern. In
this chapter, such perturbations of “nice” chains can be studied via comparison.
The technique will be exploited later when we study site Glauber dynamics via
comparison with block dynamics.

Throughout this section, we will assume that the transition matrix P is re-
versible.
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13.4.1. The Comparison Theorem. The following theorem—proved in vari-
ous forms by Jerrum and Sinclair (1989), Diaconis and Stroock (1991), and Quastel
(1992), and in the form presented here by Diaconis and Saloff-Coste, allows one
to compare the behavior of similar chains to achieve bounds on the mixing time in
general.

Define E = {(x, y) : P(x, y) > 0}. An E-path from x to y is a sequence
γ = (e1, e2, . . . , em) of pairs from E so that e1 = (x, z) and em = (w, y) for some
z and w. The length of an E-path γ is denoted by |γ|. As usual, Q(x, y) denotes
π(x)P(x, y).

Let P and P̃ be two transition matrices with stationary distributions π and π̃,
respectively. Supposing that for each (x, y) ∈ Ẽ there is an E-path from x to y,
choose one and denote it by γxy. Given such a choice of paths, define the congestion
ratio as

B := max
e∈E

 1
Q(e)

∑
x,y
γxy3e

Q̃(x, y)|γxy|

 . (13.9) {Eq:ConRat}

{Thm:Comparison}
T 13.5 (The Comparison Theorem). If B is the congestion ratio between

transition matrices P and P̃ for a choice of E-paths, as defined in (13.9), then
Ẽ( f ) ≤ BE( f ). Consequently, if P and P̃ are reversible, then g̃ ≤ Bg.

{Cor:GapConRat}
C 13.6. Let P be a reversible and irreducible transition matrix with

stationary distribution π. Suppose γxy is a choice of E-path for each x and y, and
let

B = max
e∈E

∑
x,y
γxy3e

π(x)π(y)|γxy|.

Then the difference g = 1 − λ2 satisfies g ≤ B−1.

P. Let P̃(x, y) = π(y) and π̃, and observe that

Ẽ( f ) =
1
2

∑
x,y∈Ω

[
f (x) − f (y)

]2 π(x)π(y) = Varπ( f ).

Applying Theorem 13.5 shows that E( f ) ≥ B−1 Varπ( f ), from which follows the
conclusion. �

P  T 13.5. Observe that

2Ẽ( f ) =
∑

(x,y)∈Ẽ

Q̃(x, y)[ f (x) − f (y)]2 =
∑
x,y

Q̃(x, y)

 ∑
e∈γx,y

d f (e)


2

,

where for an edge e = (z,w), we write d f (e) = f (w) − f (z). Applying the Cauchy-
Schwarz inequality yields

2Ẽ( f ) ≤
∑
x,y

Q̃(x, y)|γxy|
∑

e∈γx,y

[d f (e)]2 =
∑
e∈E

∑
γxy3e

Q̃(x, y)|γxy|

 [d f (e)]2.
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By the definition of the congestion ratio, the right-hand side is bounded above by∑
(z,w)∈E

BQ(z,w)[ f (w) − f (z)]2 = 2BE( f ),

completing the proof. �

E 13.7 (Comparison for Simple Random Walks on Graphs). If two
graphs have the same vertex set but different edge sets E and Ẽ, then

Q(x, y) =
1

2|E|
, and Q̃(x, y) =

1
2|Ẽ|

.

Therefor, the congestion ratio is simply

B =

max
e∈E

∑
γxy3e

|γxy|

 |E||Ẽ| .
In our motivating example, we only removed horizontal edges at even heights from
the torus. Since all odd-height edges remain, we can take |γxy| ≤ 3 since we can
traverse any missing edge in the torus by moving upwards, then across the edge of
odd height, and then downwards. The horizontal edge in this path would then be
used by at most 3 paths γ (including the edge itself). Since we removed at most
one quarter of the edges, B ≤ 12.

Thus the parameter g for the perturbed torus also satisfies g−1 = O(n2).
{Sec:RATcomp}

13.4.2. Random adjacent transpositions. The Comparison Theorem (Theo-
rem 13.5) can be used to bound the convergence of the random adjacent transpo-
sition shuffle, by comparing it with the random transposition shuffle. While this
analysis considers only the spectral gap, and thus gives a poor upper bound on the
mixing time, we illustrate the method because it can be used for many types of
shuffle chains and indeed gives the best known bound in many examples. Note:
in the course of this proof, we will introduce several constants C1,C2, . . . . Since
are deriving such (asymptotically) poor bounds, we will not make any effort to
optimize their values. Each one does not depend on n.

First, we bound the relaxation time of the random transpositions shuffle by its
mixing time. Theorem 12.7 and Corollary 9.4 imply that the relaxation time of the
random transpositions chain is at most C1n log n. (We’re already off by a factor of
log n here, but we’ll lose so much more along the way that it scarcely matters.)

Now, to compare. We must specify two chains on a common state space with
transition matrices P and P̃ respectively. Here the state space is the symmetric
group Sn, while P corresponds to the random adjacent transposition shuffle and
P̃ to the random transposition shuffle. Let E = {(x, y)|P(x, y) > 0}, and for e =
(σ1, σ2) ∈ E we write Q(e) = Q(σ1, σ2) = P(σ1, σ2)U(σ1) = P(σ1, σ2)/n!.
Define Ẽ and Q̃ in a parallel way.

Because both chains are in fact random walks on the same group, we can ex-
ploit the group structure to get a well-distributed collection of paths. Let (a, b) with
a < b, be a transposition in Sn. Note that

(ab) = (a a−1) . . . (b−1 b−2)(b−1 b)(b−1 b−2) . . . (a+1 a+2)(a a+1). (13.10){Eq:GenPaths}
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Hence there is a path of length at most 2n − 1 using only adjacent transpositions
(and using any single adjacent transposition at most twice) from id to (ab). We call
these the generator paths; note that we have expressed each of the generators of
the random transposition walk in terms of the generators of the random adjacent
transposition walk.

To obtain a path corresponding to an arbitrary edge (σ1, σ2) ∈ Ẽ, write σ2 =

(a, b)σ1. Then multiply each permutation appearing on the corresponding genera-
tor path by σ1 on the left to get a path γσ1σ2 from σ1 to σ2.

We must estimate the congestion ratio

B = max
e∈E

 1
Q(e)

∑
σ1,σ2
γσ1σ23e

Q̃(σ1, σ2)|γσ1σ2 |

 = max
e∈E

2(n − 1)
n2

∑
{σ1,σ2}∈Ẽ
γσ1σ23e

|γσ1σ2 |.

(13.11) {Eq:CongRat}

For how many pairs {σ1, σ2} ∈ Ẽ can a specific e ∈ E appear in γσ1σ2? Let e =
{ρ, (i i+1)ρ}, and let {α, (i i+1)α} be an edge in a generator path for a transposition
(a, b). Then e appears in the path for {α−1ρ, (a, b)α−1ρ} ∈ Ẽ.

Since the adjacent transposition (i i + 1) lies on the generator path of (a, b)
exactly when a ≤ i < i + 1 ≤ b, and since no generator path uses any adjacent
transposition more than twice, the summation on the right-hand-side of (13.11) is
bounded by 2i(n − i)(2n − 1) ≤ n3. Hence

B ≤ 2n2,

and Theorem 13.5 now tells us that the relaxation time of the random adjacent
transpositions chain is at most C2n3 log n.

Finally, we use Theorem 12.5 to bound the mixing time by the relaxation time.
Here the stationary distribution is uniform, π(σ) = 1/n! for all σ ∈ Sn. The mixing
time of the random adjacent transpositions chain thus satisfies

tmix ≤ log(n!/4)C2n3 log n = C3n4 log2 n.

13.5. Expander Graphs*

A family of graphs {Gn} is said to be an (d, α) expander family if all of the
following three conditions hold for all n:

(i) limn→∞ |V(Gn)| = ∞.
(ii) Gn is d-regular.

(iii) The bottleneck ratio of the simple random walk on the graph satisfiesΦ?(Gn) ≥
α.

We now construct a a family of 3-regular expander graphs. This is the first
construction of an expander family, due to Pinsker (1973).

The vertices of a bipartite graph can be colored red and blue so that red vertices
are joined only to blue vertices, and blue vertices are joined only to red vertices.
The set of red and blue vertices are called sides.

Let G = (V, E) be a bipartite graph with equal sides, A and B, each with n
vertices. Denote A, B = {1, . . . , n}. Let σ1 and σ2 be two permutations drawn
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uniformly at random from the permutations of {1, . . . , n}, and set the edge set to be

E = {(i, i), (i, σ1(i)), (i, σ2(i)) : 1 ≤ i ≤ n}.
{t.expand}

T 13.8. With positive probability, γ has a positive bottleneck ratio, i.e.,
there exists δ > 0 such that for any S ⊂ V with |S | ≤ n we have

|{edges between S and S c}|

|S |
> δ.

P. It is enough to prove that any S ⊂ A of size k ≤ n/2 has at least (1+δ)k
neighbors in B. This is because for any S ⊂ V simply consider the side in which
S has more vertices, and if this side has more than n/2 vertices, just look at an
arbitrary subset of size exactly n/2 vertices. Let S ⊂ A be a set of size k ≤ n/2,
and denote by N(S ) the neighborhood of S . We wish to bound the probability that
|N(S )| ≤ (1 + δ)k. Since (i, i) is an edge for any 1 ≤ i ≤ k, we get immediately that
|N(S )| ≥ k. So all we have to enumerate is the surplus δk vertices that a set which
contains N(S ) will have, and to make sure both σ1(S ) and σ2(S ) fall within that
set. This argument gives

P {|N(S )| ≤ (1 + δ)k} ≤

(
n
k

)(
(1+δ)k

k

)2(
n
k

)2 ,

so

P {exists S , |S | ≤ n/2, |N(S )| ≤ (1 + δ)k} ≤
n/2∑
k=1

(
n
k

)( n
δk

)(
(1+δ)k
δk

)2(
n
k

)2 ,

which is strictly less than 1 for δ > 0 small enough by Exercise 13.3. �

13.6. Problems
{Exercise:IntExp}

E 13.1. Let Y be a non-negative random variable. Show that

E(Y) =
∫ ∞

0
P{Y > t}dt.

Hint: Write Y =
∫ ∞

0 1{Y>t}dt.

E 13.2. Show that for lazy simple random walk on the box {1, . . . , n}d,
the parameter g satisfies g−1 = O(n2).

{Exercise:YPN1}
E 13.3. To complete the proof of Theorem 13.8, prove that there exists

δ > 0 such that
n/2∑
k=1

(
n
δk

)(
(1+δ)k
δk

)2(
n
k

) < 1.

13.7. Notes



CHAPTER 14

The Kantorovich Metric and Path Coupling

{Chapter:PC}
We have used the total variation norm to measure distance between probability

distributions. In fact, we will see in this chapter that total variation distance defines
a metric on the space of probability distributions on Ω. (The reader should consult
Appendix B.2 for the definition of a metric space, if needed.) When emphasizing
the metric space point-of-view, we will write ρTV (µ, ν) for ‖µ − ν‖TV . In this chap-
ter, we introduce a generalization of ρTV called the Kantorovich metric, which we
use to develop the path coupling method for bounding mixing time.

14.1. The Kantorovich Metric

Recall that a coupling of probability distributions µ and ν is a pair of random
variables (X,Y), defined on the same probability space, so that X has distribution µ
and Y has distribution ν.

For a given distance ρ defined on the state space Ω, the Kantorovich metric
between two distributions on Ω is defined as

ρK(µ, ν) = min{E(ρ(X,Y)) : (X,Y) is a coupling of µ and ν}. (14.1) {Eq:KantorDefn}

For some history on this metric, see Vershik (2004).
By Proposition 5.5, if ρ = 1{x,y}, then ρK = ρTV .

{Rmk:KantorEquiv}
R 14.1. It is sometimes convenient to describe couplings using probabil-

ities on the product space Ω × Ω, instead of random variables. If q is a probability
distribution on Ω × Ω, the projection onto the first coordinate is the probability
distribution on Ω equal to

q(· ×Ω) =
∑
y∈Ω

q(·, y).

Likewise, the projection onto the second coordinate is the distribution q(Ω × ·).
Given a coupling (X,Y) of µ and ν as defined above, the distribution of (X,Y)

on Ω ×Ω has projections µ and ν on the first and second coordinates, respectively.
Conversely, given a probability distribution q on Ω × Ω with projections µ and ν,
the identity function on the probability space (Ω ×Ω, q) is a coupling of ν and µ.

Consequently, observing that E(ρ(X,Y)) =
∑

(x,y)∈Ω×Ω ρ(x, y)q(x, y) when (X,Y)
has distribution q, the Kantorovich metric can also be written as

ρK(µ, ν) = min

 ∑
(x,y)∈Ω×Ω

ρ(x, y)q(x, y) : q(· ×Ω) = µ, q(Ω × ·) = ν

 . (14.2) {Eq:KantorDefn2}
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{Rmk:OptCoup}
R 14.2. The set of probability distributions on Ω × Ω can be identified

with the |Ω|2-dimensional simplex, which is a compact subset of R|Ω|
2+1. The set of

distributions on Ω ×Ω which project on the first coordinate to µ and project on the
second coordinate to ν is a closed subset of this simplex, hence is compact. The
function

q 7→
∑

(x,y)∈Ω×Ω

ρ(x, y)q(x, y)

is continuous on this set, hence there is a q? so that∑
(x,y)∈Ω×Ω

ρ(x, y)q?(x, y) = ρK(µ, ν).

Such a q? is called an optimal coupling of µ and ν. Equivalently, there is a pair of
random variables (X?,Y?), also called an optimal coupling, so that

E(ρ(X?,Y?)) = ρK(µ, ν).
{KantorIsMetric}

L 14.1. ρK as defined in (14.1) is a metric on the space of probability
distributions on Ω.

P. We check the triangle inequality, and leave to the reader to verify the
other two conditions.

Let µ, ν and η be probability distributions onΩ. Let p be a probability distribu-
tion on Ω×Ω which is a coupling of µ and ν, and let q be a probability distribution
on Ω × Ω which is a coupling of ν and η. Define the probability distribution r on
Ω ×Ω ×Ω by

r(x, y, z) :=
p(x, y)q(y, z)

ν(y)
.

Note that the projection of r onto its first two coordinates is p, and the projection
of r onto its last two coordinates is q. The projection of r onto the first and last
coordinates is a coupling of µ and η.

Assume now that p is an optimal coupling of µ and ν. (See 14.2.) Likewise,
suppose that q is an optimal coupling of ν and η.

Let (X,Y,Z) be a random vector with probability distribution r. Since ρ is a
metric,

ρ(X,Z) ≤ ρ(X,Y) + ρ(Y,Z).
Taking expectation, because (X,Y) is an optimal coupling of µ and ν and (Y,Z) is
an optimal coupling of ν and η,

E(ρ(X,Z)) ≤ E(ρ(X,Y)) + E(ρ(Y,Z)) = ρK(µ, ν) + ρK(ν, η).

Since (X,Z) is a coupling (although not necessarily optimal) of µ and η, we con-
clude that

ρK(µ, η) ≤ ρK(µ, ν) + ρK(ν, η).
�

The Kantorovich metric ρK “lifts” the metric ρ on Ω to a metric on the space
of probability distributions on Ω. In particular, if δx denotes the probability distri-
bution which puts unit mass on x, then ρK(δx, δy) = ρ(x, y).
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14.2. Path Coupling
{Sec:PC}

Suppose the state space of a Markov chain (Xt) has a graph structure: the states
Ω form the vertices of a graph, and a collection of edges specify which states are
adjacent.

R. This graph structure may be different from the structure inherited
from the permissible transitions of the Markov chain (Xt).

Given a specification of which states are neighbors, define a path in Ω from x
to y to be a sequence of states ξ = (x0, x1, . . . , x`) such that the initial vertex x0 = x,
the final vertex x` = y, and xi−1 and xi are joined by an edge for i = 1, . . . , `. The
length of the path is `. The path metric is defined as

ρ(x, y) = min{length of ξ : ξ a path in Ω from x to y}. (14.3) {Eq:PathMetricDefn}

Notice that ρ(x, y) ≥ 1{x , y} when ρ is a path metric. Hence, for any pair
(X,Y),

P{X , Y} = E (1{X , Y}) ≤ E (ρ(X,Y)) . (14.4)
Minimizing over all couplings (X,Y) of µ and ν shows that

ρTV (µ, ν) ≤ ρK(µ, ν). (14.5) {Eq:TVvsK}

While Bubley and Dyer (1997) rediscovered the following theorem and applied
it to mixing, the key idea is the fact that the Kantorovich metric is a metric, which
goes back to Kantorovich (1942).

{Thm:PathCoupling}
T 14.2 (Bubley and Dyer (1997)). Let ρ be a path metric on the state

spaceΩ and fix α > 0. Suppose that for each pair of states x, y ∈ Ω with ρ(x, y) = 1
there is a coupling (X1,Y1) of the distributions P(x, ·) and P(y, ·) such that

Ex,y (ρ(X1,Y1)) ≤ e−α. (14.6) {Eq:NeighborsContract}

Then for any two probability measures µ and ν on Ω,

ρK(µP, νP) ≤ e−αρK(µ, ν). (14.7) {Eq:MeasuresContract}
{Cor:PCMixing}

C 14.3. Suppose that the hypotheses of Theorem 14.2 hold. Then

d(t) ≤ e−αtdiam(Ω),

and consequently

tmix(ε) ≤
− log(ε) + log(diam(Ω))

α
.

P. By iterating (14.7), it follows that

ρK(µPt, νPt) ≤ e−αtρK(µ, ν) ≤ e−αt max
x,y

ρ(x, y). (14.8) {Eq:IteratedContraction}

Applying (14.5), and setting µ = δx and ν = π shows that∥∥∥Pt(x, ·) − π
∥∥∥

TV ≤ e−αt max
x,y

ρ(x, y). (14.9)

�
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P  T 14.2. We begin by showing that for arbitrary x, y ∈ Ω,

ρK(P(x, ·), P(y, ·)) ≤ e−αρ(x, y). (14.10) {Eq:PointMassContract}

Fix x, y ∈ Ω, and let (x = x0, x1, . . . , x` = y) be a minimal-length path from x to y.
By the triangle inequality for ρK ,

ρK(P(x, ·), P(y, ·)) ≤
∑̀
k=1

ρK(P(xk−1, ·), P(xk, ·)). (14.11){Eq:TriangleForPath}

Since ρK is a minimum over all couplings, the hypotheses of the theorem imply
that for any two a, b with ρ(a, b) = 1,

ρK(P(a, ·), P(b, ·)) ≤ e−αρ(a, b). (14.12){Eq:MetricContracts}

Since ρ(xk−1, xk) = 1, we can apply (14.12) to each of the terms in the sum appear-
ing on the right-hand side of (14.11) to show

ρK(P(x, ·), P(y, ·)) ≤ e−α
∑̀
k=1

ρ(xk−1, xk).

Since ρ is a path metric, the sum on right-hand side above equals ρ(x, y). This
establishes (14.10).

Let p0 be an optimal coupling of µ and ν. Define the transition matrix Q on
Ω × Ω by setting Q((x, y), ·) equal to an optimal coupling of P(x, ·) and P(y, ·). Let
((X0,Y0), (X1,Y1)) be one step of the Markov chain with initial distribution p0 and
transition matrix Q. These definitions ensure that

ρK(µ, ν) = E(ρ(X0,Y0)), (14.13){Eq:CoupleForMuNu}

and for each (x, y) ∈ Ω ×Ω,

ρK(P(x, ·), P(y, ·)) = E (ρ(X1,Y1) | X0 = x,Y0 = y) . (14.14){Eq:CoupleXY}

By Exercise 14.2, (X1,Y1) is a coupling of µP and νP, and so

ρK(µP, νP) ≤ E (ρ(X1,Y1)) . (14.15){Eq:K1}

We condition on the values of X0 and Y0 to decompose the expectation on the
right-hand side:

E (ρ(X1,Y1)) =
∑

x,y∈Ω

E (ρ(X1,Y1) | X0 = x,Y0 = y) P{X0 = x,Y0 = y}. (14.16)

Using (14.14) we rewrite this as

E (ρ(X1,Y1)) =
∑

x,y∈Ω

ρK(P(x, ·), P(y, ·))P{X0 = x,Y0 = y}. (14.17)

Using (14.10) shows that

E (ρ(X1,Y1)) ≤
∑

x,y∈Ω

e−αρ(x, y)P{X0 = x,Y0 = y}. (14.18)
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F 14.1. A proper 3-coloring of a rooted tree. (As is common
practice, we have placed the root at the top.)

The right-hand side above is e−αE (ρ(X0,Y0)), and using (14.13) and (14.15) along
with the above equations shows that

ρK(µP, νP) ≤ e−αρK(µ, ν). (14.19)

�

14.3. Application: Fast Mixing for Colorings
{SSec:Coloring}

14.3.1. Coloring a graph. Suppose we have q colors, which we will repre-
sent in monochromatic text by the integers {1, 2, . . . , q}. A proper coloring of a
graph G is an assignment of colors to the vertices of the graph such that no two
neighboring vertices are assigned the same color. The state space Ω is a subset of
the set {0, 1, . . . , q}V of functions x : V → {0, 1, . . . , q}, where the color assigned to
vertex v is x(v). We call elements of this state space configurations. We also define

Nx(v) = {x(w) : w ∼ v}, (14.20)

the set of colors assigned to the neighbors of v in configuration x.
Our goal is to sample uniformly from proper colorings of a graph G. In general,

this is difficult to do directly, but Markov chain Monte Carlo can be used to generate
an approximately uniform sample. In the next section we describe the Glauber
dynamics for this distribution. The problem of mixing for this chain was first
analyzed in Jerrum (1995).

14.3.2. Coloring trees. It is worth noting that in the special case where the
graph is a tree, there is a direct method of sampling proper colorings. Suppose
that G is a finite tree. This means that between any two vertices there is a unique
connecting path. A vertex is often distinguished as the root, and the depth of a
vertex is its distance from the root. The children of a vertex v are the neighbors of
v with larger depth.

We proceed inductively, beginning with the root. Choose the color of the root
uniformly at random from {1, . . . , q}. Suppose colors have been assigned to all
vertices up to depth d. For a vertex at depth d + 1, assign a color chosen uniformly
at random from

{1, 2, . . . , q} \ {color of parent}. (14.21)
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Colors: {1, 2, 3, 4, 5, 6}

w

2

1

1

6

5

5

5

3

F 14.2. Updating at vertex w. The colors of the neighbors
are not available, as indicated.

Fig:ColorUp

E 14.1. Show that this method of coloring a tree samples uniformly
from the set of all proper q-colorings of the tree.

{SSec:chain}
14.3.3. Mixing time for Glauber dynamics of random colorings. Glauber

dynamics for random colorings of a graph with n vertices operate as follows: at
each move, a vertex is chosen uniformly at random and the color of this vertex
is updated. To update, a color is chosen uniformly at random from the allowable
colors, which are those colors not seen among the neighbors of the chosen vertex.

Recall that Nx(w) is the collection of colors appearing among the neighboring
vertices to w in the configuration x. Since Glauber dynamics dictate that the color
of a vertex is updated by a color not among the neighboring colors, it is convenient
to write N ′x(w) for the colors available for w:

N ′x(w) := {1, 2, . . . , q} \ Nx. (14.22){Eq:AvailableColors}

The detailed balance equations can be easily verified for this chain. The chain
moves between configurations which have the same colors everywhere except pos-
sibly at a single vertex. Suppose x is a configuration, and w is a vertex; we will
write xs

w for the configuration which agrees with x everywhere except possibly at
w, where it has value s. A typical transition of the chain is from a configuration x
to xs

w, where s ∈ N ′x(w). The probability of this transition is
(
n |N ′x(w)|

)−1, as the
vertex w needs to be selected, and then the color s must be selected. The probabil-
ity of going from xs

w to x is the same, as again vertex w must be selected, and the
color x(w) must be selected out of the |N ′x(w)| allowable colors.

We will use path coupling to bound the mixing time of this chain.
{Thm:ColoringsUB}

T 14.4. Consider the Glauber dynamics chain for random proper q-
colorings of a graph with maximum degree ∆. If q > 2∆, then the mixing time
satisfies

tmix(ε) ≤
(

q − ∆
q − 2∆

)
n
(
log n − log ε

)
. (14.23){Eq:tmixColUB}



14.3. APPLICATION: FAST MIXING FOR COLORINGS 181

P. Let x and y be two configurations which agree everywhere except at
vertex v. We describe how to simultaneously evolve two chains, one started in
x and the other started in y, so that each chain viewed alone corresponds to the
Glauber dynamics for random proper q-colorings.

First, we pick a vertex w uniformly at random from the vertex set of the graph.
(We use a lower-case letter for the random variable w to emphasize that its value
is a vertex.) We will update the color of w in both the chain started from x and the
chain started from y.

If none of the neighbors of w is v, then we can update the two chains with
the same color. This is fine because in both chains we pick among the available
colors uniformly at random, and the available colors are the same for both chains:
N ′x(w) = N ′y(w).

Suppose now one of the neighbors of w is v. We will assume that |N ′x(w)| ≤
|N ′y(w)|. If not, run the procedure described below with the roles of x and y re-
versed.

Generate a random color U from N ′y(w), and use this to update y at w. If U ,
x(v), then update the configuration x at w to U. We subdivide the case U = x(v)
into subcases based on whether or not |N ′x(w)| = |N ′y(w)|:

case how to update x at w
|N ′x(w)| = |N ′y(w)| set x(w) = y(v)
|N ′x(w)| < |N ′y(w)| draw a random color from N ′x

The reader should check that this updates x to a color chosen uniformly from
N ′x(w). The probability that the two configurations do not update to the same color
is 1/|N ′y(w)|, which is bounded above by 1/(q − ∆).

Now given two states x and y which are at unit distance (that is, differ in one
vertex only), we have constructed a coupling (X1,Y1) of P(x, ·) and P(y, ·). The
distance ρ(X1,Y1) increases from 1 only in the case where a neighbor of v is up-
dated and the updates are different in the two configurations. Also, the distance
decreases when v is selected to be updated. In all other cases the distance stays at
1. This shows that

Ex,y (ρ(X1,Y1)) ≤ 1 −
1
n
+

deg(v)
n

(
1

q − ∆

)
. (14.24) {Eq:PC1}

The right-hand side of (14.24) is bounded by

1 −
1
n

(
1 −

∆

q − ∆

)
. (14.25) {Eq:ColoringDrift}

Because 2∆ < q, this is not more than 1. Letting c(q,∆) =
(
1 − ∆

q−∆

)
,

Ex,y (ρ(X1,Y1)) ≤ exp
(
−

c(q,∆)
n

)
.

Using Corollary 14.3 shows that

max
x∈Ω

∥∥∥Pt(x, ·) − π
∥∥∥

TV ≤ n exp
(
−

c(q,∆)
n

t
)
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Available: {2,4,6} and 3
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F 14.3. Jointly updating x and y when they differ only at
vertex v and |N ′x| < |N

′
y |
Fig:JntColorUp

and that

tmix(ε) ≤
n

c(q,∆)

(
log n + log ε−1

)
. (14.26) {Eq:TauForColorings}

(Note that c(q,∆) > 0 because q > 2∆.) This establishes (14.23). �

Some condition on q and ∆ is necessary to achieve the fast rate of convergence
(order n log n) established in Theorem 14.4, although the condition q > 2∆ is not
the best known. In Example 8.3 it is shown that if ∆ grows in n while q remains
fixed, then in fact the mixing time is at least exponential in n.

Exercise 8.4 shows that for the graph having no edges, in which case the colors
at distinct vertices do not “interact”, the mixing time is at least order n log n.

14.3.4. Approximate counting. Many innovations in the study of mixing times
for Markov chains came from researchers motivated by the problem of counting
combinatorial structures. While determining the exact size of a complicated set
may be a “hard” problem, an approximate answer is often possible using Markov
chains.

In this section, we show how the number of proper colorings can be estimated
using the Markov chain analyzed in the previous section. We adapt the method
described in Jerrum and Sinclair (1996) to this setting.

T 14.5. Let Ω be the set of all proper q-colorings of the graph G of n
vertices and maximal degree ∆. Let c(q,∆) = 1 − ∆/(q − ∆). Given η and ε, there
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is a random variable W which can be simulated using no more than(
n log n + n log(3n/ε)

c(q,∆)

) (
27n3

ηε2

)
(14.27){Eq:NoForAC}

uniform random variables, so that

P{(1 − ε)|Ω|−1 ≤ W ≤ (1 + ε)|Ω|−1} ≥ 1 − η.

R 14.3. This is an example of a fully polynomial randomized approxi-
mation scheme, an algorithm for approximating values of the function n 7→ |Ωn|

having a run-time that is polynomial in both the instance size n and the inverse
error tolerated, ε−1.

P. Let x0 be a proper coloring of G. Enumerate the vertices of G as
{v1, v2, . . . , vn}. Define for k = 0, 1, . . . , n

Ωk = {x ∈ Ω : x(v j) = x0(v j) for j > k}.

Elements of Ωk have k “free” vertices, while the n − k vertices {vk+1, . . . , vn} are
colored in agreement with x0.

A random element of Ωk can be generated using a slight modification to the
Markov chain discussed in Section 14.3.3. The chain evolves as before, but only
the vertices {v1, . . . , vk} are permitted to be updated. The other vertices are frozen
in the configuration specified by x0. The bound on tmix(ε) in (14.26) still holds, k
replacing n. (In particular, since k ≤ n, (14.26) holds.) By definition of tmix(ε), if

t(n, ε) :=
n log n + n log(3n/ε)

c(q,∆)

then ∥∥∥Pt(n,ε)(x0, ·) − πk
∥∥∥

TV <
ε

3n
, (14.28) {Eq:MixConseq}

where πk is uniform on Ωk.
The ratio |Ωk−1|/|Ωk| can be estimated as follows: A random element from

Ωk can be generated by running the Markov chain for t(n, ε) steps. Repeating
an = 27n2/ηε2 times yields an elements of Ωk; let Wk be the fraction of these
which are also in Ωk−1. (Observe that to check if an element x of Ωk is also an
element of Ωk−1, it is enough to determine if x(vk) = x0(vk).) From (14.28),

E(Wk) =
|Ωk−1|

|Ωk|
+ ek, where |ek| ≤ ε/(3n).

Also,
Var(Wk)
E2(Wk)

=
1 − E(Wk)
anE(Wk)

≤
2n
an
=

2ηε2

27n
.

The inequality follows since |Ωk−1|/|Xk| ≥ (n − 1)−1. Letting W = W1 · · ·Wn, since
the {Wk} are independent,

E(W) =
1
|Ω|
+ e, where |e| ≤ ε/3. (14.29) {Eq:WSize}
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Also,

Var(W)
E2(W)

=

n∏
k=1

[
1 +

Var Wk

E2(Wk)

]
− 1 ≤

n∏
k=1

[
1 +

2ηε2

27n

]
− 1 ≤

ηε2

9
.

By Chebyshev’s inequality,

P
{∣∣∣∣∣ W

E(W)
− 1

∣∣∣∣∣ ≥ ε/3} ≤ η
Combining with (14.29),

P
{∣∣∣∣∣ W
|Ω|−1 − 1

∣∣∣∣∣ ≥ ε} ≤ η.
For each of the n variables Wk, k = 1, . . . , n, we need to simulate each of an chains
for t(n, ε) steps. This shows that a total of (14.27) steps are needed. �

14.4. Problems
{Exercise:OneStep}

E 14.2. Let P be a transition matrix for a Markov chain. Suppose that
p0 is a coupling of µ and ν, and the transition matrix Q on Ω × Ω has the property
that Q((x, y), ·) is a coupling of P(x, ·) and P(y, ·). Let ((X0,Y0), (X1,Y1)) be one
step of a Markov chain on Ω × Ω started in distribution p0 and with transition
matrix Q. Show that (X1,Y1) is a coupling of µP and νP.

{Exer:ZeroOneMetric}
E 14.3. Let M be an arbitrary set, and, for a, b ∈ M, define

ρ(a, b) =

0 if a = b,
1 if a , b.

(14.30)

Check that M is a metric space under the distance ρ.
{Exercise:KantRub}

E 14.4. A real valued function f on Ω is called Lipschitz if there is a
constant c so that for all x, y ∈ Ω,

| f (x) − f (y)| ≤ cρ(x, y), (14.31){Eq:LipDefn}

where ρ is the distance on Ω. We denote the best constant c in (14.31) by lip( f ):

lip( f ) := max
x,y∈Ω,

x,y

| f (x) − f (y)|
ρ(x, y)

.

For a probability µ on Ω, the integral
∫

f dµ denotes the sum
∑

x∈Ω f (x)µ(x).
Define

ρ̃K(µ, ν) = sup
lip( f )≤1

∣∣∣∣∣∫ f dµ −
∫

f dν
∣∣∣∣∣ .

Show that ρ̃K ≤ ρK .
{Ex:ColTreeConnect}

E 14.5. Consider the space of all proper colorings of a finite tree, and
say that two colorings are adjacent if they have identical colors at all vertices but
one. Show that for any two 3-colorings x and y that there is a sequence of colorings
x = x0, x1, . . . , xr = y so that xk and xk−1 are adjacent for k = 1, 2, . . . , r.
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14.5. Notes

Vigoda (2000) showed that if the number of colors q is larger than (11/6)∆,
then the mixing times for the Glauber dynamics for random colorings is O(n2 log n).
Dyer, Greenhill, and Molloy (2002) show that the mixing times is O(n log n) pro-
vide q ≥ (2 − 10−12)∆.

The inequality in Exercise 14.4 is actually an equality, as was shown in Kan-
torovich and Rubinstein (1958). In fact, the theorem is valid more generally on
compact metric spaces; the proof uses a form of duality.

For more on approximate counting, see Sinclair (1993).





CHAPTER 15

The Ising Model

{Ch:Ising}
15.1. Definitions

15.1.1. Gibbs distribution. The nearest-neighbor Ising model is the most widely
studied spin system, a probability distribution on Ω = {−1, 1}V , where V is the ver-
tex set of a graph. An element σ of Ω is called a configuration, and the value σ(x)
is called the spin at x. As usual, we will often write x ∼ y if {x, y} is an edge.
The physical interpretation is that magnets, each having two possible orientations
represented by +1 and −1, are placed on the vertices of the graph; a configuration
specifies the joint orientation of these magnets.

The energy of a configuration σ is defined to be

H(σ) = −
∑

v,w∈V
v∼w

σ(v)σ(w). (15.1)

Clearly, the energy increases with the number of neighboring sites with disagreeing
spins. Anyone with experience playing with magnets has observed first hand that
it takes some work to place neighboring magnets in opposite orientations and hold
them there.

The Gibbs distribution corresponding to the energy H is the probability distri-
bution on Ω defined as

µ(σ) =
1

Z(β)
e−βH(σ). (15.2) {Eq:GibbsDefn}

The parameter β determines the importance of the energy function: if β is zero,
then H plays no role and µ is the flat uniform distribution, while the bias of µ
towards low-energy configurations increases with β. The physical interpretation is
that β equals the reciprocal of temperature. Z(β), called the partition function, is a
normalizing constant required to make µ a probability distribution:

Z(β) :=
∑
σ∈Ω

e−βH(σ). (15.3)

At infinite temperature (β = 0), there is no interaction between the spins at differing
vertices, i.e., the random variables {σ(v)}v∈V are independent.

E 15.1. Show that if β = 0, the spins {σ(v) : v ∈ V} form an indepen-
dent collection of random variables.

187
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F 15.1. Glauber dynamics for the Ising model viewed at time
t =??? on the 250×250 torus at low, critical, and high temperature.
Simulations and graphics courtesy of Raissa D’Souza.

Fig:Ising

15.1.2. Glauber dynamics. The (single-site) Glauber dynamics for µ move
from a starting configuration σ by picking a vertex w uniformly at random from V
and then generating a new configuration according to µ conditioned on the set of
configurations agreeing with σ on vertices different from w.

The reader can check that the conditional µ-probability of a +1 at w is

p(σ,w) :=
eβS (σ,w)

eβS (σ,w) + e−βS (σ,w) =
1 + tanh(βS (σ,w))

2
, (15.4){Eq:UpdateProb}

where S (σ,w) :=
∑

u : u∼w σ(u). Note that this probability depends only on the
spins at vertices adjacent to w.

R 15.1. Because Glauber dynamics always have stationary distribution
given by the measure used to update, the Gibbs distribution is stationary for this
transition matrix.

15.2. Fast Mixing at High Temperature

In this section we use the path coupling technique of Chapter 14 to show that,
for small values of β, the Glauber dynamics for the Ising model is fast mixing.

{Thm:HighTempIsing}
T 15.1. For the Glauber dynamics for the Ising model on a graph with

n vertices and maximal degree ∆, if tanh(β)∆ < 1, then tmix = O(n log n). In
particular, this holds if β < ∆−1.

P. Define the distance ρ on Ω by

ρ(σ, τ) =
1
2

∑
u∈V

|σ(u) − τ(u)|.

ρ is a path metric as defined in Section 14.2.
Let σ and τ be two configurations with ρ(σ, τ) = 1. The spins of σ and τ agree

everywhere except at a single vertex v. Assume that σ(v) = −1 and τ(v) = +1.
Define N(v) := {u : u ∼ v} to be the set of neighboring vertices to v.
We describe now a coupling (X,Y) of one step of the chain started in configu-

ration σ with one step of the chain started in configuration τ.
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Pick a vertex w uniformly at random from V . If w < N(v), then the neighbors
of w agree in both σ and τ. As the probability of updating the spin at w to +1,
given in (15.4), depends only on the spins at the neighbors of w, it is the same for
the chain started in σ as for the chain started in τ. Thus we can update both chains
together.

If w ∈ N(v), the probabilities of updating to +1 at w are no longer the same
for the two chains, so we cannot always update together. We do, however, use a
single random variable as the common source of noise to update both chains, so the
two chains agree as often as is possible. In particular, let U be a uniform random
variable on [0, 1] and set

X(w) =

+1 if U ≤ p(σ,w),
−1 if U > p(σ,w)

and Y(w) =

+1 if U ≤ p(τ,w),
−1 if U > p(τ,w).

Set X(u) = σ(u) and Y(u) = τ(u) for u , w.
If w = v, then ρ(X,Y) = 0. If w < N(v) ∪ {v}, then ρ(X,Y) = 1. If w ∈ N(v)

and p(σ,w) < U ≤ p(τ,w), then ρ(X,Y) = 2. Thus,

Eσ,τ(ρ(X,Y)) ≤ 1 −
1
n
+

1
n

∑
w∈N(v)

[
p(τ,w) − p(σ,w)

]
. (15.5) {Eq:IsCo}

Noting that S (w, τ) = S (w, σ) + 2 = S + 2, we obtain

p(τ,w) − p(σ,w) =
eβ(S+2)

eβ(S+2) + e−β(S+2) −
eβS

eβS + e−βS

=
1
2

[
tanh(β(S + 2)) − tanh(βS )

]
≤ tanh(β), (15.6) {Eq:TanhBound}

where the inequality follows from Exercise 15.2. Combining equation 15.5 with
equation 15.6 shows that

Eσ,τ (ρ(X,Y)) ≤ 1 −
[
1 − ∆ tanh(β)

]
n

≤ exp
(
−

1 − ∆ tanh(β)
n

)
.

Applying Corollary 14.3, since diam(Ω) = n, if ∆ tanh(β) < 1, then

tmix = O
(

n log n
1 − ∆ tanh(β)

)
.

By Exercise 15.2, if β < ∆−1, then ∆ tanh(β) < 1 and tmix = O
(
n log n/(1 − β∆)

)
.
�
{Exercise:Tanh}

E 15.2. Recall that tanh(x) = sinh(x)/ cosh(x) = (e2x − 1)/(e2x + 1).

(a) Show that tanh[β(x + 2)] − tanh[βx] is maximized at x = −1.
(b) Show that tanh(β) ≤ β for β ≥ 0.
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15.3. The Complete Graph

Let G be the complete graph on n vertices, the graph which includes all
(
n
2

)
possible edges.

The correct scaling is to allow β to depend on n, in particular set β = γ/n for
γ > 0.

{Thm:IsingCGSlow}
T 15.2. Let G be the complete graph on n vertices, and consider Glauber

dynamics for the Ising model on G with β = γn−1.
(i) If γ < 1, then tmix = O(n log n).

(ii) If γ > 1, then there is a positive function r(γ) so that tmix ≥ O
(
exp

[
r(γ)n

])
.

P. Note that ∆β = γ(n − 1)/n = γ(1 − n−1) ≤ γ. Thus if γ < 1, then
∆β < 1, and applying Theorem 15.1 shows that tmix = O(n log n).

Define Ak := {σ : |{v : σ(v) = 1}| = k}. By counting, π(Ak) = ak/Z(β), where

ak :=
(
n
k

)
exp

{
γ

n

[(
k
2

)
+

(
n − k

2

)
− k(n − k)

]}
.

Taking logarithms and applying Stirling’s formula shows that

log(abαnc) = nφγ(α)[1 + o(1)],

where

φγ(α) := −α log(α) − (1 − α) log(1 − α) + γ
[
(1 − 2α)2

2

]
. (15.7){Eq:IsingCGPhi}

Taking derivatives shows that

φ′γ(1/2) = 0

φ′′γ (1/2) = −4(1 − γ).

Hence α = 1/2 is a critical point of φγ, and in particular it is a local maximum
or minimum depending on the value of γ. See Figure 15.2 for the graph of φγ for
γ = 0.9 and γ = 1.1. Take γ > 1, in which case φγ has a local minimum at 1/2.
Define

S =

σ :
∑
u∈V

σ(u) < 0

 .
By symmetry, π(S ) ≤ 1/2. Observe that the only way to get from S to S c is through
Abn/2c, since we are only allowed to change one spin at a time. Thus

Q(S , S c) =
d(n/2)e

n
π(Abn/2c) and π(S ) =

∑
j<bn/2c

π(A j).

Let α1 be the value of α maximizing φγ over [0, 1/2]. Since 1/2 is a local maxi-
mum, α1 < 1/2. Then

ΦS ≤
exp{φγ(1/2)n[1 + o(1)]}

π(Abα1nc)
=

exp{φγ(1/2)n[1 + o(1)]}
exp{φγ(α1)n[1 + o(1)]}

.

Since φγ(α1) > φγ(1/2), there is a r(γ) > 0 and constant c > 0 so thatΦ? ≤ ce−nr(γ).
The conclusion follows from Theorem 8.1. �
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F 15.2. The function φγ defined in (15.7). The dashed graph
corresponds to γ = 1.1, the solid line to γ = 0.9.

Fig:IsingCG

15.4. Metastability

15.5. Lower Bound for Ising on Square*

Consider the Glauber dynamics for the Ising model in an n × n box: V =
{( j, k) : 0 ≤ j, k ≤ n − 1} and edges connect vertices at unit Euclidean distance.

In this section we prove
{Thm:IsingLBSG}

T 15.3 (Schonmann (1987) and Thomas (1989)). The relaxation time
(1 − λ?)−1 of the Glauber dynamics for the Ising model in an n × n square in two
dimensions is at least exp (ψ(β)n), where ψ(β) > 0 if β is large enough.

More precisely, let γ` < 3` be the number of self-avoiding lattice paths starting
from the origin in Z2 that have length `, and let γ < 3 be the “connective constant”
for the planar square lattice, defined as γ := lim`→∞

√̀
γ`. If β > (1/2) log(γ) then

ψ(β) > 0.

Much sharper and more general results are known, see the partial history in the
notes. We provide here a proof following closely the method used by Dana Randall
(2006) for the hardcore lattice gas.

The key idea in Randall (2006) is not to use the usual cut determined by the
magnetization (as in the proof of Theorem 15.2), but rather a topological obstruc-
tion. As noted by Fabio Martinelli, this idea was already present in Thomas (1989),
where contours were directly used to define a cut and obtain the right order lower
bound for the relaxation time. Thus the present discussion is purely expository with
no claim of originality. The argument in Thomas (1989) works in all dimensions
and hence is harder to read.

R 15.2. An upper bound on relaxation time of order exp(C(β)nd−1) in
all dimensions follows from the “path method” of Jerrum and Sinclair (1989) for
all β; The constant C(β) obtained that way is not optimal.

To think of Theorem 15.3, it is convenient to attach the spins to the faces (lattice
squares) of the lattice rather than the nodes.

D 15.1. A fault line (with at most k defects) is a self-avoiding lattice
path from the left side to the right side, or from the top to the bottom, of [0, n]2,
where each edge of the path (with at most k exceptions) is adjacent to two faces
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F 15.3. A faultline with one defect. Positive spins are in-
dicated by shaded squares, while negative spins are indicated by
white squares. The fault line is drawn in bold.

Figure:FaultLine

with different spins on them. Thus no edges in the fault line are on the boundary of
[0, n]2. See Figure 15.3 for an illustration.

{Lem:YL1}
L 15.4. Denote by Fk the set of Ising configurations in [0, n]2 that have a

fault line with at most k defects. Then π(Fk) ≤
∑
`≥n 2`γ`e2β(2k−`). In particular, if

k is fixed and β > (1/2) log(γ), then π(Fk) decays exponentially in n.

P. For a self avoiding lattice path ϕ of length ` from the left side to the
right side (or from top to bottom) of [0, n]2, let Fϕ be the set of Ising configurations
in [0, n]2 that have ϕ as a fault line with at most k defects. Reflecting all the spins
on one side of the fault line (say, the side that contains the upper left corner) defines
a one-to-one mapping from Fϕ to its complement that magnifies probability by a
factor of e2β(`−2k). This yields that π(Fϕ) ≤ e2β(2k−`).

Summing this over all self-avoiding lattice paths ϕ of length ` from top to
bottom and from left to right of [0, n]2, and over all ` ≥ n, completes the proof. �

{Lem:YL2}
L 15.5.

(i) If in a configuration σ there is no all-plus crossing from the left side L of
[0, n]2 to the right side R , and there is also no all-minus crossing, then there
is a fault line with no defects from the top to the bottom of [0, n]2.

(ii) Similarly, if Γ+ is a path of lattice squares (all labeled plus inσ) from a square
q in [0, n]2, to the top side of [0, n]2, and Γ− is a path of lattice squares (all
labeled minus) from the same square q to the top of [0, n]2, then there is a
lattice path ξ from the boundary of q to the top of [0, n]2 such that every edge
in ξ is adjacent to two lattice squares with different labels in σ.

P.
(i) For the first statement, let A be the collection of lattice squares that can be

reached from L by a path of lattice squares of the same label in σ. Let A?
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denote the set of squares that are separated from R by A. Then the boundary
of A? consists of part of the boundary of [0, n]2 and a fault line.

(ii) Suppose q itself is labeled minus in σ, and Γ+ terminates in a square q+ on
the top of [0, n]2 which is to the left of the square q− where Γ− terminates.
Let A+ be the collection of lattice squares that can be reached from Γ+ by a
path of lattice squares labeled plus in σ and denote by A?+ the set of squares
that are separated from the boundary of [0, n]2 by A+. Let ξ1 be a directed
lattice edge with q on its right and a square of Γ+ on its left. Continue ξ1
to a directed lattice path ξ leading to the boundary of [0, n]2, by inductively
choosing the next edge ξ j to have a square (labeled plus) of A+ on its left and
a square (labeled minus) not in A?+ on its right. It is easy to check that such
a choice is always possible (until ξ reaches the boundary of [0, n]2]), the path
ξ cannot cycle and it must terminate between q+ and q− on the top side of
[0, n]2.

�

P  T 15.3. Following Randall (2006), let S + be the set of config-
urations that have a top-to-bottom and a left-to-right crossing of pluses. Similarly
define S −. On the complement of S + ∪ S − there is either no monochromatic cross-
ing left-to-right (whence there is a top-to-bottom fault line by Lemma 15.5 or there
is no monochromatic crossing top-to-bottom (whence there is a left-to-right fault
line). By Lemma 15.4, π(S +)→ 1/2 as n→ ∞.

Let ∂S + denote the external vertex boundary of S +, that is, the set of configu-
rations outside S + that are one flip away from S +. It suffices to show that π(∂S +)
decays exponentially in n for β > 1

2 log(γ). By Lemma 15.4, it is enough to verify
that every configuration σ ∈ ∂S + has a fault line with at most 3 defects.

The case σ < S − is handled by Lemma 15.5. Fix σ ∈ ∂S + ∩ S − and let q be
a lattice square such that flipping σ(q) will transform σ to an element of S +. By
Lemma 15.5, there is a lattice path ξ from the boundary of q to the top of [0, n]2

such that every edge in ξ is adjacent to two lattice squares with different labels in
σ; by symmetry, there is also such a path ξ? from the boundary of q to the bottom
of [0, n]2. By adding at most three edges of q, we can concatenate these paths to
obtain a fault line with at most three defects.

Lemma 15.4 completes the proof. �

15.6. Hardcore model

Let G = (V, E) be a graph. A hardcore configuration is a placement of particles
on V subject to an exclusion law: no pair of adjacent vertices are both occupied
by particles. A configuration is represented by an element σ ∈ {0, 1}V so that
σ(v)σ(w) = 1 only if {v,w} < E.

The hardcore model with fugacity λ is the probability π on hardcore configu-
rations defined by

π(σ) =

λ
∑

v∈V σ(v)

Z(λ) if σ(v)σ(w) = 0 for all {v,w} ∈ E
0 otherwise.
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The factor Z(λ) normalizes π to have unit total mass.
The Glauber dynamics for the hardcore model updates a configuration X0 = σ

to a new configuration X1 as follows: A vertex w is chosen at random. Denote the
occupied neighbors of w by N , so that

N(w) := {v : v ∼ w and σ(v) = 1}.

If N(w) , ∅, then X1 = σ. If N(w) = ∅, then set

X1(w) =

1 with probability λ/(1 + λ),
0 with probability 1/(1 + λ).

Set X1(v) = σ(v) for all v , w.
{Thm:HardcoreFast}

T 15.6. For the Glauber dynamics for the hardcore model on a graph
with maximum degree ∆ and n vertices, if λ ≤ (∆ − 1)−1, then

tmix = O(n log n).

P. We use path-coupling. Let X0 = σ and Y0 = η be two configurations
which differ only at a single vertex v. Assume, without loss of generality, that
σ(v) = 1 and η(v) = 0. We describe how to jointly update (X0,Y0) to a new pair of
configurations (X1,Y1) so that (X0, X1) is one step of the Glauber dynamics started
from σ and (Y0,Y1) is one step of the Glauber dynamics started from η.

Pick a vertex w to update in both X and Y . If w is not a neighbor of v, then
update the two configurations at w together.

Suppose that w is a neighbor of v. Since σ(v) = 1, it must be that σ(w) = 0 and
any permitted configuration must have w unoccupied. Thus the only possibility
for X1 is that it equals σ. For Y1, if none of the neighbors of w are occupied in η,
set Y1(w) = 1 with probability λ/(1 + λ); if w has an occupied neighbor, the only
option is to set Y1(w) = 0.

Note that the chance that Y1(w) = 1, given that w is the updated site, is not
more than λ/(1 − λ).

Thus,

Eσ,η[ρ(X1,Y1)] ≤ 1 −
1
n
+
∆

n
λ

1 + λ
.

Provided that λ < (∆ − 1)−1, there is α > 0 so that

Eσ,η[ρ(X1,Y1)] ≤ 1 −
α

n
.

Applying Corollary 14.3 finished the proof. �

15.7. The Cycle

Consider the Glauber dynamics for the Ising model on the n-cycles (see exam-
ple ??.)

For a configuration σ, let φ(σ) =
∑n

i=1 σi be the sum of spins. We show now
that φ is an eigenvalue.
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Pφ(σ) =
n∑

i=1

15.8. Notes

Ising’s thesis (published as Ising (1925)) concerned the one-dimensional model.
For information on the life of Ising, see Kobe (1997).

15.8.1. A partial history. For the Ferromagnetic Ising model with no external
field and free boundary, Schonmann (1987) proved

{Thm:A}
T 15.7. In dimension 2, let m? denote the “spontaneous magnetiza-

tion”, i.e., the expected spin at the origin in the plus measure in the whole lattice.
Denote by p(n; a, b) the probability that the magnetization (average of spins) in an
n × n square is in an interval (a, b). If −m? < a < b < m? then p(n; a, b) decays
exponentially in n.

(The rate function was not obtained, only upper and lower bounds.)
Using the easy direction of the Cheeger inequality (an immediate consequence

of the variational formula for eigenvalues) this yields Theorem 15.3.
Chayes, Chayes and Schonmann (1987) then extended Theorem 15.7 to all

β > βc. (Recall that for the planar square lattice βc = log(1 +
√

2)/2.)
Theorem 15.3 stated explicitly and proved in Thomas (1989) who extended it

to all dimensions d ≥ 2. He did not use the magnetization to define a cut, but
instead his cut was defined by configurations where there is a contour of length (or
in higher dimensions d ≥ 3, surface area) larger than and−1 for a suitable small
a > 0. Again the rate function was only obtained up to a constant factor and he
assumed β was large enough for a Peierls argument to work.

In the breakthrough book of Dobrushin, Kotecký and Shlosman (1992) the
correct rate function (involving surface tension) for the large deviations of magne-
tization in 2 dimensions was identified, and established for large β.

This was extended by Ioffe (1995) to all β > βc. The consequences for mixing
time (a sharp lower bound) and a corresponding sharp upper bound were estab-
lished in Cesi, Guadagni, Martinelli, and Schonmann (1996).

In higher dimensions, a lower bound for mixing time of the right order (expo-
nential in nd−1) is known for all β > βc(d, slab) where βc(d, slab) is conjectured but
not proved to coincide with βc. This follows from the magnetization large deviation
bounds of Pisztora (1996).

The correct rate function was not established yet but a related result under plus
boundary conditions is in Cerf and Pisztora (2000).

Fast convergence for the hardcore model at low λ was proven by Luby and
Vigoda (1999). There upper bound on λ is better than the bound of (∆ − 1)−1

obtained in Theorem 15.6.





CHAPTER 16

Lamplighter walks

{Ch:Lamplighter}
16.1. Introduction

{Sec:LampIntro}

Given a finite graph G = (V, E), imagine placing a lamp at each vertex. Now
allow a (possibly intoxicated?) lamplighter to random walk on G, switching lights
randomly on and off as he visits them.

We can model this process as a random walk on the wreath product G∗ =
{0, 1}V × V , whose vertices are ordered pairs ( f , v), where v ∈ V and f ∈ {0, 1}V .
There is an edge between ( f , v) and (h,w) in the graph G∗ if v,w are adjacent in G
and f (u) = h(u) for u < {v,w}. We call f the configuration of the lamps and v the
position of the lamplighter. In the configuration function f , zeroes correspond to
lamps that are off, and ones to lamps that are on.

We now build a random walk on G∗. Let Q denote the transition probabili-
ties for the lamplighter walk, and P the transition probabilities of the lazy simple
random walk on G.

• For v , w, Q[( f , v), (h,w)] = P(v,w)/4 if f and h agree outside of {v,w}.
• When v = w, Q[( f , v), (h, v)] = P(v, v)/2 if f and h agree off of {v}.

That is, at each time step, the current lamp is randomized, the lamplighter moves,
and then the new lamp is also randomized. (The second lamp at w is randomized in
order to make the chain reversible.) (We have used the lazy walk on G as the basis
for the construction to avoid periodicity, or even near-periodicity, problems later).

It should be clear that the configuration of lamps on visited states is fully ran-
dom. Hence allowing the lamplighter to walk for the cover time of the underlying
walk suffices to randomize the lamp configuration—although perhaps not the po-
sition of the lamplighter himself!

F 16.1. A lamplighter on a 8-cycle. {fig:lamp}
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Here we study the connections between parameters of the underlying chain G
and the lamplighter chain G∗. For a large class of examples, a small constant times
the cover time of G bounds the mixing time for G∗.

The relaxation time trel (defined in Section 12.4) of a lamplighter chain G∗

is closely related to the maximal hitting time thit (defined in Section 11.2) of the
underlying walk.

The proofs of these connections between parameters of random walk on a
graph and the corresponding lamplighter walk use many of the techniques we have
studied in previous chapters.

In all our results in this chapter, we will restrict our attention to situations where
the underlying walk G is transitive (defined in Section 7.5). Exercise 7.5 implies
that the stationary distributions π and π∗ of the walks on G and G∗, respectively,
are both uniform.

16.2. A map of many parameters of Markov chains
{Sec:InequalityMap}

We have by now accumulated a large number of time parameters associated
with a finite Markov chain. Some of these measure mixing directly. Others, such
as the cover time and the various flavors of hitting time, attempt to measure the
geometry of the chain.

We have also proved many inequalities relating these parameters, and here we
pause give a “map” of the results—most of which will be cited later in this chapter!
For now, define t1 . t2 if there exists a constant c > 0 such that t1 . ct2. We have
shown:

trel . tmix . thit . EC.

16.3. Relaxation time bounds
{Sec:LampRelax}{reltimethm}

T 16.1. Let {Gn} be a sequence of vertex transitive graphs such that |Vn|

goes to infinity. Then there exist constants c1 < c2 such that for sufficiently large n,

c1thit(Gn) ≤ trel(G∗n) ≤ c2thit(Gn). (16.1){reltimeeq}

P  T 16.1. The lower bound uses the variational formula (13.4)
to show that the spectral gap for the transition kernel Qt is bounded away from
1 when t = thit(Gn)/4. For the upper bound, we use the coupling contraction
method of Chen (1998), which we have already discussed (Theorem 12.8). The
geometry of lamplighter graphs allows us to refine this coupling argument and
restrict attention to pairs of states such that the position of the lamplighter is the
same in both states.

Let’s start with the lower bound. Fix a vertex w ∈ G, and define ϕ : V∗ →
{0, 1} by ϕ( f , v) = f (w). Then Var(ϕ) = 1/4. After running for t steps, started
in stationarity, the lamplighter has either visited vertex w or he hasn’t. Applying
Lemma 13.1 gives

E(ϕ) =
1
2

E
[
ϕ(Yt) − ϕ(Y0)

]2
=

1
2

∑
v∈V

π(v)
1
2

Pv(τw ≤ t) =
1
4

Pπ(τw ≤ t),
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where {Yt} is a stationary Markov chain on G∗ and E(ϕ) = E(ϕ|ϕ) is the Dirichlet
form. For any t,

Evτw ≤ t + thitPv(τw > t)

(if a walk on G started at v has not hit w by time t, the expected additional time
to arrive at w is bounded by thit, regardless of the value of the state at time t). By
Lemma 11.2, thit ≤ 2Eπτw. Averaging over π gives

thit ≤ 2t + 2thitPπ(τw > t).

Substituting t = thit/4 and rearranging yields

Pπ[τw ≤ thit/4] ≤
3
4
.

By (13.4), we thus have

1 − |λ2|
thit/4 ≤

3
4
,

and so

log 4 ≥
thit

4
(1 − |λ2|),

which gives the claimed lower bound on trel(G∗), with c1 =
1

log 4 .
For the upper bound, we use a coupling argument from Chen (1998). Suppose

that ϕ is an eigenfunction for p with eigenvalue λ2. To conclude that trel(G∗) ≤
(2+o(1))thit

log 2 , it suffices to show that λ2thit
2 ≤ 1/2. For a configuration h on G, let |h|

denote the Hamming length of h. Let

M = sup
f ,g,x

|ϕ( f , x) − ϕ(g, x)|
| f − g|

be the maximal amount that ϕ can vary over two elements with the same lamp-
lighter position. If M = 0, then ϕ( f , x) depends only on x, and so ψ(x) = ϕ( f , x) is
an eigenfunction for the transition operator on G. Since trel(G) ≤ thit (see Aldous
and Fill (in progress), Chapter 4), this would imply that |λ2thit

2 | ≤ e−4. We may thus
assume that M > 0.

Consider two walks, one started at ( f , x) and one at (g, x). Couple the lamp-
lighter component of each walk and adjust the configurations to agree at each site
visited by the lamplighter. Let ( f ′, x′) and (g′, x′) denote the position of the cou-
pled walks after 2thit steps. Let K denote the transition operator of this coupling.
Because ϕ is an eigenfunction,

λ2thit
2 M = sup

f ,g,x

|p2thitϕ( f , x) − p2thitϕ(g, x)|
| f − g|

≤ sup
f ,g,x

∑
f ′,g′,x′

K2thit[( f , g, x)→ ( f ′, g′, x′)]
|ϕ( f ′, x′) − ϕ(g′, x′)

| f ′ − g′|
| f ′ − g′|
| f − g|

≤ M sup
f ,g,x

E| f ′ − g′|
| f − g|

.
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But at time 2thit, each lamp that contributes to | f − g| has probability of at least
1/2 of having been visited, and so E| f ′ − g′| ≤ | f − g|/2. Dividing by M gives the
required bound of λ2thit

2 ≤ 1/2. �

16.4. Mixing time bounds
{Sec:LampMix}{Lem:MeanMedianCover}

L 16.2. Consider an irreducible finite Markov chain on state space Ω
with transition matrix P, and let C be its cover time. Let tm have the following
property: for any x ∈ X,

Px(C ≤ tm) ≥ 1/2.
Then ExC ≤ 2tm for any x ∈ Ω.

P. Consider starting at a state x ∈ Ω and running in successive intervals
of tm steps. The probability of states being missed in the first interval is at most
1/2. If some states are missed in the first interval, then the probability that all are
covered by the end of the second interval is at least 1/2, by the definition of tm.
Hence the probability of not covering by time 2tm is at most 1/4. In general,

Px(C > ktm) <
1
2k .

We may conclude that C is dominated by tm times a geometric(1/2) random vari-
able, and thus ExC is at most 2tm. �

{tvconvthm}
T 16.3. Let (Gn) be a sequence of vertex transitive graphs with |Vn| →

∞, and let Cn be the cover time for lazy simple random walk on Gn. For any ε > 0,
there exist constants c1, c2 such that for sufficiently large n,

c1ECn ≤ tmix(G∗n) ≤ c2ECn. (16.2){tvconveq}

P  T 16.3. Upper bound. Let (Ft, Xt) denote the state of the
lamplighter chain at time t. We will run the lamplighter chain long enough that,
with high probability, every lamp has been visited and enough additional steps have
been taken to randomize the position of the lamplighter.

Set t = 8ECn + tmix(Gn, 1/8) and fix an initial state (0, v). We have∥∥∥Qt((0, v) − π∗
∥∥∥

TV =
∑

s

P(Cn = s)E
(∥∥∥Qt((0, v) − π∗

∥∥∥
TV

∣∣∣Cn = s
)
. (16.3)

Since P(Cn > 8ECn) < 1/8 and the total variation distance between distributions
is bounded by 1, we can bound∥∥∥Qt((0, v) − π∗

∥∥∥
TV ≤ 1/8 +

∑
s<8ECn

P(Cn = s)E
(∥∥∥Qt((0, v) − π∗

∥∥∥
TV

∣∣∣Cn = s
)
.

(16.4){Eq:AlreadyCovered}

Note that when Cn = s < t the strong Markov property implies that the distribution
of Ft is uniform on (0, 1)n and the distribution of Xt is Pt−s(Xs, ·). Hence the total
variation distance for the lamplighter walk, conditioned on the cover time, is the
same as the total variation distance for the underlying walk started at the last state
visited:

E
(∥∥∥Qt((0, v) − π∗

∥∥∥
TV

∣∣∣Cn = s
)
=

∥∥∥Pt−s(Xs, ·) − π
∥∥∥

TV . (16.5){Eq:TVSame}



16.4. MIXING TIME BOUNDS 201

Combining the estimates (16.4) and (16.5) yields∥∥∥Qt((0, v) − π∗
∥∥∥

TV ≤ 1/8 + (7/8)(1/8) < 1/4, (16.6)

since, by the definition of t, we have t − Cn ≥ tmix(Gn, 1/8) exactly when Cn ≥

8ECn.
To complete the upper bound, we need only check that tmix(Gn, 1/8) is bounded

by a constant times ECn.
Lower bound. We break into two cases, depending on whether thit = thit(Gn) >

(1/200)ECn or not. If it is in fact true that thit > (1/200)ECn, then there exist
constants c3, c4, and c5 such that

tmix(G∗n) ≥ c3trel(G∗n) ≥ c4thit ≥ c5ECn,

by Theorems 12.7 and 16.1 and our initial assumption, respectively, so we’re done.
Otherwise, we may assume that thit ≤ (1/200)ECn. In this case we will find

a time t̃ such that (i) after t̃ steps, the lamplighter walk is not yet well mixed (ii)
after a constant multiple of t̃ steps, the probability of having covered all states is at
least 1/2. Lemma 16.2 will then tell us that we must have made positive progress
towards EC.

Define the event Bt by

Bt = {at least n − 12
√

n lamps have been visited by time t}.

Fix an initial state (0,w) ∈ V∗, and set

t̃ = max{t : P(0,w)(Bt) < 2/3}. (16.7) {Eq:TildetDef}

Claim 1: d(t̃) > 1/4. (That is, the lamplighter walk is not well mixed after t̃ steps.)
We contrast the number of lamps off in stationarity and at time t̃. In particular,

let A be the event that at time t̃, at least (n + 5
√

n)/2 lamps are off. In stationarity,
the expectation of the number of lamps off is n/2, and the variance is n/4. By
Chebyshev’s inequality,

π∗(A) ≤
n/4

(5
√

n/2)2
=

1
25
. (16.8) {Eq:LampStat}

Now consider the distribution at time t̃. If we condition on the walk having
missed exactly M ≥ 12

√
n lamps, then the number of lamps off has mean (n −

M)/2+M = (n+M)/2 and variance (n−M)/4 < n/4. By Chebyshev’s inequality,
the probability of the event A, conditioned on exactly M lamps having been missed,
is at least

1 −
n/4(

M/2 − 5
√

n/2
)2 ≥ 1 −

1
(12 − 5)2 =

48
49
. (16.9) {Eq:CondLampsOff}

Since the estimate of (16.9) holds for every M ≥ 12
√

n, we may conclude that

Qt̃((0,w), A) ≥ P(0,w)(Bc
t̃ )

(
48
49

)
≥

1
3

(
48
49

)
=

16
49
. (16.10) {Eq:LampLotsMissed}

Finally, the estimates (16.8) and (16.10), together with the definition (5.1) of total
variation distance, imply the Claim—note that 16

49 −
1
25 >

1
4 .
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Claim 2: P(Cn > 5t̃ + 5 + 75thit) > 1/2. (That is, we are likely to have covered the
base graph after a small multiple of t̃ steps—plus a few more.)

First, define an experiment to be the following two-step procedure:
(i) Choose a uniform lamp v ∈ V , independently of the progress of the lamp-

lighter walk so far. Run the lamplighter walk until the lamplighter is at posi-
tion v.

(ii) Run the lamplighter walk for t̃ + 1 steps.
Call an experiment successful if, in fact, fewer than 12

√
n lamps are left unvisited

during stage (ii). By the definition (16.7) of t̃, the probability an experiment is
successful is at least 2/3.

Fix a start state (0,w) ∈ V∗. Let τ be the (random) number of steps required
to run 5 consecutive experiments. The probability that at least 3 experiments are
successful is at least 1 − (1/3)5 − 5(2/3)(1/3)4 −

(
5
2

)
(2/3)2(1/3)3 = 64/81.

For any lamp v ∈ V ,

P(0,w)(v not visited by time τ|at least 3 experiments succeeded) <
(
12
√

n
n

)3

=
1728
n3/2 .

since whether v is visited or not during separate successful experiments are inde-
pendent, and vertex transitivity ensures that each vertex has the same probability
of being visited during a successful experiment. Hence the expected number of
unvisited lamps, conditioned on at least 3 successful experiments, is bounded by
n(1728/n3/2) = O(1/

√
n). Markov’s inequality now implies that the probability of

one or more unvisited lamps, conditioned on at least 3 successes, is O(1/
√

n).
We have a random time when the probability of covering is high. Now, we find

a fixed time such that the probability of covering is also high.
Notice that each stage (ii) is of fixed length. Notice also that the time required

for stage (i) of each experiment is the time to hit a uniform state in G, whose
expectation is certainly bounded by thit. Furthermore, the probability that sum of
all the stage (i) times is large (at least 75thit) is smaller that the probability that at
least one of them is large (at least 15thit). Thus

P(0,w)(τ > 5t̃ + 5 + 75thit) < 5
(

1
15

)
=

1
3
.

Now, the probability that all the lamplighter positions have been covered by time
5t̃ + 5 + 75thit is at least (

1 −
1
3

) (
64
81

) (
1 − O

(
1
√

n

))
,

which is larger than 1/2 for sufficiently large n.
Claim 3: t̃ > ECn/50 for sufficiently large n.

By Claim 2 and Lemma 16.2,

ECn < 2(5t̃ + 5 + 75thit).

By our assumption that thit < (1/200)ECn,

ECn < 10t̃ + 10 + (3/4)ECn



16.5. EXAMPLES 203

Rearranging gives
ECn

40
− 1 < t̃,

so for sufficiently large n we have
ECn

50
< t̃.

Combining Claim 1 and Claim 3 gives the desired lower bound on tmix(G∗n). �

R. Matthews says that the expected cover time can be greater than thit by
at most a factor of log (size of state space). In fact, in examples we care about, the
cover time ends up at one end of the interval or the other; it is perhaps unfortunate
that our lower bound proof above has to work so hard in the range in between.

16.5. Examples
{Sec:LampExamples}

16.5.1. The complete graph. When Gn is the complete graph on n vertices,
with self-loops, then the chain we study on G∗n is a random walk on the hypercube—
although not quite the standard one, since two bits can change in a single step. This
example was analyzed by Häggström and Jonasson (1997). The maximal hitting
time is n and the expected cover time is an example of the coupon collector prob-
lem. Hence the relaxation time and the mixing time for G∗n are Θ(n) and Θ(n log n),
respectively, just as for the standard walk on the hypercube.

16.5.2. Hypercube. Let Gn = Z
n
2, the n-dimensional hypercube. We showed

in Exercise 11.10 that the maximal hitting time is on the order of 2n and in Exer-
cise 11.22 that the cover time is on the order of n2n. In Example 12.4, we saw that
for lazy random walk on Gn, we have trel(Gn) = n. Finally, in Section 12.6, we
showed that tmix(ε,Gn) ∼ (n log n)/2. By Theorem 16.1, trel(G∗n) is on the order of
2n, and Theorem 16.3 shows that the convergence time in total variation on G∗n is
on the order of n2n.

16.5.3. Tori. For the one-dimensional case, we note that Häggström and Jonas-
son (1997) examined lamplighter walks on cycles. Here both the maximal hitting
time and the expected cover time of the base graph are Θ(n2)—see Section 4.1 and
Example 11.19. Hence the lamplighter chain on the cycle has both its relaxation
time and its mixing time of order Θ(n2).

For higher-dimensional tori, we have proved enough about hitting time and
cover times to see that the relaxation time and the mixing time grow at different
rates in every dimension d ≥ 2.

{Zdtheorem}
T 16.4. For the random walk {Xt} on (Z2

n)∗ = Z2 oZ
2
n in which the lamp-

lighter performs simple random walk with holding probability 1/2 on Z2
n, there

exist constants c2 and C2 such that the relaxation time satisfies

c2n2 log n ≤ trel(Z2
n)∗ ≤ C2n2 log n. (16.11) {Ztworeltime}

There also exist constants c′2 and C′2 such that the total variation mixing time sat-
isfies

c′2n2(log n)2 ≤ tmix((Z2
n)∗) ≤ C′2n2(log n)2. (16.12) {Ztwotv}
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More generally, for any dimension d ≥ 3, there are constants cd,Cd, c′d and C′d
such that on Z2 o Z

d
n = (Zd

n)∗, the relaxation time satisfies

cdnd ≤ trel((Zd
n)∗) ≤ Cdnd, (16.13) {Zdreltime}

and the total variation mixing time satisfies

c′dnd log n ≤ tmix(ε, (Zd
n)∗) ≤ C′dnd log n. (16.14){Zdtv}

P. These follow immediately from combining the bounds on the hitting
time and the cover time for tori from Proposition 11.9 and Example 11.22, respec-
tively, with Theorems 16.1 and 16.3. �

16.6. Notes
{Sec:LampNotes}

The results of this chapter are all taken from Peres and Revelle (2004), which
derives sharper versions of the bounds we discuss, especially in the case of the
two-dimensional torus, and also considers the time required for convergence in the
uniform metric.

Scarabotti and Tolli (2007) study the eigenvalues of lamplighter walks. They
compute the spectra for the complete graph and the cycle, and use representations
of wreath products to give more general results.



CHAPTER 17

Continuous-time chains and simulation in the continuum*
{Ch:Continuous}

In this chapter, we study two topics: Markov chains in which the time pa-
rameter is now continuous (so we have a collection of random variables (Xt)t∈[0,∞)
indexed by the non-negative real numbers), and we introduce some methods for
simulating continuous random variables described by density functions on Rk.

17.1. Continuous-Time Chains

Here we will not study the most general type of continuous-time Markov
chains, but will restrict ourselves to the following special case: the times between
transitions of the chain are i.i.d. exponential random variables of unit rate, and
moves are made according to a transition matrix P.

More precisely: let T1,T2, . . . be an independent and indentically distributed
sequence of exponential random variables. That is, each takes values in [0,∞) and
has distribution function

P{Ti ≤ t} =

1 − e−t t ≥ 0,
0 t < 0.

Let (Φk)∞k=1 be a Markov chain with transition matrix P, and define S k =
∑k

i=1 Ti.
Define

Xt := Φk for t ∈ [S k, S k+1). (17.1) {Eq:CTDefn}

We will call (Xt)t≥0 the continuous-time Markov chain with transition matrix P.
Letting Nt = max{k : S k ≤ t}, we have Nt = k if and only if S k ≤ t < S k+1.

From the definition (17.1),

Px{Xt = y | Nt = k} = Px{Φk = y} = Pk(x, y). (17.2) {Eq:GivenN}

Also, the distribution of Nt is Poisson with mean t (Exercise 17.6):

P{Nt = k} =
e−ttk

k!
. (17.3) {Eq:NPois}

The heat kernel is defined as Ht(x, y) = Px{Xt = y}. From (17.2) and (17.3),
we have

Ht(x, y) =
∞∑

k=0

Px{Xt = y | Nt = k}
e−ttk

k!
=

∞∑
k=0

e−ttk

k!
Pk(x, y).

For a m × m matrix M, define the m × m matrix eM =
∑∞

i=0
Mi

i! . In matrix represen-
tation, Ht = et(P−I).

205
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T 17.1. Let P be an irreducible transition matrix, and let let Ht be the
corresponding heat kernel. Then there exists a unique probability distribution π so
that πHt = π for all t ≥ 0, and

max
x∈Ω
‖Ht(x, ·) − π‖TV → 0 as t → ∞.

R 17.1. Note that the above theorem does not require that P is aperi-
odic, unlike Theorem 5.6. This is one advantage of working with continuous-time
chains.

P. Let π be a solution to π = πP, which exists by Proposition 3.8.
We have

(πHt)(y) =
∑
x∈Ω

π(x)
∞∑

k=0

e−ttk

k!
Pk(x, y) =

∞∑
k=0

e−ttk

k!

∑
x∈Ω

π(x)Pk(x, y).

The change of summation is justified because all terms are non-negative. The inner
sum on the right-hand side is π(y), which does not depend on k and can be pulled
outside the first sum, which adds to unity. This shows that πHt = π.

Note that if P̃ := (P + I)/2, then P̃ is aperiodic and irreducible, and πP̃ = π.
By Theorem 5.6, maxx∈Ω ‖P̃t(x, ·) − π‖TV → 0. Also,

H̃t = et(P̃−I) = et/2(P−I) = Ht/2,

so we will be done if we can show that

lim
t→∞

max
x∈Ω
‖H̃t(x, ·) − π‖TV = 0.

We have ∥∥∥H̃t(x, ·) − π
∥∥∥

TV =
1
2

∑
y∈Ω

|H̃t(x, y) − π(y)|

=
1
2

∑
y∈Ω

∣∣∣∣∣∣∣
∞∑

k=0

e−ttk

k!

[
P̃k(x, y) − π(y)

]∣∣∣∣∣∣∣ .
Applying the triangle inequality and interchanging the sums shows that∥∥∥H̃t(x, ·) − π

∥∥∥
TV ≤

∞∑
k=0

e−ttk

k!

∥∥∥P̃k(x, ·) − π
∥∥∥

TV ≤ E(d(Nt)).

Since E(Nt) = t and Var(Nt) = t, by Chebyshev’s inequality, P{|Nt − t| ≥ α
√

t} ≤
α−2. Take α = ε−1/2. Since d(k) → 0, let k0 be such that d(k) ≤ ε for k ≥ k0, and
let B be such that d(k) ≤ B for all k. Take t large enough so that t−α

√
t > k0. Then

E(d(Nt)) ≤ BP{Nt < t − α
√

t} + ε ≤ (B + 1)ε.

Since ε > 0 was arbitrary, this completes the proof. �

This leads us to define

tcont
mix (ε) := inf

{
t ≥ 0 : max

x∈Ω
‖Ht(x, ·) − π‖TV ≤ ε

}
. (17.4){Eq.tmixc}
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17.2. Continuous vs. discrete mixing
{Sec:CDMix}

In this section, our goal is to relate the mixing time of the lazy Markov chain
and the continuous time Markov chain that correspond to a given transition matrix
P. Recall that P̃ = 1

2 (I + P) is the corresponding lazy chain. Let Ht be the heat
kernel for the corresponding continuous-time chain

Our goal is to show that Ht and P̃ have about the same mixing time (up to
constant). Recall that π denotes the stationary distribution. We do not assume here
aperiodicity or reversibility of P.

The following theorem shows that tmix(ε) and tcont
mix (ε) are comparable:

{Thm:CDMix}
T 17.2.

(i) If ‖P̃k(x, ·) − π‖TV < ε, then ‖Hk(x, ·) − π‖TV < 2ε provided that k is large
enough.

(ii) If ‖Hm(x, ·) − π‖TV < ε and m is large enough, then ‖P̃4m(x, ·) − π‖TV < 2ε.

The proof requires the following lemma:
{Lem:Key}

L 17.3. Let Y be a Binomial(4m, 1
2 ) random variable, and let Ψ = Ψm be

a Poisson variable with mean m. Then

ηm := ‖P{Y ∈ ·} − P{Ψ + m ∈ ·}‖TV → 0

as m→ ∞.

P  L 17.3. Note that Y and Ψ+m both have mean 2m and variance
m. Given ε > 0, let A = 2ε−1/2 and deduce from Chebyshev’s inequality that

P
{
|Y − 2m| ≥ A

√
m
}
≤ ε/4 and P

{
|Ψ − m| ≥ A

√
m
}
≤ ε/4. (17.5) {deviation}

Now, using Stirling’s formula and computing directly, we can show that for
| j| ≤ A

√
m,

P{Y = 2m + j} ∼
1
√

2πm
e− j2/2m,

P{Ψ + m = 2m + j} ∼
1
√

2πm
e− j2/2m.

Here, we mean that the ratio of the two sides tends to 1 as m → ∞, uniformly for
all j such that | j| ≤ A

√
m. Add more details here!

Thus for large m we have∑
| j|≤A

√
m

[P{Y = 2m + j} − P{Ψ + m = 2m + j)}] ≤
∑
| j|≤A

√
m

εP{Y = 2m + j} ≤ ε

Dividing this by 2 and using (17.5) establishes the lemma. �

P  T 17.2. Step 1. First we show that shortly after the origi-
nal chain is close to equilibrium, so is the continuous time chain. Suppose that
‖Pk(x, ·) − π‖TV < ε. Then for δ > 0 and t ≥ k(1 + δ), conditioning on the value of
Ψt and applying the triangle inequality give

‖Ht(x, ·) − π‖TV ≤
∑
j≥0

P{Ψt = j} ‖P j(x, ·) − π‖TV ≤ P{Ψt < k} + ε,
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F 17.1. f (x) = 4e−4x, the exponential probability density
function with rate 4.

Fig:ExpDen

where the right-hand inequality used monotonicity of ‖P j(x, ·) − π‖TV in j. By the
law of large numbers, P{Ψt < k} → 0 as k → ∞ for t ≥ k(1 + δ). Thus if k is
sufficiently large, then ‖Ht(x, ·) − π‖TV < 2ε for such t.

Step 2. Let H̃t be the continuous time version of the lazy chain P̃. We claim
that H̃t = Ht/2. There are several ways to see this. One is to observe that that
Ht involves Ψt steps of the lazy chain P̃. Each of these steps is a step of P with
probability 1/2, and a delay otherwise; thinning a Poisson process of rate 1 this
way yields a Poisson process of rate 1/2 (Exercise!).

Alternatively, matrix exponentiation yields a very short proof of the claim:

H̃t = et(P̃−I) = et( P+I
2 −I) = e

t
2 (P−I).

Step 3. Now suppose that the lazy chain is close to equilibrium after k steps,
that is ‖P̃k(x, ·) − π‖TV < ε. We then claim that the continuous time chain is close
to equilibrium shortly after time k/2. This is an easy corollary of Steps 1 and 2. If
k is large enough, then for t = k

2 (1 + δ), we have

‖Ht(x, ·) − π‖TV = ‖H̃2t − π‖TV < 2ε.

Step 4. Suppose that ‖Hm(x, ·)−π‖TV < ε; we claim that ‖P̃4m(x, ·)−π‖TV < 2ε
for large m.

After the discrete-time chain has been run for Ψm steps, running it for another
m steps will not increase the distance to π, so ‖HmPm(x, ·) − π‖TV < ε. (Observe
that the matrices Hm and Pm commute.) Now

HmPm =
∑
k≥0

P{Ψ + m = k}Pk, P̃4m =
∑
k≥0

P{Y = k}Pk,

so Lemma 17.3 and the definition of total variation, or its coupling description,
give

‖HmPm(x, ·) − P̃4m(x, ·)‖TV ≤ ηm,

whence

‖P̃4m(x, ·) − π‖TV ≤ ‖PmHmPm(x, ·) − π‖TV + ηm

≤ ε + ηm.

as needed. �
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17.3. Continuous Simulation
{Sec:InvCDF}

17.3.1. Inverse distribution function method.
{Example:Exponential}

E 17.4. Let U be a uniform random variable on [0, 1], and define Y =
−λ−1 log(1 − U). The distribution function of Y is

F(t) = P{Y ≤ t} = P{−λ−1 log(1 − U) ≤ t} = P{U ≤ 1 − e−λt}. (17.6)

As U is uniform, the rightmost probability above equals 1 − e−λt, the distribution
function for an exponential random variable with rate λ. (The graph of an expo-
nential density with λ = 4 is shown in Figure 17.1.)

This calculation leads to the following algorithm:
(1) Generate U.
(2) Output Y = −λ−1 log(1 − U).

The algorithm in Example 17.4 is a special case of the inverse distribution
function method for simulating a random variable with distribution function F,
which is practical provided that F can be inverted efficiently. Unfortunately, there
are not very many examples where this is the case.

Suppose that F is strictly increasing, so that its inverse function F−1 : [0, 1]→
R is defined everywhere. Recall that F−1 is the function so that F−1 ◦ F(x) = x and
F ◦ F−1(y) = y.

We now show how, using a uniform random variable U, to simulate X with
distribution function F. For a uniform U, let X = F−1(U). Then

P{X ≤ t} = P{F−1(U) ≤ t} = P{U ≤ F(t)}. (17.7)

The last equality follows because F is strictly increasing, so F−1(U) ≤ t if and only
if F

(
F−1(U)

)
≤ F(t). Since U is uniform, the probability on the right can be easily

evaluated to get
P{X ≤ t} = F(t). (17.8)

That is, the distribution function of X is F.

17.3.2. Acceptance-rejection sampling. Suppose that we have a black box
which on demand produces a uniform sample from a region R′ in the plane, but
what we really want is to sample from another region R which is contained in R′

(see Figure 17.2.)
If independent points are generated, each uniformly distributed over R′, until a

point falls in R, then this point is a uniform sample from R. (Exercise 17.9.)
Now we want to use this idea to simulate a random variable X with density

function f given that we know how to simulate a random variable Y with density
function g.

We will suppose that

f (x) ≤ Cg(x) for all x, (17.9) {Eq:RejectionAssumption}

for some constant C. We will see that good choices for the density g minimizes the
constant C. Because f and g both integrate to unity, C ≥ 1.

Here is the algorithm:
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F 17.2. R′ is the diagonally hatched square, and R is the
bricked circle.

Fig:Regions

(1) Generate a random variable Y having probability density function g.
(2) Generate a uniform random variable U.
(3) Conditional on Y = y, if Cg(y)U ≤ f (y), output the value y and halt.
(4) Repeat.

{Exercise:UnderDensity}
E 17.1. Show that if (Y,UY ) is the pair generated in one round of the

rejection sampling algorithm, then (Y,UY ) is uniformly distributed over the region
bounded between the graph of Cg and the horizontal axis. Conversely, if g is a
density, and a point is sampled from the region under the graph of g, then the
projection of this point onto the x-axis has distribution g.

We now show that this method generates a random variable with probability
density function f . Given that Y = y, the random variable Uy := Cg(y)U is uni-
form on [0,Cg(y)]. By Exercise 17.1, the point (Y,UY ) is uniform over the region
bounded between the graph of Cg and the horizontal axis. We halt the algorithm
if and only if this point is also underneath the graph of f . By Exercise 17.9, in
this case, the point is uniformly distributed over the region under f . But again
by Exercise 17.1, the horizontal coordinate of this point has distribution f . (See
Figure 17.3.)

f(x)

Cg(x)

F 17.3. The probability density function f lies below the
scaled probability density function of g.

Fig:TwoPdfs
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The value of C determines the efficiency of the algorithm. The probability
the algorithm terminates on any trial, given that Y = y is f (y)/Cg(y). Using the
law of total probability, the unconditional probability is C−1. The number of trials
required is geometric, with success probability C−1, and so the expected number
of trials before terminating is C.

We comment here that there is a version of this method for discrete random
variables; the reader should work on the details for herself.

{Exa:Gamma}
E 17.5. Consider the gamma distribution with parameters α and λ. Its

probability density function is

f (x) =
xα−1λαe−λx

Γ(α)
. (17.10)

(The function Γ in the denominator is defined to normalize the density so that it
integrates to unity. It has several interesting properties, notably that Γ(n) = (n− 1)!
for integers n.)

The distribution function does not have a nice closed-form expression, so in-
verting the distribution function does not provide an easy method of simulation.

We can use the rejection method here, when α > 1, bounding the density by a
multiple of the exponential density

g(x) = µe−µx.

The constant C depends on µ, and

C = sup
x

[Γ(α)]−1(λx)α−1λe−λx

µe−µx .

A bit of calculus shows that the supremum is attained at x = (α − 1)/(λ − µ), and

C =
λα(α − 1)α−1e1−α

Γ(α)µ(λ − µ)α−1 .

Some more calculus shows that the constant C is minimized for µ = λ/α, in which
case

C =
ααe1−α

Γ(α)
.

The case of α = 2 and λ = 1 is shown in Figure 17.4, where 4e−1 1
2 e−x/2 bounds the

gamma density.
We end the example by commenting that the exponential is easily simulated by

the inverse distribution function method, as the inverse to 1−e−µx is (−1/µ) ln(1−u).

17.3.3. Simulating Normal random variables. Recall that a standard nor-
mal random variable has the “bell-shaped” probability density function specified
by

f (x) =
1
√

2π
e−

1
2 x2
. (17.11) {Eq:NormalPdf}

The corresponding distribution function Φ is the integral

Φ(x) =
∫ x

−∞

1
√

2π
e−

1
2 t2dt, (17.12)
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F 17.4. The Gamma density for α = 2 and λ = 1, along with
4e−1 times the Exponential density of rate 1/2.

Fig:Gamma

-3 -2 -1 1 2 3

0.1

0.2

0.3

0.4

-2

0

2
-2

0

2

0

0.05

0.1

0.15

-2

0

2

F 17.5. The standard normal density on the left, and on the
right the joint density of two independent standard Normal vari-
ables.

Fig:BVNorm

which cannot be evaluated in closed form. The inverse of Φ likewise cannot be
expressed in terms of elementary functions. As a result the inverse distribution
function method requires numerical evaluation of Φ−1. We present here another
method of simulating from Φ which does not require evaluation of the inverse of
Φ.

Let X and Y be independent standard normal random variables. Geometrically,
the ordered pair (X,Y) is a random point in the plane. The joint probability density
function for (X,Y) is shown in Figure 17.5.

We will write (R,Θ) for the representation of (X,Y) in polar coordinates, and
define S := R2 = X2 + Y2 to be the squared distance of (X,Y) to the origin.

The distribution function of S is

P{S ≤ t} = P{X2 + Y2 ≤ t} =
"

D(
√

t)

1
2π

e−
x2+y2

2 dxdy, (17.13)
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where D(
√

t) is the disc of radius
√

t centered at the origin. Changing to polar
coordinates, this equals∫ √

t

0

∫ 2π

0

1
2π

e−
r2
2 rdrdθ = 1 − e−t/2. (17.14)

We conclude that S has an exponential distribution with mean 2.
{Exercise:RotationInvariance}

E 17.2. Argue that since the joint density (2π)−1 exp[−(x2 + y2)/2] is a
function of s = x2 + y2, the distribution of Θ must be uniform and independent of
S .

To summarize, the squared radial part of (X,Y) has an exponential distribution,
its angle has a uniform distribution, and these are independent.

Our standing assumption is that we have available independent uniform vari-
ables; here we need two, U1 and U2. Define Θ := 2πU1 and S := −2 log(1 − U2),
so that Θ is uniform on [0, 2π], and S is independent of Θ and has an exponential
distribution.

Now let (X,Y) be the Cartesian coordinates of the point with polar representa-
tion (

√
S ,Θ). Our discussion shows that X and Y are independent standard normal

variables.

17.3.4. Sampling from the simplex. Let ∆n be the n−1-dimensional simplex:

∆n :=

(x1, . . . , xn) : xi ≥ 0,
n∑

i=1

xi = 1

 (17.15)

This is the collection of probability vectors of length n. We consider here the
problem of sampling from ∆n.

Let U1,U2, . . . ,Un−1 be i.i.d. uniform variables in [0, 1], and define U(k) to be
the k-th smallest among these.

{Exercise:UnifOrder}
E 17.3. Show that the vector (U(1), . . . ,U(n−1)) is uniformly distributed

over the set An−1 = {(u1, . . . , un−1) : u1 ≤ u2 ≤ · · · ≤ un−1 ≤ 1}.

Let T : Rn−1 → Rn be the linear transformation defined by

T (u1, . . . , un−1) = (u1, u2 − u1, . . . , un−1 − un−2, 1 − un−1).
{Exercise:UniformLinearTrans}

E 17.4. Suppose that X is uniformly distributed on a region A of Rd,
and the map T : Rd → Rr, d ≤ r is a linear transformation. A useful fact is that for
a region R ⊂ Rd,

Volumed(TR) =
√

det(T tT ) Volume(R),

where Volumed(TR) is the d-dimensional volume of TR ⊂ Rr. Use this to show
that Y = T X is uniformly distributed over T A.

Note that T maps An−1 linearly to ∆n, so Exercise 17.3 and Exercise 17.4 to-
gether show that (X1, . . . , Xn) = T (U(1), . . . ,U(n−1)) is uniformly distributed on ∆n.

We can now easily generate a sample from ∆n: throw down n − 1 points uni-
formly in the unit interval, sort them along with the points 0 and 1, and take the
vector of successive distances between the points.
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This requires sorting n variables, which in fact can be avoided. The following
exercise requires knowledge of the change-of-variables formula for d-dimensional
random vectors.

{Exercise:ExpSimplex}

E 17.5. Let Y1, . . . ,Yn be i.i.d. exponential variables, and define

Xi =
Yi

Y1 + · · · + Yn
. (17.16)

Show that (X1, . . . , Xn) is uniformly distributed on ∆n

17.4. Problems
{Exer:PP}

E 17.6. Let T1,T2, . . . be an i.i.d. sequence of exponential random vari-
ables of unit rate, let S k =

∑k
i=1 Ti, and let Nt = max{k : S k ≤ t}.

(a) Show that S k has a Gamma distribution with shape parameter n and rate pa-
rameter 1, i.e. its density function is

fk(s) =
sk−1e−s

(k − 1)!
.

(b) Show by computing P{S k ≤ t < S k+1} that Nt is a Poisson random variable
with mean t.

[S]

E 17.7. Here we outline an alternative proof that Nt has a Poisson dis-
tribution with mean t.
(a) Divide the interval [0, t] into t/∆ intervals of length ∆.

E 17.8. Describe how to use the inverse distribution function method
to simulate from the probability density function

f (x) =

2x if 0 < x < 1,
0 otherwise.

{Exercise:Subregion}
E 17.9. Let R ⊂ R′ ⊂ Rk. Show that if points uniform in R′ are gener-

ated until a point falls in R, that this point is uniformly distributed over R. Recall
that this means that the probability of falling in any subregion B of R is equal to
Area(B)/Area(R).

E 17.10. Find a method for simulating the random variable Y with den-
sity

g(x) = e−|x|/2.
Use the rejection method to simulate a random variable X with the standard Normal
density given in (17.11).

{Exercise:OrderStats}
E 17.11. Let U1,U2, . . . ,Un be independent random variables, each

uniform on the interval [0, 1]. Let U(k) be the kth order statistic, the k-th smallest
among {U1, . . . ,Un}, so that

U(1) < U(2) < · · · < U(n).
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The purpose of this exercise is to give several different arguments that

E
(
U(k)

)
=

k
n + 1

. (17.17){Eq:ExOrdStat}

Fill in the details for the following proofs of (17.17):
(a) Find the density of U(k) and integrate.
(b) Find the density of U(n), and observe that given U(n) the other variables are the

order statistics for uniforms on the interval [0,U(n)]. Then apply induction.
(c) Let Y1, . . . ,Yn be independent and identically distributed exponential variables

with mean 1, and let S 1 = Y1, S 2 = Y1 + Y2, . . ., be their partial sums. Show
that the random vector

1
S n+1

(S 1, S 2, . . . , S n) (17.18) {Eq:SString}

has constant density on the simplex

An = {(x1, . . . , xn) : 0 < x1 < x2 < · · · < xn < 1}.

Conclude that (17.18) has the same law as the vector of order statistics.

17.5. Notes

To make the estimates in Section 17.2 more quantitative, one needs an estimate
of the convergence rate for ηm in the Lemma 17.3. This can be done in at least three
ways:

• We could apply a version of Stirling’s formula with error bounds (see
Equation B.11) in conjunction with large deviation estimates for Y and
Ψ.
• We could replace Stirling’s formula with a precise version of the local

central limit theorem, see e.g. Spitzer (1976).
• One can also use Stein’s method, see Chyakanavichyus and Vaı̆tkus (2001)

or Röllin (2006).
These methods all show that ηm is of order m−1/2.

For a stimulating and much wider discussion of univariate simulation tech-
niques, Devroye (1986) is an excellent reference.





CHAPTER 18

Countable State-Space Chains*

{Ch:Infinite}
In this chapter we treat the case where Ω is not necessarily finite, although we

assume it is a countable set. A classical example is the simple random walk on Zd.
This walker moves on Zd by choosing uniformly at random among her 2d nearest
neighbors. There is a striking dependence on the dimension d: when d ≥ 3, the
walker may wonder off “to infinity”, never returning to her starting place, while
this is impossible in dimensions d ≤ 2. We will return to this example later.

As before, P is a function from Ω × Ω to [0, 1] satisfying
∑

y∈Ω P(x, y) = 1 for
all x ∈ Ω. We still think of P as a matrix, except now it has countably many rows
and columns. The matrix arithmetic in the finite case extends to the countable case
without any problem. The joint distribution of the infinite sequence (Xt) is still
specified by P along with a starting distribution µ on Ω.

18.1. Recurrence and Transience
{Xmpl:SRWRecur0}

E 18.1 (Simple random walk on Z). Let (Xt) have transition matrix

P( j, k) =

1/2 if k = j ± 1,
0 otherwise.

Let Ak be the event that the walker started from zero reaches absolute value 2k

before it returns to zero. By symmetry, P0(A1) = 1/2 and P0(Ak+1 | Ak) = 1/2.
Thus P0(Ak) = 2−k, and in particular

P0{τ
+
0 = ∞} = P0

 ∞⋂
k=1

Ak

 = lim
k→∞

P0(Ak) = 0.

The penultimate equality follows since the events {Ak} are decreasing.
{Xmple:BRWTrans}

E 18.2 (Biased random walk on Z). Suppose now that a walker on Z
makes biased moves, so that

P( j, k) =

q for k = j − 1,
p for k = j + 1,

where q < p and q + p = 1. Recall the gambler’s ruin formula for biased random
walk, c.f. Equation 10.21,

Pk{τn < τ0} =
1 − (q/p)k

1 − (q/p)n .

217
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Thus,

P1{τ0 = ∞} ≥ P1

 ∞⋂
n=2

{τn < τ0}

 = lim
n

1 − (q/p)
1 − (q/p)n =

p − q
p

> 0.

Since P0{τ0 = ∞} = P1{τ0 = ∞}, there is positive chance that the biased random
walker never returns to her starting position.

This is also a consequence of the Strong Law of Large Numbers; see Exercise
18.1.

We have seen that the unbiased random walk (Example 18.1) and the biased
random walk (Example 18.2) have quite different behavior. We make the following
definition to describe this difference.

We define a state x ∈ Ω as recurrent if Px{τ
+
x < ∞} = 1. Otherwise, x is called

transient.
{Prop:Communication}

P 18.3. Suppose that P is an irreducible transition matrix of a Markov
chain (Xt). Define G(x, y) := Ex

(∑∞
t=0 1{Xt=y}

)
=

∑∞
t=0 Pt(x, y) , the expected num-

ber of visits to y starting from x. The following are equivalent:
{It:Grxx}

(i) G(x, x) = ∞, for some x ∈ Ω.{It:Grxy}
(ii) G(x, y) = ∞ for all x, y ∈ Ω.{It:Retxx}

(iii) Px{τ
+
x < ∞} = 1 for some x ∈ Ω.{It:Retxy}

(iv) Px{τ
+
y < ∞} = 1 for all x, y ∈ Ω.

P. Every time the chain visits x, it has the same probability of eventually
returning to x, independent of the past. Thus the number of visits to x is a geometric
random variable with success probability 1 − Px{τ

+
x < ∞}. It follows that (i) and

(iii) are equivalent.
Suppose G(x0, x0) = ∞, and let x, y ∈ Ω. By irreducibility, there exists r and s

so that Pr(x, x0) > 0 and Ps(x0, y) > 0. Then

Pr(x, x0)Pt(x0, x0)Ps(x0, y) = Px{Xr = x0, Xr+t = x0, Xr+t+s = y}

≤ Px{Xr+t+s = y} = Pr+t+s(x, y).

Thus,

G(x, y) ≥
∞∑

t=0

Pr+t+s(x, y) = Pr(x, x0)Ps(x0, y)
∞∑

t=0

Pt(x0, x0). (18.1){Eq:FinGF}

Since Pr(x, x0)Ps(x0, y) > 0, Equation 18.1 shows that conditions (i) and (ii) are
equivalent.

Suppose that Px0{τ
+
x0
< ∞} = 1 for some x0 ∈ Ω, and let x, y ∈ Ω.

If Px0{τx < τ+x0
} = 0, then x is never hit when starting from x0, contradicting

the irreducibility of the chain. We have

0 = Px0{τ
+
x0
= ∞} ≥ Px0{τx < τ

+
x0
}Px{τ

+
x0
= ∞}.

Since Px0{τx < τ
+
x0
} > 0, it must be that Px{τ

+
x0
= ∞} = 0. Each time the chain visits

x0, it has positive probability of visiting y, independent of the past. Since the chain
visits x0 infinitely often, it will eventually visit y. To summarize: starting from x,
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the chain is certain to visit x0, and starting from x0, the chain is certain to visit y.
Consequently, Px{τy < ∞} = 1. We conclude that (iii) and (iv) are equivalent. �

By Proposition 18.3, for an irreducible chain, a single state is recurrent if and
only if all states are recurrent. For this reason, an irreducible chain can be classified
as either recurrent or transient.

{Xmpl:SRWRecur1}

E 18.4 (Simple random walk on Z revisited). Another proof that the
simple random walker on Z discussed in Example 18.1 is recurrent uses Proposi-
tion 18.3.

When started at 0, the walk can return to 0 only at even times, with the proba-
bility of returning after 2t steps equal to P0{X2t = 0} =

(
2t
t

)
2−2t. By application of

Stirling’s formula (Equation B.10), P0{X2t = 0} ∼ ct−1/2. Then

G(0, 0) =
∞∑

t=0

P0{X2t = 0} = ∞,

so by Proposition 18.3 the chain is recurrent.

E 18.5. The simple random walk on Z2 moves at each step by selecting
each of the four neighboring locations with equal probability. Instead, consider
at first the “corner” walk, which at each move adds with equal probability one of
{(1, 1), (1,−1), (−1, 1), (−1,−1)} to the current location. The advantage of this walk
is that its coordinates are independent simple random walks on Z. So

P(0,0){X2t = (0, 0)} = P(0,0)
{
X1

2t = 0
}

P(0,0)
{
X2

2t = 0
}
∼

c
n
.

Again by Proposition 18.3, the chain is recurrent. Now notice that the usual
nearest-neighbor simple random walk is a rotation of the corner walk by π/4, so it
is recurrent.

For random walks on infinite graphs, the electrical network theory of chapter
10 is very useful for deciding if a chain is recurrent.

18.2. Infinite Networks

For an infinite graph G containing vertex a, let {Gn} be a collection of finite
connected subgraphs containing a and satisfying ∪nGn = G. If all the vertices in
G \Gn are replaced by a single vertex zn, then

R(a↔ ∞) := lim
n→∞
R (a↔ zn in Gn ∪ {zn}) .

Also, define C(a↔ ∞) := [R(a↔ ∞)]−1. By (10.16),

Pa{τ
+
a = ∞} = lim

n→∞
Pa{τzn < τ

+
a } = lim

n→∞

C(a↔ zn)
π(a)

=
C(a↔ ∞)

π(a)
.

A flow on G from a to infinity is an antisymmetric edge function obeying the node
law at all vertices except a. Thomson’s Principle (Theorem 10.6) remains valid for
infinite networks:

R(a↔ ∞) = inf {E(θ) : θ a unit flow from a to∞} . (18.2) {eq:tpi}
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As a consequence, Rayleigh’s Monotonicity Law (Theorem 10.7) also holds for
infinite networks

The following summarizes the connection of resistance with recurrence.
{prop:tranrw}

P 18.6. Let 〈G, {c(e)}〉 be a network. The following are equivalent:

(i) The weighted random walk on the network is transient.
(ii) There is some node a with C(a↔ ∞) > 0. (Equivalently, R(a↔ ∞) < ∞.)

(iii) There is a flow θ from some node a to infinity with ‖θ‖ > 0 and E(θ) < ∞.

In an infinite network 〈G, {ce}〉, a version of Proposition 10.10 (the Nash-
Williams inequality) is valid.

{Prop:NWI}
P 18.7 (Nash-Williams). If there exist disjoint edge-cutsets {Πn} that

separate a from∞ and satisfy

∑
n

∑
e∈Πn

c(e)

−1

= ∞,

then the weighted random walk on 〈G, {ce}〉 is recurrent.

E 18.8 (Z2 is recurrent). Take c(e) = 1 for each edge of G = Z2 and
consider the cutsets consisting of edges joining vertices in ∂�n to vertices in ∂�n+1,
where �n := [−n, n]2. Then by the Nash-Williams inequality,

R(a↔ ∞) ≥
∑

n

1
4(2n + 1)

= ∞.

Thus, simple random walk on Z2 is recurrent. Moreover, we obtain a lower bound
for the resistance from the center of a square �n = [−n, n]2 to its boundary:

R(0↔ ∂�n) ≥ c log n.
{ex:z3}

E 18.9 (Z3 is transient). To each directed edge ~e in the lattice Z3, attach
an orthogonal unit square �e intersecting ~e at its midpoint me. Define θ(~e) to be the
area of the radial projection of �e onto the sphere ∂B(0, 1/4), taken with a positive
sign if ~e points in the same direction as the radial vector from 0 to me, and with a
negative sign otherwise. By considering a unit cube centered at each lattice point
and projecting it to ∂B(0, 1/4), we can easily verify that θ satisfies the node law at
all vertices except the origin. Hence θ is a flow from 0 to ∞ in Z3. It is easy to
bound its energy:

E(θ) ≤
∑

n

C1n2
(C2

n2

)2
< ∞.

By Proposition 18.6, Z3 is transient. This works for any Zd, d ≥ 3. An analytic
description of the same flow was given by T. Lyons (1983).
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18.3. Positive Recurrence and Convergence

The convergence theorem as stated in Theorem 5.6 does not hold for all irre-
ducible and aperiodic chains on infinite state-spaces. If the chain is transient, then
by Proposition 18.3,

∑∞
t=0 Px{Xt = y} < ∞ for all x, y ∈ X. This implies that for all

x, y ∈ Ω,
lim
t→∞

Px{Xt = y} = 0. (18.3){Eq:ConvToZero}

That is, if there is a probability π on Ω so that (µPt)(x) → π(x) for all x ∈ Ω, then
the chain must be recurrent.

However, recurrence is not sufficient. For example, the simple random walker
of Example 18.4, a recurrent chain, also satisfies Equation 18.3. A condition
stronger than recurrence is required.

{Example:RWNullRecurrent}
E 18.10. We have already seen that the simple random walker on Z is

recurrent. Let α = E1(τ0). By conditioning on the first move of the walk,

α =
1
2
+

1
2

[1 + E2(τ0)] = 1 + α.

The last equality follows since the time to go from 2 to 0 equals the time to go
from 2 to 1 plus the time to go from 1 to 0, and the time to go from 2 to 1 has the
same distribution as the time to go from 1 to 0. There is no finite number α which
satisfies this equation, so we must have α = ∞. From this follows that E0(τ0) = ∞.
Thus, although τ0 is a finite random variable with probability one, it has infinite
expectation.

A state x is called positive recurrent if Ex(τ+x ) < ∞. As Example 18.10 shows,
this property is strictly stronger than recurrence.

P 18.11. If (Xt) is a Markov chain with irreducible transition matrix
P, then the following are equivalent:

(i) Ex(τ+x ) < ∞ for some x ∈ Ω,
(ii) Ex(τ+y ) < ∞ for all x, y ∈ Ω.

P. Suppose that Ex0(τ+x0
) < ∞. Define τ+x0,0

:= 0 and

τ+x0,k := min{t > τ+x0,k−1 : Xt = x0}, k ≥ 1.

Denote by Lk the time τ+x0,k
− τ+x0,k−1, the length of the k-th excursion from x0.

Because the chain starts anew at every visit to x, the random variables Lk form
an i.i.d. sequence. In particular, Ex0(Lk) = Ex0{τ

+
x } < ∞. By irreducibility,

Px0{τy < τ+x0
} > 0 and the chain has positive probability to hit y during each of

these excursions. If T is the number of excursions from x0 until the chain first hits
y, then T is a geometric random variable and hence has finite mean. Also, if τy→x0

is defined to be the first time after first visiting y that the chain returns to x0, then
when starting from x0,

τy→x0 =

T∑
k=1

Lk.
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Since the event that {T ≥ k} = {T ≤ k − 1}c depends only on the chain up to τ+x0,k
,

it is independent of Lk+1. Thus by Exercise 7.10,

Ex0(τy→x0) ≤ Ex0(T )Ex0(Lk) < ∞.

Now let x and y be any two states in Ω. Note that

∞ > Ex0(τx→x0) = Ex0(τ+x ) + Ex(τ+x0
).

Consequently, both Ex0(τ+x ) and Ex(τ+x0
) are finite for any x. It follows that

Ex(τ+y ) ≤ Ex(τ+x0
) + Ex0(τ+y ) < ∞.

�

Thus if a single state of the chain is positive recurrent, all states are positive
recurrent. We can therefore classify an irreducible chain as positive recurrent if
one state, and hence all states, is positive recurrent. A chain which is recurrent but
not positive recurrent is called null recurrent.

The following relates positive recurrence to the existence of a stationary distri-
bution:

{Thm:PosRecStat}

T 18.12. An irreducible Markov chain with transition matrix P is pos-
itive recurrent if and only if there exists a probability distribution π on Ω so that
π = πP.

One direction of Theorem 18.12 is a consequence of the following Lemma
together with Exercise 18.2.

{Lem:Kac}
L 18.13 (Kac). Let (Xt) be an irreducible Markov chain with transition

matrix P. Suppose that there is a stationary distribution π solving π = πP. Then
for any set S ⊂ Ω, ∑

x∈S

π(x)Ex(τ+S ) = 1. (18.4){Eq:Kac}

In other words, the expected return time to S when starting at the stationary distri-
bution conditioned on S is π(S )−1.

P. Let (Yt) be the reversed chain with transition matrix P̂, defined in (3.30).
First we show that both (Xt) and (Yt) are recurrent. Define

α(t) := Pπ{Xt = x, Xs , x for s > t}.

By stationarity,

α(t) = Pπ{Xt = x}Px{τ
+
x = ∞} = π(x)Px{τ

+
x = ∞}. (18.5){Eq:AlphaStat}

Since the events {Xt = x, Xs , x for s > t} are disjoint for distinct t,
∞∑

t=0

α(t) ≤ 1.

Since it is clear from (18.5) that α(t) does not depend on t, it must be that α(t) = 0
for all t. Again from the identity (18.5), it follows that Px{τ

+
x < ∞} = 1. The same

argument works for reversed chain as well, so (Yt) is also recurrent.
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For x ∈ S , y ∈ Ω and t ≥ 0, sum the identity

π(z0)P(z0, z1)P(z1, z2) · · · P(zt−1, zt) = π(zt)P̂(zt, zt−1) · · · P̂(z1, z0)

over all sequences where z0 = x, the states z1, . . . , zt−1 are not in S , and zt = y to
obtain

π(x)Px{τ
+
S ≥ t, Xt = y} = π(y)P̂y{τ

+
S = k, Yt = x}. (18.6) {Eq:KacSS}

(We write P̂ for the probability measure corresponding to the reversed chain.) Sum-
ming over all x ∈ S , y ∈ Ω, and t ≥ 0 shows that∑

x∈S

π(x)
∞∑

t=1

Px{τ
+
S ≥ t} = P̂π{τ+S < ∞} = 1.

(The last equality follows from recurrence of (Yt).) By Exercise 3.12(a), this sim-
plifies to ∑

x∈S

π(x)Ex{τ
+
S } = 1. (18.7) {Eq:Kac1}

�

P  T 18.12. That the chain is positive recurrent when a station-
ary distribution exists follows from Lemma 18.13.

The key fact needed to show that π̃ defined in Equation 3.18 can be normalized
to yield a stationary distribution is that Ez(τ+z ) < ∞, which holds now by positive
recurrence. Thus the proof that a stationary distribution exists goes through as in
the finite case. �

{Thm:ConvInfinite}

T 18.14. Let P be an irreducible and aperiodic transition matrix for
a Markov chain (Xt). If the chain is positive recurrent, then there is a unique
probability distribution π on Ω so that π = πP and for all x ∈ Ω,

lim
t→∞
‖Pt(x, ·) − π‖TV = 0. (18.8) {Eq:InfConv}

P. The existence of π solving π = πP is one direction of Theorem 18.12.
We now show that for any two states x and y we can couple together the chain

started from x with the chain started from y so that the two chains eventually meet
with probability one.

Consider the chain on Ω ×Ω with transition matrix

P̃((x, y), (z,w)) = P(x, z)P(y,w), for all (x, y) ∈ Ω ×Ω, (z,w) ∈ Ω ×Ω.

This chain makes independent moves in the two coordinates, each according to the
matrix P. Aperiodicity implies that this chain is irreducible (see Exercise 18.5). If
(Xt,Yt) is a chain started with product distribution µ×ν and run with transition ma-
trix P̃, then (Xt) is a Markov chain with transition matrix P and initial distribution
µ, and (Yt) is a Markov chain with transition matrix P and initial distribution ν.
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Note that

(π × π)P̃(z,w) =
∑

(x,y)∈Ω×Ω

(π × π)(x, y)P(x, z)P(y,w)

=
∑
x∈X

π(x)P(x, z)
∑
y∈Y

π(y)P(y,w).

Since π = πP, the right-hand side equals π(z)π(w) = (π × π)(z,w). Thus π × π
is a stationary distribution for P̃. By Theorem 18.12, the chain (Xt,Yt) is positive
recurrent. In particular, for any fixed x0, if

τ := min{t > 0 : (Xt,Yt) = (x0, x0)},

then
Px,y{τ < ∞} = 1 for all x, y ∈ Ω. (18.9){Eq:FinHit}

To obtain Equation 18.8, note that if the chain (Xt,Yt) is started with the distri-
bution δx × π, then for fixed t the pair of random variables Xt and Yt is a coupling
of Pt(x, ·) with π. Thus∥∥∥Pt(x, ·) − π

∥∥∥
TV ≤ Pδx×π{Xt , Yt} ≤ Pδx×π{τ > t}. (18.10){Eq:CoupHit}

From (18.9),
Pδx×π{τ > t} =

∑
y∈Ω

π(y)Px,y{τ > t} = 1.

This and (18.10) imply Equation 18.8.
�

{Example:RRW}

E 18.15. Consider a nearest-neighbor random walk on Z+ which moves
up with probability p and down with probability q. If the walk is at 0, it remains at
0 with probability q. Assume that q > p.

The equation π = πP reads as

π(0) = qπ(1) + qπ(0)
π(k) = pπ(k − 1) + qπ(k + 1).

Solving, π(1) = π(0)(p/q) and working up the ladder,

π(k) = (p/q)kπ(0)

π can be normalized to be a probability distribution, in which case π(k) = (p/q)k(1−
p/q). Since there is a solution to πP = π which is a probability distribution, the
chain is positive recurrent.

If a solution can be found to the detailed balance equations,

π(x)P(x, y) = π(y)P(y, x), x, y ∈ Ω,

then provided π is a probability distribution, the chain is positive recurrent.

E 18.16 (Birth-and-Death Chains). A birth-and-death chain on {0, 1, . . . , }
is a nearest-neighbor chain which moves up when at k with probability pk and down
with probability qk = 1 − pk. The detailed balance equations are, for j ≥ 1,

π( j)p j = π( j + 1)q j.
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Thus π( j + 1)/π( j) = p j/q j and so

π(k) = π(0)
k−1∏
j=0

π( j + 1)
π( j)

= π(0)
k−1∏
j=0

p j

q j
.

This can be made into a probability distribution provided that
∞∑

k=1

k−1∏
j=0

p j

q j
< ∞, (18.11) {Eq:BDSum}

in which case we take π(0)−1 to equal this sum.
If the sum in (18.11) is finite, the chain is positive recurrent.

18.4. Problems
{Xsz:BRWSLN}

E 18.1. Use the Strong Law of Large numbers to give a proof that the
biased random walk in Example 18.2 is transient. [S]

{Exercise:PiPos}
E 18.2. Suppose that P is irreducible. Show that if π = πP for a proba-

bility distribution π, then π(x) > 0 for all x ∈ Ω. [S]
{ex:fuzz}

E 18.3. Fix k > 1. Define the k-fuzz of an undirected graph G = (V, E)
as the graph Gk = (V, Ek) where for any two distinct vertices v,w ∈ V , the edge
{v,w} is in Ek if and only if there is a path of at most k edges in E connecting v to w.
Show that for G with bounded degrees, G is transient if and only if Gk is transient.

A solution can be found in Doyle and Snell (1984, section 8.4).
{Exercise:SubGRec}

E 18.4. Show that any subgraph of a recurrent graph must be recurrent.
[S]

{Exercise:ProdIred}
E 18.5. Let P be an irreducible and aperiodic transition matrix on Ω.

Let P̃ to be the matrix on Ω ×Ω defined by

P̃((x, y), (z,w)) = P(x, z)P(y, z), (x, y) ∈ Ω ×Ω, (z,w) ∈ Ω ×Ω.

Show that P̃ is irreducible. [S]
{Exercise:FIFO}

E 18.6. Consider the discrete-time single server FIFO (first in, first out)
queue: At every step, if there is a customer waiting, exactly one of the following
happens:

{It:arrive}
(1) a new customer arrives (with probability α), or {It:served}
(2) an existing customer is served (with probability β = 1 − α),

If there are no customers waiting, then (1) still has probability α, but (2) is replaced
by “nothing happens”. Let Xt be the number of customers in the queue at time t.

Show that (Xt) is
(a) positive recurrent if α < β,
(b) null recurrent if α = β,
(c) transient if α > β.

[S]

http://arxiv.org/abs/math/0001057v1
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{Exercise:FIFO2}
E 18.7. Consider the same set-up as Exercise 18.6. In the positive re-

current case, determine the stationary distribution π and the π-expectation of the
time T from the arrival of a customer until he is served. [S]

R. In communication theory one talks of packets instead of customers.
{Exer:FiniteTransRec}

E 18.8. Consider a not-necessarily-irreducible Markov chain on a finite
state space, Ω. Recall the communication classes defined on Section 3.7, and the
partial order→ on communication classes defined in Exercise 3.24.

Prove that a state x ∈ X is recurrent if and only if [x] is a maximal element in
this partial order.

{Exer:Liouville1D}
E 18.9. Let P be the transition matrix for simple random walk on Z.

Show that the walk is not positive recurrent by showing there are no probability
distributions π on Z satisfying πP = π. [S]



CHAPTER 19

Martingales

{Ch:MG}
19.1. Definition and Examples

Let (Yt)∞t=0 be a sequence of random variables. In what follows, (Yt) will serve
as a basic source of randomness. For example, (Yt) could be an i.i.d. sequence of
{−1,+1}-valued random variables, or a Markov chain. We make no assumptions
about the distribution of this sequence.

A martingale with respect to (Yt) is a sequence of random variables (Mt) satis-
fying the following:

{it:integrable}
(i) E(Mt) < ∞ for all t; {it:adapted}

(ii) Mt is adapted to (Yt), meaning for each t there exists a function gt so that
Mt = gt(Y0, . . . ,Yt) for all t; {it:fair}

(iii) E(Mt+1 | Y0, . . . ,Yt) = Mt.
Condition (ii) says that Mt is determined by (Y1, . . . ,Yt), the underlying random-
ness up to and including time t. If we assume that an observer at time t knows the
random vector (Y0, . . . ,Yt), then she can compute the value of Mt from this infor-
mation. In particular, she does not need any any of the future variables (Ys)s>t.

Condition (iii) says that given the data (Y1, . . . ,Yt), the best prediction for Mt+1
is Mt.

{Example:RWMart}
E 19.1. The familiar unbiased random walk is a martingale.
Let (Ys)∞s=1 be a sequence of independent random variables with E(Ys) = 0 for

all s, and Mt :=
∑t

s=1 Ys.
The conditions (i) and (ii) are manifest, and (iii) also holds:

E(Mt+1 | Y0, . . . ,Yt) = E(Yt+1 + Mt | Y0, . . . ,Yt)
= E(Yt+1 | Y0, . . . ,Yt) + Mt = Mt.

The penultimate equality follows since Mt is a function of (Y0, . . . ,Yt), and the last
equality follows since Yt+1 is independent of (Y0, . . . ,Yt) and has E(Yt+1) = 0.

In the previous example, the increments ∆Mt := Mt+1−Mt form an independent
sequence with E(∆Mt) = 0. For a general martingale, the increments also have
mean zero, and although not necessarily independent, they are uncorrelated: for
s < t,

E(∆Mt∆Ms) = E (E (∆Mt∆Ms | Y0,Y1, . . . ,Yt))
= E (∆MsE (∆Mt | Y0,Y1, . . . ,Yt))
= 0.

(19.1) {Eq:UncorrInc}

227
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We have used here the fact, immediate from condition (iii) in the definition of a
martingale, that

E(∆Mt | Y0, . . . ,Yt) = 0, (19.2) {eq:mginc}

which is stronger than the statement that E(∆Mt) = 0.
To summarize, martingales are very similar to sums of i.i.d. random variables:

A martingale (Mt) can be written as

Mt = M0 +

t−1∑
s=0

∆Ms (19.3){eq:inc}

where the elements of the sequence (∆Ms)∞s=0 are uncorrelated and satisfy (19.2).

E 19.2. Let (Yt) be a random walk which moves up one unit with prob-
ability p, and down one unit with probability q = 1 − p, where p , 1/2. In other
words, given Y0, . . . ,Yt,

∆Yt := Yt+1 − Yt =

1 with probability p
−1 with probability q.

If Mt := (q/p)Yt , then (Mt) is a martingale with respect to (Yt). Condition (ii) is
clear, and

E
[
(q/p)Yt+1

∣∣∣∣ Y0 = y0, . . . ,Yt = yt

]
= E

[
(q/p)yt (q/p)Yt+1−Yt

∣∣∣∣ Y0 = y0, . . . ,Yt = yt

]
= (q/p)yt

[
p(q/p) + q(q/p)−1

]
= (q/p)yt .

E 19.3. Let (Yt) be as in the previous example. Let µ := p − q, and
Mt := Yt − µt. Then

E(Mt+1 − Mt | Y0, . . . ,Yt) = p − q − µ
= 0,

so (Mt) is a martingale.

A sequence of random variables (At) is called previsible if for each t there is a
function ft so that At = ft(Y0, . . . ,Yt−1). The random variable At is determined by
what has happened strictly before time t.

Suppose that (Mt) is a martingale with respect to (Yt), and (At) is a previsible
sequence. Imagine that a gambler can wager on a sequence of games so that he
receives Mt − Mt−1 for each unit bet on the t-th game. The interpretation of the
martingale property E(Mt −Mt−1 | Y0, . . . ,Yt) = 0 is that the games are fair. Let At
be the amount wagered on the t-th game; the fact that the player sizes his bet based
only on the outcomes of previous games forces (At) to be a previsible sequence. At
time t, the gambler’s fortune is

Ft = M0 +

t−1∑
s=0

As+1(Ms+1 − Ms). (19.4){eq:winnings}
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Is it possible, by a suitably clever choice of bets (A1, A2, . . .), to generate an ad-
vantage for the player? By this, we mean is it possible that E(Ft) > 0 for some t?
Many gamblers say so. Unfortunately, they are wrong! The next theorem proves
it.

Define for a martingale (Mt) and a previsible sequence (At),

(A ◦ M)t := M0 +

t−1∑
s=0

As+1(Ms+1 − Ms).

{thm.discstochint}
T 19.4. For any previsible sequence (At), the sequence of random vari-

ables (A ◦ M)t is a martingale.

P.

E ((A ◦ M)t+1 − (A ◦ M)t | Y0, . . . ,Yt) = E(At+1(Mt+1 − Mt) | Y0, . . . ,Yt).

Since At+1 is a function of Y0, . . . ,Yt, the right-hand side equals

At+1E(Mt+1 − Mt | Y0, . . . ,Yt) = 0.

�

Recall from Section 7.2.1 that a stopping time is a random variable τ with val-
ues in {0, 1, . . .}∪{∞} so that the event {τ = t} is determined by the random variables
Y0, . . . ,Yt. More precisely, the sequence (1{τ=t}) is adapted to the sequence (Yt).

For a martingale, E(Mt) = E(M0) for all fixed times t. Does this remain valid
if we replace t by a random time? In particular, for stopping times τ, is E(Mτ) =
E(M0)? Under some additional conditions, the answer is “yes”. However, these
conditions cannot be ignored, as it is false in general.

E 19.5. Taking (Ys) to be the i.i.d. sequence with

P{Y1 = +1} = P{Y1 = −1} =
1
2
,

in Example 19.1, the partial sum Mt :=
∑t

s=1 Ys is a martingale. The first-passage
time to 1,

τ = min{t : Mt = +1}
is a stopping time, and clearly

E(Mτ) = 1 , E(M0).

Note that if τ is a stopping time, then so is τ ∧ t. for any fixed t.
{thm:ost1}

T 19.6. Let τ be a stopping time and (Mt) a martingale. Then (Mt∧τ) is
a martingale. Consequently, E(Mt∧τ) = E(M0).

{cor:ost2}
C 19.7. Let (Mt) be a martingale and τ a stopping time so that

|Mt∧τ| ≤ K for all t, where K is a fixed number. Then E(Mτ) = E(M0).

P  T 19.6. Let At = 1{τ>t}. Then

At = 1 − 1{τ≤t−1} = 1 −
t−1∑
s=1

1{τ=t},
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and since τ is a stopping time, At can be written as a function of Y0, . . . ,Yt−1. Thus
(At) is previsible. Check that

(A ◦ M)t = Mt∧τ − M0.

Thus Mt∧τ − M0 is a martingale. The reader should check that Mt∧τ − M0 + M0 =

Mt∧τ is still a martingale. �

P  C 19.7. Since (Mτ∧t) is a martingale, E (Mτ∧t) = E (M0).
Thus

lim
t→∞

E(Mτ∧t) = E(M0).

By Proposition B.5, we are allowed to take a limit inside the expectation and con-
clude that E(Mτ) = E(M0). �

{cor:ost3}
C 19.8. Let (Mt) be a martingale with bounded increments, that is

|Mt+1 − Mt| ≤ B for all t, where B is a non-random constant. Suppose that τ is a
stopping time with E(τ) < ∞. Then E(Mτ) = E(M0).

P. Note that

|Mτ∧n| =

∣∣∣∣∣∣∣
τ∧n∑
s=1

(Ms − Ms−1) + M0

∣∣∣∣∣∣∣ ≤
τ∧n∑
s=1

|Ms − Ms−1| + |M0| ≤ Bτ + |M0|.

Since E(Bτ + |M0|) < ∞, by the Dominated Convergence Theorem (Proposition
B.5) and Theorem 19.6,

E(M0) = lim
n→∞

E(Mτ∧n) = E(Mτ).

�

E 19.9. Let Y0 ≡ 0, and let Y1,Y2, . . . be a sequence of independent and
identically distributed random variables with

P{Ys = 1} = P{Ys = −1} =
1
2
.

S t :=
∑t

s=0 Ys is a martingale. Let B1 ≡ 1, and for t > 1, let

Bt =

2t if Y1 = Y2 = · · · = Yt−1 = −1
0 if Ys = 1 for some s < t.

Thus, provided we have not won a single previous game, we bet 2t, and as soon as
we win, we stop playing. If τ is the first time that we win, τ is a stopping time.

Mt := (B ◦ S )t =


0 if t = 0,
−2(t−1) if 1 ≤ t < τ,
1 if t ≥ τ.

Since we are assured that Ys = 1 for some s eventually, τ < ∞ and Mτ = 1. Thus
E(Mτ) = 1. But E(M0) = 0, and (Mt) is a martingale! By doubling our bets every
time we lose, we have assured ourselves of a profit. This at first glance seems to
contradict Corollary 19.7. But notice that the condition |Mτ∧t| < K is not satisfied,
so we cannot apply the Corollary.
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19.2. Applications

19.2.1. Gambler’s Ruin. Let (Yt) be a random walk, and let α(x) = Px{τ0 <
τN}, where 0 ≤ x ≤ N. Suppose that p , q. We have seen before that Mt := (q/p)Yt

is a martingale. Let τ := τ0 ∧ τN be the first time the walk hits either 0 or N. Then
τ is a stopping time.

Since Mτ∧t is bounded, we can apply Corollary 19.7 to get

Ex
(
(q/p)Yτ

)
= (q/p)x.

We can break up the expectation above to get

Ex
(
(q/p)Yτ

)
= α(x) + (q/p)N(1 − α(x)).

Combining these two equations and solving for α(x) yields

α(x) =
(q/p)x − (q/p)N

1 − (q/p)N .

In the case where p = q = 1
2 , we can apply the same argument to get that

α(x) = 1 − (x/N).
Now consider again the unbiased random walk. Notice that

E(Y2
t+1 − Y2

t | Y0, . . . ,Yt) = (Yt + 1)2 1
2
+ (Yt − 1)2 1

2
− Y2

t

= 1.

Thus Mt := S 2
t − t is a martingale. By Theorem 19.6 we have that

Ex(S 2
t∧τ) = Ex(τ ∧ t).

Now since S 2
t∧τ is bounded by N2 for all n, if we take the limit as t → ∞ on the

left-hand side above, we can take it inside the expectation. Also, T ∧ t does not
decrease as t increases, so we are allowed to take the limit inside the expectation.
Thus

Ex(S 2
τ) − x2 = Ex(T ).

Now conditioning on whether τ = τ0 or τ = τN yields

(1 − α(x))N2 − x2 = Ex(T ).

Hence,
Ex(T ) = x(N − x).

19.2.2. Waiting times for patterns in coin tossing. Consider a sequence of
independent fair coin tosses, X1, X2, . . ., and define

τHT H = min{t : Xt−2Xt−1Xt = HT H}.

We wish to determine E(τHT H).
Gamblers are allowed to place bets on each individual coin toss. On each bet,

the gambler is allowed to pay $k dollars, and then either wins $2k dollars or $0
dollars.

We suppose that at each unit of time until the word HT H first appears, a new
gambler enters, and employs the following strategy: On his first bet, he wagers $1
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on the outcome H. If he looses, he stops. If he wins and the sequence HT H still
has not yet appeared, he wagers his payoff of $2 on T . Again, if he looses, he stops
playing. As before, if he wins and the sequence HT H has yet to occur, he takes his
payoff (now $4) and wagers on H. He then stops playing.

We describe the situation a bit more precisely: Let (Bt) be an i.i.d. sequence of
{0, 1}-valued random variables, with E(Bt) = 1/2, and then define Mt =

∑t
s=1(2Bs−

1). Clearly (Mt) is a martingale. Let τ101 = min{t : Xt−2Xt−1Xt = 101}, and define

As
t =


1 t = s,
−2 t = s + 1, τ > t,
4 t = s + 2, τ > t,
0 otherwise.

Then (As ◦ M)t is the profit of the sth gambler at the tth game. By Theorem 19.4,
(As ◦ M) is a martingales, and by Corollary 19.8,

E((As ◦ M)τ) = 0.

Suppose that τHT H = t. The gambler who started at t is paid $2, the gambler
who started at t−2 is paid $8, and every gambler has paid an initial $1 wager. Since
the game is fair, we must have the expected winnings is 0, so

10 − E(τHT H) = 0.

That is, E(τHT H) = 10.
It is (sometimes) suprising to the non-expert that the expected time to see HHH

is longer than HT H. Running the same arguments as above, the bettor entering at
time τ − 2 is paid $8, the bettor entering at time τ − 1 is paid $4, and the bettor
entering at τ is paid $2. Again, the total outlay is $τ, and fairness requires that
E(τ) = 8 + 4 + 2 = 14.

19.3. Problems
{Exer:CondGR}

E 19.1. Let (Xt) be the simple random walk on Z.
(a) Show that Mt = X3

t − 3tXt is a martingale.
(b) If τ is the expected time until the walker hits either 0 or n, find Ek(τ | Xτ = n).

(Here, 0 ≤ k ≤ n.)

E 19.2. Let (Xt) be a Markov chain with transition matrix P. A function
h on Ω is called harmonic with respect to P if Ph = h. Show that if h is harmonic,
then the sequence (Mt) is a martingale, where Mt = h(Xt).



CHAPTER 20

Coupling from the Past

by James G. Propp and David B. Wilson

This chapter is based in part on the expository article “Coupling from the Past:
a User’s Guide,” which appeared in Microsurveys in Discrete Probability, vol-
ume 41 of the DIMACS Series in Discrete Mathematics and Computer Science,
published by the AMS.

20.1. Introduction

In Markov chain Monte Carlo studies, one attempts to sample from a probabil-
ity distribution π by running a Markov chain whose unique steady-state distribution
is π. Ideally, one has proved a theorem that guarantees that the time for which one
plans to run the chain is substantially greater than the mixing time of the chain, so
that the distribution π̃ that one’s procedure actually samples from is known to be
close to the desired π in variation distance. More often, one merely hopes that this
is the case, and the possibility that one’s samples are contaminated with substantial
initialization bias cannot be ruled out with complete confidence.

The “coupling from the past” procedure introduced in Propp and Wilson (1996)
provides one way of getting around this problem. Where it is applicable, this
method determines on its own how long to run, and delivers samples that are gov-
erned by π itself, rather than π̃. Many researchers have found ways to apply the
basic idea in a wide variety of settings (see http://www.dbwilson.com/exact/
for pointers to this research). Our aim here is to explain the basic method, and to
give a sampling of some of its varied applications.

It is worth stressing at the outset that CFTP is especially valuable as an alter-
native to standard Markov chain Monte Carlo when one is working with Markov
chains for which one suspects, but has not proved, that rapid mixing occurs. In such
cases, the availability of CFTP makes it less urgent that theoreticians obtain bounds
on the mixing time, since CFTP (unlike Markov chain Monte Carlo) cleanly sepa-
rates the issue of efficiency from the issue of quality of output. That is to say, one’s
samples are guaranteed to be uncontaminated by initialization bias, regardless of
how quickly or slowly they are generated.

Before proceeding we mention that there are other algorithms that may be
used for generating perfect samples from the stationary distribution of a Markov
chain, including Fill’s algorithm (Fill, 1998, Fill, Machida, Murdoch, and Rosen-
thal, 2000), “read-once CFTP” (Wilson, 2000), and the “randomness recycler” (Fill
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and Huber, 2000). Each of these has its merits, but since CFTP is conceptually the
simplest of these, it is the one that we shall focus our attention on here.

As an historical aside, we mention that the conceptual ingredients of CFTP
were in the air even before the versatility of the method was made clear in Propp
and Wilson (1996). Precursors include Letac (1986), Thorisson (1988), and Borovkov
and Foss (1992). Even back in the 1970’s, one can find foreshadowings in the work
of Ted Harris (on the contact process, the exclusion model, random stirrings, and
coalescing and annihilating random walks), David Griffeath (on additive and can-
cellative interacting particle systems), and Richard Arratia (on coalescing Brow-
nian motion). One can even see traces of the idea in the work of Loynes (1962)
forty-five years ago. See also the survey Diaconis and Freedman (1999).

20.2. Monotone CFTP

The basic idea of coupling from the past is quite simple. Suppose that there
is an ergodic Markov chain that has been running either forever or for a very long
time, long enough for the Markov chain to have reached its steady-state distri-
bution. So the state that the Markov chain is currently in is a sample from the
stationary distribution. If we can figure out what that state is, by looking at the
recent randomizing operations of the Markov chain, then we have a sample from
its stationary distribution. To illustrate these ideas, we show how to apply them to
the Ising model of magnetism.

Recall that an Ising system consists of a collection of n interacting spins, pos-
sibly in the presence of an external field. Each spin may be aligned up or down.
Spins that are close to each other prefer to be aligned in the same direction, and
all spins prefer to be aligned with the external magnetic field (which sometimes
varies from site to site). These preferences are quantified in the total energy E of
the system

E(σ) = −
∑
i< j

αi, jσiσ j −
∑

i

Biσi,

where Bi is the strength of the external field as measured at site i, σi is 1 if spin i
is aligned up and −1 if it is aligned down, and αi, j ≥ 0 represents the interaction
strength between magnets i and j. The probability of a given spin configuration is
given by Z−1 exp[−E(σ)/T ] where T is the “temperature,” and Z is a normalizing
constant that makes the probabilities add up to 1. Often the n spins are arranged
in a 2D or 3D lattice, and αi, j is 1 if spins i and j are adjacent in the lattice, and
0 otherwise. The Ising model has been used to model certain substances such as
crystals of FeCl2 and FeCO3, and certain phases of carbon dioxide, xenon, and
brass — see Baxter (1982) for further background.

We may use the single-site heat bath algorithm, also known as Glauber dynam-
ics, to sample Ising spin configurations. A single move of the heat-bath algorithm
may be summarized by a pair of numbers (i, u), where i represents a spin loca-
tion (say that i is a uniformly random spin), and u is a uniformly random real
number between 0 and 1. The heat-bath algorithm randomizes the alignment of
spin i, holding all of the remaining magnets fixed, and uses the number u when
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F 20.1. The Ising model at three different temperatures.
Here the spins lie at the vertices of the triangular lattice and are
shown as black or white hexagons. The spins along the upper
boundaries were forced to be black and the spins along lower
boundaries were forced to be white (using an infinite magnetic
field on these boundary spins).{ising}

deciding whether the new spin should be up or down. There are two possible
choices for the next state, denoted by σ↑ and σ↓. We have Pr[σ↑]/Pr[σ↓] =
e−(E(σ↑)−E(σ↓))/T = e−(∆E)/T . The update rule is that the new spin at site i is ↑ if
u < Pr[σ↑]/(Pr[σ↑] + Pr[σ↓], and otherwise the new spin is ↓. It is easy to check
that this defines an ergodic Markov chain with the desired stationary distribution.

Recall our supposition that the randomizing process, in this case the single-site
heat bath, has been running for all time. Suppose that someone has recorded all the
randomizing operations of the heat bath up until the present time. They have not
recorded what the actual spin configurations or Markov chain transitions are, but
merely which sites were updated, and which random number was used to update
the spin at the given site. Given this recorded information, our goal is to determine
the state of the Markov chain at the present time (time 0), since, as we have already
determined, this state is a sample from the stationary distribution of the Markov
chain.

To determine the state at time 0, we make use of a natural partial order with
which the Ising model is equipped: we say that two spin-configurations σ and
τ satisfy σ � τ when each spin-up site in σ is also spin-up in τ. Notice that
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if we update both σ and τ with the same heat-bath update operation (i, u), then
because site i has at least as many spin-up neighbors in τ as it does in σ, and
because of our assumption that the αi, j’s are nonnegative, we have Pr[τ↑]/Pr[τ↓] ≥
Pr[σ↑]/Pr[σ↓], and so the updated states σ′ and τ′ also satisfy σ′ � τ′. (We
say that the randomizing operation respects the partial order �.) Notice also that
the partial order � has a maximum state 1̂, which is spin-up at every site, and a
minimum state 0̂, which is spin-down at every site.

This partial order enables us to obtain upper and lower bounds on the state at
the present time. We can look at last T randomizing operations, figure out what
would happen if the Markov chain were in state 1̂ at time −T , and determine where
it would be at time 0. Since the Markov chain is guaranteed to be in a state which is
� 1̂ at time −T , and the randomizing operations respect the partial order, we obtain
an upper bound on the state at time 0. Similarly we can obtain a lower bound on
the state at time 0 by applying the last T randomizing operations to the state 0̂. It
could be that we are lucky and the upper and lower bounds are equal, in which
case we have determined the state at time 0. If we are not so lucky, we could look
further back in time, say at the last 2T randomizing operations, and obtain better
upper and lower bounds on the state at the present time. So long as the upper and
lower bounds do not coincide, we can keep looking further and further back in time
(see Figure 20.2). Because the Markov chain is ergodic, when it is started in 1̂ and

F 20.2. Illustration of CFTP in the monotone setting.
Shown are the heights of the upper and lower trajectories started at
various starting times in the past. When a given epoch is revisited
later by the algorithm, it uses the same randomizing operation.{fig:mcftp}

T is large enough, there is some positive chance that it will reach 0̂, at which time
the upper and lower bounds are guaranteed to coincide. In the limit that T → ∞,
the probability that the upper and lower bounds agree tends to 1, so almost surely
we eventually succeed in determining the state at time 0.

The randomizing operation (the heat-bath in the above Ising model example)
defines a coupling of the Markov chain, also sometimes called a stochastic flow
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since it couples not just two states but all the states in the state space. For CFTP, the
choice of the coupling is as important as the choice of the Markov chain. To illus-
trate this we consider another example, tilings of a hexagon by lozenges, which are
60◦/120◦ rhombuses (see Figure 20.3). The set of lozenge tilings comes equipped
with a natural partial order �: we say that one tiling lies below another tiling if,
when we view the tilings as collections of little boxes contained within a large box,
the first collection of boxes is a subset of the other collection of boxes. The mini-
mum configuration 0̂ is just the empty collection of little boxes, and the maximum
configuration 1̂ is the full collection of little boxes.

A site in the tiling is just a vertex of one of the rhombuses that is contained
within the interior of the hexagon. For each possible tiling, these sites form a
triangular lattice. If a site is surrounded by three lozenges, then the three lozenges
will have three different orientations; there are two different ways for a site to
be surrounded by three lozenges — the horizontal will lie either above the site
or below it. One possible randomizing operation would with probability 1/2 do
nothing, and with probability 1/2 pick a uniformly random site in the tiling, and if
that site is surrounded by three lozenges, rearrange those three lozenges. Another
possible randomizing operation would pick a site uniformly at random, and then
(viewing the tiling as a collection of boxes) with probability 1/2 tries to add a little
box at the site and with probability 1/2 tries to remove a little box at the site. (These
attempts to add or remove a little box only succeed when the resulting configuration
of little boxes would be stable under gravity, otherwise the randomizing operation
leaves the configuration alone.) It is straightforward to check that both of these
randomizing operations give rise to the same Markov chain, i.e., a given tiling can
be updated according to the first randomizing operation or the second randomizing
operation, and either way, the distribution of the resulting tiling will be precisely
the same. However, for purposes of CFTP the second randomizing operation is
much better, because it respects the partial order �, whereas the first randomizing
operation does not.

With the Ising model and tiling examples in mind, we give pseudocode for
“monotone CFTP,” which is CFTP when applied to state spaces with a partial �
(with a top state 1̂ and bottom state 0̂) that is preserved by the randomizing opera-
tion:

T ← 1
repeat

upper ← 1̂
lower ← 0̂
for t = −T to −1

upper ← φ(upper,Ut)
lower ← φ(lower,Ut)

T ← 2T
until upper = lower
return upper

Here the variables Ut represent the intrinsic randomness used in the randomizing
operations. In the Ising model heat-bath example above, Ut consists of a random
number representing a site together with a random real number between 0 and 1.
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F 20.3. Tilings of a hexagon by lozenges. Alternatively,
these tilings may be viewed three-dimensionally, as a collection
of little boxes sitting within a larger box.{cube}
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In the tiling example, Ut consists of the random site together with the outcome
of a coin toss. The procedure φ deterministically updates a state according to the
random variable Ut.

Recall that we are imagining that the randomizing operation has been going on
for all time, and that someone has recorded the random variables Ut that drive the
randomizing operations, and our goal is to determine the state at time 0. Clearly
if we read the random variable Ut more than one time, it would have the same
value both times. Therefore, when the random mapping φ(·,Ut) is used in one
iteration of the repeat loop, for any particular value of t, it is essential that the same
mapping be used in all subsequent iterations of the loop. We may accomplish this
by storing the Ut’s; alternatively, if (as is typically the case) our Ut’s are given by
some pseudo-random number generator, we may simply suitably reset the random
number generator to some specified seed seed(i) each time t equals −2i.
Remark: Many people ask about different variations of the above procedure, such
as what happens if we couple into the future, or what happens if we use fresh
randomness each time we need to refer to the random variable Ut. There is a
simple example that rules out the correctness of all such variations that have been
suggested. Consider the state space {1, 2, 3}, where the randomizing operation with
probability 1/2 increments the current state by 1 (unless the state is 3), and with
probability 1/2 decrements the current state by 1 (unless the state is 1). We leave
it as an exercise to verify that this example rules out the correctness of the above
two variants. There are in fact other ways to obtain samples from the stationary
distribution of a monotone Markov chain, such as by using Fill’s algorithm (Fill,
1998) or “read-once CFTP” (Wilson, 2000), but these are not the sort of procedures
that one will discover by randomly mutating the above procedure.

It is worth noting that monotone-CFTP is efficient whenever the underlying
Markov chain is rapidly mixing. If H denotes the length of the longest totally
ordered chain of states between 0̂ and 1̂, then in Propp and Wilson (1996) we
proved that the number of randomizing operation updates that monotone-CFTP
performs before returning a sample as at least Tmix and at most O(Tmix log H),
where Tmix is the mixing time of the Markov chain when measured with the total
variation distance.

There are a surprisingly large number of Markov chains for which monotone-
CFTP may be used (see Propp and Wilson (1996) and other articles listed in
http://www.dbwilson.com/exact/). In the remainder of this chapter we de-
scribe a variety of scenarios in which CFTP has been used even when monotone-
CFTP cannot be used.

20.3. Perfect Sampling via Coupling from the past

Computationally, one needs three things in order to be able to implement the
CFTP strategy: a way of generating (and representing) certain maps from the
state space X to itself; a way of composing these maps; and a way of ascertain-
ing whether total coalescence has occurred, or equivalently, a way of ascertaining

http://www.dbwilson.com/exact/
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whether a certain composite map (obtained by composing many random maps)
collapses all of X to a single element.

The first component is what we call the random map procedure; we model
it as an oracle that on successive calls returns independent, identically distributed
functions f from X to X, governed by some selected probability distribution P
(typically supported on a very small subset of the set of all maps from X to itself).
We use the oracle to choose independent, identically distributed maps f−1, f−2, f−3,
. . . , f−N , where how far into the past we have to go (N steps) is determined during
run-time itself. (In the notation of the previous section, ft(x) = φ(x,Ut).) The
defining property that N must have is that the composite map

F0
−N

def
= f−1 ◦ f−2 ◦ f−3 ◦ · · · ◦ f−N

must be collapsing. Finding such an N thus requires that we have both a way of
composing f ’s and a way of testing when such a composition is collapsing. (Hav-
ing the test enables one to find such an N, since one can iteratively test ever-larger
values of N, say by successive doubling, until one finds an N that works. Such an
N will be a random variable that is measurable with respect to f−N , f−N+1, . . . , f−1.)

Once a suitable N has been found, the algorithm outputs F0
−N(x) for any x ∈ X

(the result will not depend on x, since F0
−N is collapsing). We call this output the

CFTP sample. It must be stressed that when one is attempting to determine a usable
N by guessing successively larger values and testing them in turn, one must use the
same respective maps fi during each test. That is, if we have just tried starting the
chain from time −N1 and failed to achieve coalescence, then, as we proceed to try
starting the chain from time −N2 < −N1, we must use the same maps f−N1 , f−N1+1,
. . . , f−1 as in the preceding attempt. This procedure is summarized below:

T ← 1
while f−1 ◦ · · · ◦ f−T is not collapsing

Increase T
return the value to which f−1 ◦ · · · ◦ f−T collapses X

As long as the nature of P guarantees (almost sure) eventual coalescence, and
as long as P bears a suitable relationship to the distribution π, the CFTP sample
will be distributed according to π. Specifically, it is required that P preserve π in
the sense that if a random state x is chosen in accordance with π and a random
map f is chosen in accordance with P, then the state f (x) will be distributed in
accordance with π. In the next several sections we give examples.

20.4. The hard-core model

The states of this model are given by subsets of the vertex-set of a finite graph
G, or equivalently, by 0, 1-valued functions on the vertex-set. We think of 1 and
0 as respectively denoting the presence or absence of a particle. In a legal state,
no two adjacent vertices may both be occupied by particles. The probability of
a particular legal state is proportional to λm, where m is the number of particles
(which depends on the choice of state) and λ is some fixed parameter-value. We
denote this probability distribution by π. That is, π(S ) = λ|S |/Z where S is a state,
|S | is the number of particles in that state, and Z =

∑
S λ
|S |.
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Luby and Vigoda (1995) provide a simple Markov chain Monte Carlo proce-
dure for randomizing an initial hard-core state. The random moves they consider
are determined by a pair of adjacent vertices u, v and a pair of numbers i, j with
(i, j) equal to (0, 0), (0, 1), or (1, 0). They assume that the pair u, v is chosen uni-
formly from the set of pairs of adjacent vertices in G, and that (i, j) is (0, 0) with
probability 1

1+2λ , (0, 1) with probability λ
1+2λ , and (1, 0) with probability λ

1+2λ . Once
such a quadruple u, v, i, j is chosen, the algorithm proposes to put a vacancy (re-
spectively particle) at vertex u if i is 0 (respectively 1), and similarly for v and j; if
the proposed move would lead to an illegal state, it is rejected, otherwise it is ac-
cepted. It is not hard to show that this randomization procedure has π as its unique
steady-state distribution.

Luby and Vigoda show that as long as λ ≤ 1
∆−3 , where ∆ ≥ 4 is the maximum

degree of G, this Markov chain is rapidly mixing. They do this by using a coupling
argument: two initially distinct states, evolved in tandem, tend to coalesce over
time. That is, the authors implicitly embed the Markov chain in a stochastic flow.
As such, the method cries out to be turned into a perfect sampling scheme via
CFTP.

This is easy to do. Following Häggström and Nelander (1998) and Huber
(1998), one can associate with each set of hard-core states a three-valued function
on the vertex-set, where the value “1” means that all states in the set are known
to have a particle at that vertex, the value “0” means that all states in the set are
known to have a vacancy at that vertex, and the value “?” means that it is possible
that some of the states in the set have a particle there while others have a vacancy.
We can operate directly on this three-valued state-model by means of simple rules
that mimic the Luby-Vigoda algorithm on the original two-valued model.

More specifically, we start with a three-valued configuration in which the ad-
jacencies 0–0, 0–?, and ?–? are permitted but in which a 1 can only be adjacent to
0’s. Proposals are still of the form (0, 0), (0, 1), (1, 0), and they still have respec-
tive probabilities 1

2λ+1 , λ
2λ+1 , and λ

2λ+1 , but proposals are implemented differently.
When it is proposed to put 0’s at u and v, the proposal is always accepted. When
it is proposed to put 0 at u and 1 at v, there are three cases. If all the vertices ad-
jacent to v (other than u) have a 0, the proposal is accepted. If any vertex adjacent
to v (other than u) has a 1, the proposal is simply rejected and nothing happens.
However, if vertex v has a neighbor (other than u) that has a ? but no neighbor
(other than u) that has a 1, then v gets marked with ? and u also gets marked with
? (unless u was already 0, in which case the marking of u does not change). When
it is proposed to put 1 at u and 0 at v, the same procedure is followed, but with the
roles of u and v reversed.

In short, we can take the work of Luby and Vigoda and, without adding any
new ideas, check that their way of coupling two copies of the Luby-Vigoda Markov
chain extends to a stochastic flow on the whole state-space. Moreover, this flow
can be simulated in such a way that coalescence is easily detected: it is not hard to
show that if the 0,1,? Markov chain, starting from the all-?’s state, ever reaches a
state in which there are no ?’s, then the Luby-Vigoda chain, using the same random
proposals, maps all initial states into the same final state. Hence we might want
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to call the 0,1,? Markov chain the “certification chain”, for it tells us when the
stochastic flow of primary interest has achieved coalescence.

One might fear that it would take exponentially long for the certification chain
to certify coalescence, but the proof that Luby and Vigoda give carries over straight-
forwardly to the three-valued setting, and shows that the number of ?’s tends to
shrink to zero in polynomial time (relative to the size of the system).

We mention that Häggström and Nelander (1998) and Huber (1998) originally
used the more natural single-site heat-bath randomizing operation, in which only
one vertex at a time is modified. Work of Randall and Tetali (2000), in conjunction
with the Luby-Vigoda result, implies that the single-site heat-bath Markov chain is
also rapidly mixing for λ ≤ 1

∆−3 .

20.5. Random state of an unknown Markov chain

Now we come to a problem that in a sense encompasses all the cases we have
discussed so far: the problem of sampling from the steady-state distribution π(·) of
a general Markov chain. Of course, in the absence of further strictures this problem
admits a trivial “solution”: just solve for the steady-state distribution analytically!
In the case of the systems studied in sections 3 through 5, this is not practical, since
the state spaces are large. We now consider what happens if the state space is small
but the analytic method of simulation is barred by imposing the constraint that the
transition probabilities of the Markov chain are unknown: one merely has access
to a black box that simulates the transitions.

It might seem that, under this stipulation, no solution to the problem is possi-
ble, but in fact a solution was found by Asmussen, Glynn, and Thorisson (1992).
However, their algorithm was not very efficient. Subsequently Aldous (1995) and
Lovász and Winkler (1995) found faster procedures (although the algorithm of
Aldous involves controlled but non-zero error). The CFTP-based solution given
below is even faster than that of Lovász and Winkler.

For pictorial concreteness, we envision the Markov chain as biased random
walk on some directed graph G whose arcs are labeled with weights, where the
transition probabilities from a given vertex are proportional to the weights of the
associated arcs (as in the preceding section). We denote the vertex set of G by X,
and denote the steady-state distribution on X by π. Propp and Wilson (1998) give
a CFTP-based algorithm that lets one sample from this distribution π.

Our goal is to define suitable random maps from X to X in which many states
are mapped into a single state. We might therefore define a random map from X to
itself by starting at some fixed vertex r, walking randomly for some large number
N of steps, and mapping all states in X to the particular state v that one has landed
in after N steps. However, v is subject to initialization bias, so this random map
procedure typically does not preserve π in the sense defined in section 2.

What actually works is a multi-phase scheme of the following sort: Start at
some vertex r and take a random walk for a random amount of time T1, ending at
some state v; then map every state that has been visited during that walk to v. In
the second phase, continue walking from v for a further random amount of time T2,
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ending at some new state v′; then map every state that was visited during the second
phase but not the first to v′. In the third phase, walk from v′ for a random time to
a new state v′′, and map every hitherto-unvisited state that was visited during that
phase to the state v′′. And so on. Eventually, every state gets visited, and every
state gets mapped to some state. Such maps, like tree-maps, are easy to compose,
and it is easy to recognize when such a composition is coalescent (it maps every
state to one particular state).

There are two constraints that our random durations T1, T2, . . . must satisfy if
we are planning to use this scheme for CFTP. (For convenience we will assume
henceforth that the Ti’s are i.i.d.) First, the distribution of each Ti should have the
property that, at any point during the walk, the (conditional) expected time until
the walk terminates does not depend on where one is or how one got there. This
ensures that the stochastic flow determined by these random maps preserves π.
Second, the time for the walk should be neither so short that only a few states get
visited by the time the walk ends nor so long that generating even a single random
map takes more time than an experimenter is willing to wait. Ideally, the expected
duration of the walk should be on the order of the cover-time for the random walk.
Propp and Wilson (1998) show that by using the random walk itself to estimate
its own cover-time, one gets an algorithm that generates a random state distributed
according to π in expected time at most 15 times the cover time.

At the beginning of this section, we said that one has access to a black box that
simulates the transitions. This is, strictly speaking, ambiguous: Does the black box
have an “input port” so that we can ask it for a random transition from a specified
state? Or are we merely passively observing a Markov chain in which we have
no power to intervene? This ambiguity gives rise to two different versions of the
problem, of separate interest. Our CFTP algorithm works for both of them.

For the “passive” version of the problem, it is not hard to show that no scheme
can work in expected time less than the expected cover time of the walk, so in this
setting our algorithm runs in time that is within a constant factor of optimal. It is
possible to do better in the active setting, but no good lower bounds are currently
known for this case.





APPENDIX A

Notes on notation

The ⊂ symbol includes the possibility of equality: hence,Ω ⊂ Ω is true. (Equa-
tion 5.1)

a ∧ b = min(a, b). (Proposition 5.5)
Zn = {0, . . . , n − 1} = set of remainders mod n. (definition of random walk on

n-cycle, chapter 3.)
an = O(bn) mean that there is a constant c so that an/bn ≤ c for all n.
an = o(bn) means that limn→∞ an/bn = 0.
an � bn means that an = O(bn) and bn = O(an). In other words, there are

constants 0 < c1, c2 < ∞ so that c1 ≤ an/bn ≤ c2 for all n.
For a real-valued function f : Ω→ R and a probability distribution µ on Ω, we

write Eµ( f ) for
∑

x∈Ω f (x)µ(x).
The symbol := means defined as. For example, f (x) := x2 means that f is the

function defined at x to be x2.
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APPENDIX B

Background Material

B.1. Probability Spaces and Random Variables
{Apx:RVs}

For a comprehensive account of measure theory, the mathematical theory un-
derlying modern probability, the interested reader should consult one of the many
textbooks on the subject, for example Billingsley (1995). We will need very little
of this theory in this book, but for the purpose of establishing notation and termi-
nology we record a few definitions here.

A probability space is a set Ξ, together with a family of subsets of Ξ whose
elements are called events. When Ξ is a finite or countable set, all subsets are
events, but when Ξ is uncountable, for example a subinterval of R, not every subset
is an event. Events satisfy the following closure properties:

(i) Ξ is an event,
(ii) if B1, B2, . . . are all events, then the union

⋃∞
i=1 Bi is also an event, and

(iii) if B is an event, so is Ξ \ B.

The following are two very important examples of probability spaces.

E B.1. When Ξ is a subinterval ofR, the set of events is the smallest col-
lection containing all open subiniterval of Ξ and satisfying the closure properties.
In this case, events are called Borel sets.

E B.2. When Ξ is the sequence space S∞ for a finite set S , a set of the
form

A1 × A2 × · · · × An × S × S · · · , Ak ⊂ S for all k = 1, . . . , n

is called a cylinder set. The events in S∞ is the smallest collection of sets satisfying
the closure properties and containing the cylinder sets.

Given a probability space, a probability measure is a non-negative function P
defined on events and satisfying the probability axioms:

(i) P(Ξ) = 1,
(ii) for any sequence of events B1, B2, . . . which are mutually disjoint, meaning

Bi ∩ B j = ∅ for i , j,

P
 ∞⋃

i=1

Bi

 = ∞∑
i=1

P(Bi).
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If Ξ is a countable set, a probability distribution on Ξ is a function p : Ξ →
[0, 1] so that

∑
ξ∈Ξ p(ξ) = 1. A probability distribution induces a probability mea-

sure on the events of Ξ via the definition

P(B) =
∑
ξ∈B

p(ξ). (B.1) {Eq:distdefn}

If Ξ is a subinterval of R, and f : Ξ → [0,∞) satisfies
∫
Ξ

f (ξ)dξ = 1, then f is
called a density function. Given a density function, a probability measure can be
defined for events B by

P(B) =
∫

B
f (ξ)dξ.

Given a probability space, a random variable X is a function defined on Ξ. The
notation {X ∈ A} means {ξ ∈ Ξ : X(ξ) ∈ A} = X−1(A). Any set of the form {X ∈ A}
encountered in this book will be an event. The distribution of a random variable X
is the probability measure µX on R defined for events B by

µX(B) = P{X ∈ B}.

Suppose that X is a real-valued random variable. X is called discrete if there is
a finite or countable set S so that µX(S ) = 1. In this case, the function

pX(a) = P{X = a}

is a probability distribution on S .
A real-valued random variable X is called continuous if there is a density func-

tion f on R so that

µX(A) =
∫

A
f (x)dx.

For a discrete real-valued random variable X, the expectation E(X) can be com-
puted by the formula

E(X) =
∑
x∈R

xP{X = a}.

(Note that there are at most countably non-zero summands.) For a continuous real-
valued random variable X,

E(X) =
∫
R

x fX(x)dx.

A sequence of random variables (Xt) converge in probability to a random vari-
able X if

lim
t→∞

P{|Xt − X| > ε} = 0, (B.2)

for all ε. This is denoted by Xt
pr
−→ X.

T B.3 (Weak Law of Large Numbers). If (Xt) is a sequence of indepen-
dent random variable so that E(Xt) = µ and Var(Xt) = σ2 for all t, then

1
T

T∑
t=1

Xt
pr
−→ µ as T → ∞.
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P. By linearity of expectation, E(T−1 ∑T
t=1 Xt) = µ, and by independence,

Var(T−1 ∑T
t=1 Xt) = σ2/T . Applying Chebyshev’s inequality,

P


∣∣∣∣∣∣∣ 1
T

T∑
t=1

Xt − µ

∣∣∣∣∣∣∣ > ε
 ≤ σ2

Tε2 .

For every ε > 0 fixed, the right-hand side tends to zero as T → ∞. �
{Thm:SLLN}

T B.4 (Strong Law of Large Numbers). Let Z1,Z2, . . . be a sequence of
random variables with E(Zs) = 0 for all s and

Var(Zs+1 + · · · + Zs+k) ≤ Ck

for all s and k. Then

P

 lim
t→∞

1
t

t−1∑
s=0

Zs = 0

 = 1. (B.3) {Eq:SLLN}

P. Let At := t−1 ∑t−1
s=0 Zs. Then

E(A2
t ) =

E
[(∑t−1

s=0 Zs
)2

]
t2 ≤

C
t
.

Thus, E
(∑∞

m=1 A2
m2

)
< ∞, which in particular implies that

P

 ∞∑
m=1

A2
m2 < ∞

 = 1, and P
{

lim
m→∞

Am2 = 0
}
= 1. (B.4) {Eq:ASquare}

For a given t, let mt be such that m2
t ≤ t < (mt + 1)2. Then

At =
1
t

m2
t Am2

t
+

t−1∑
s=m2

t

Zs

 . (B.5) {Eq:ASum}

Since limt→∞ t−1m2
t = 1, by (B.4),

P
{

lim
t→∞

t−1m2
t Am2

t
= 0

}
= 1. (B.6) {Eq:ASum1}

Defining Bt := t−1 ∑t−1
s=m2

t
Zs,

E(B2
t ) =

Var
(∑t−1

s=m2
t

Zs

)
t2 ≤

2Cmt

t2 ≤
2C
t3/2 .

Thus E(
∑∞

t=0 B2
t ) < ∞, and

P

 lim
t→∞

∑t
s=m2

t +1
Zs

t
= 0

 = 1. (B.7) {Eq:ASum2}

Putting together (B.6) and (B.7), from (B.5) we conclude that (B.3) holds. �
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n

2/n

F B.1. A sequence of functions whose integrals do no con-
verge to the integral of the limit.

fig:nonunif

B.1.1. Limits of Expectations. We know from calculus that if ( fn) is a se-
quence of functions defined on an interval I, satisfying for every x ∈ I,

lim
n→∞

fn(x) = f (x)

then it is not necessarily the case that

lim
n→∞

∫
I

fn(x)dx =
∫

I
f (x)dx .

As an example, consider the function whose graph is shown in Figure B.1. The
integral of this function is always 1, but each x ∈ [0, 1], the limit limn g(x) = 0.
That is, ∫ 1

0
lim

n
gn(x)dx = 0 , 1 = lim

n

∫ 1

0
gn(x)dx. (B.8){eq:noconverge}

We can turn this into a story about random variables. Let U be a uniform
random variable, and let Yn = gn(U). Notice that Yn → 0. Then

E(Yn) = E(gn(U)) =
∫

gn(x) fU(x)dx =
∫ 1

0
gn(x)dx,

as the density of U is fU(x) = 1[0,1]. Then by (B.8) we see that

lim
n→∞

E(Yn) , E
(

lim
n→∞

Yn

)
.

Now that we have seen that we cannot always move a limit inside an expecta-
tion, can we ever? The answer is “yes”, given some additional assumptions.

{prop:dconv}
P B.5. Let Yn be a sequence of random variables and Y a random

variable so that P {limn→∞ Yn = Y} = 1.
{it:dom}

(i) If there is a constant K independent of n so that |Yn| < K for all n, then

lim
n→∞

E(Yn) = E(Y).
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{it:mon}
(ii) If P{Yn ≤ Yn+1} = 1 for all n, then

lim
n→∞

E(Yn) = E(Y).

Proposition B.5(i) is called the Dominated Convergence Theorem, and Propo-
sition B.5(ii) is called the Monotone Convergence Theorem.

P. For any ε > 0,

|Yn − Y | ≤ 2K1{|Yn−Y |>ε/2} + ε/2,

and taking expectation above shows that

|E(Yn) − E(Y)| ≤ E (|Yn − Y |)
≤ 2KP {|Yn − Y | > ε/2} + ε/2.

Since P {|Yn − Y | ≥ ε/2} → 0, by taking n sufficiently large,

|E(Yn) − E(Y)| ≤ ε.

That is, limn→∞ E(Yn) = E(Y). �

For a proof of (ii), see Billingsley (1995, Theorem 16.2)

B.2. Metric Spaces
{App:MS}

A set M equipped with a function ρ measuring the distance between its ele-
ments is called a metric space. In Euclidean space Rk, the distance between vectors

is measured by the norm ‖x − y‖ =
√∑n

i=1(xi − yi)2. On a graph, distance can be
measured as the length of the shortest path connecting x and y. These are examples
of metric spaces.

The function ρ must satisfy some properties to reasonably be called a distance.
In particular, it should be symmetric, in the sense that there should be no difference
between measuring from a to b and measuring from b to a. Distance should never
be negative, and there should be no two distinct elements which have distance zero.
Finally, the distance ρ(a, c) from a to c should never be greater than proceeding via
a third point b and adding the distances ρ(a, b) + ρ(b, c). For obvious reasons, this
last property is called the triangle inequality.

We summarize here these properties:

(i) ρ(a, b) = ρ(b, a) for all a, b ∈ M,
(ii) ρ(a, b) ≥ 0 for all a, b ∈ M, and ρ(a, b) = 0 only if a = b,

(iii) For any three elements a, b, c ∈ M,

ρ(a, c) ≤ ρ(a, b) + ρ(b, c). (B.9)
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B.3. Linear Algebra
{App:LA}{Thm:SpectralThm}

T B.6 (Spectral Theorem for Symmetric Matrices). If M is a symmetric
m × m matrix, then there exists a matrix U with U′U = I and a diagonal matrix Λ
so that M = U′ΛU.

(The matrix U′ is the transpose of U, defined as U′i, j := U j,i.) A proof of
Theorem B.6 can be found, for example, in Horn and Johnson (1990, Theorem
4.1.5).

Another way of formulating the Spectral Theorem is to say that there is an
orthonormal basis of eigenvectors for M. The columns of U form one such basis,
and the eigenvalue associated to the ith column is λi = Λii.

The variational characterization of the eigenvalues of a symmetric matrix is
very useful:

{Thm:RayleighRitz}
T B.7 (Rayleigh-Ritz). Let M be a symmetric matrix with eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn

and associated eigenvectors x1, . . . , xn. Then

λk = max
x,0

x⊥x1,...,xk−1

〈x, Ax〉
〈x, x〉

.

See Horn and Johnson (1990, p. 178) for a discussion.

B.4. Miscellaneous

Stirling’s formula says that

n! ∼
√

2πe−nnn+1/2, (B.10){Eq:SF}

where an ∼ bn means that limn→∞ anb−1
n = 1.

More precise results are known, for example,

n! =
√

2πe−nnn+1/2eεn ,
1

12n + 1
≤ εn ≤

1
12n

. (B.11){Eq:SFBounds}
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Solutions to Selected Exercises

Chapter 2

S  2.4. Assume that n is even and let q = 1 − p. For y ∈ {0, 1}m,
the probability that exactly the first m pairs are discordant and yield the word y as
output is

[pq]m[1 − 2pq]n/2−m.

Given that L = m, there are
(
n/2
m

)
possibilities for the locations of the m disagreeing

pairs. By symmetry, we have

P{(Y1, . . . ,Ym) = y, L = m} =
(
n/2
m

)
[pq]m[1 − 2pq]n/2−m. (C.1) {Eq:JointYEll}

The marginal distribution of L is

P{L = m} =
(
n/2
m

)
[2pq]m[1 − 2pq]n/2−m. (C.2) {Eq:MarginalEll}

Together (C.1) and (C.2) show that

P{Y = y | L = m} = 2−m.

�

S  2.10. We proceed by induction on n. The base case n = 1 is clear.
Assume that the (n − 1)-step algorithm indeed produces a uniformly distributed
ξn−1 ∈ Ξ

nr
n−1. Extend ξn−1 to ξn according to the algorithm, picking one of the three

available extensions at random. Note that |Ξnr
n | = 4 · 3n−1. For h any path in Ξnr

n , let
hn−1 be the projection of h to Ξnr

n−1, and observe that

P{ξn = h} = P{ξn = h | ξn−1 = hn−1}P{ξn−1 = hn−1} =
1
3

(
1

4 · 3n−2

)
=

1
4 · 3n−1 .

�

S  2.11. Since the number of self-avoiding walks of length n is clearly
bounded by cn,4, and our method for generating non-reversing paths is uniform over
Ξnr

n which has size 4 · 3n−1, the second part follows from the first.
There are 4(33) − 8 walks of length 4 starting at the origin which are non-

reversing and do not return to the origin. At each 4-step stage later in the walk, there
are 34 non-reversing paths of length 4, of which six create loops. This establishes
(2.13). �

253



254 C. SOLUTIONS TO SELECTED EXERCISES

S  2.12. This is established by induction. The cases n = 0 and n = 1
are clear. Suppose it holds for n ≤ k − 1. The number of configurations ω ∈ Ωk
with ω(k) = 0 is the same as the total number of configurations in Ωk−1. Also,
the number of configurations ω ∈ Ωk with ω(k) = 1 is the same as the number of
configurations in Ωk−1 having no particle at k− 1, which is the same as the number
of configurations in Ωk−2. �

S  2.13. Let ω be an element ofΩn, and let X be the random element
of Ωn generated by the algorithm. If ω(n) = 1, then

P{X = ω} =
1

fn−2

(
fn−2

fn

)
=

1
fn
.

Similarly, if ω(n) = 0, then P{X = ω} = 1/ fn. �

S  2.1. σ is a permutation if all of the images are distinct, which
occurs with probability

pn :=
n!
nn .

where an ∼ bn means that limn→∞ an/bn = 1. Using Stirling’s Formula shows that

pn ∼
√

2πne−n.

Since the number of trials needed is geometric with parameter pn, the expected
number of trials needed is asymptotic to

en

√
2πn

.

�

S  2.2. The proposed method clearly yields a uniform permutation
when n = 1 or n = 2. However, it fails to do for for all larger values of n. One way
to see this is to note that at each stage in the algorithm, there are n options. Hence
the probability of each possible permutation must be an integral multiple of 1/nn.
For n ≥ 3, n! is not a factor of nn, so no permutation can have probability 1/n! of
occurring. �

S  2.3. We proceed by induction. Let H j be the function defined in
the first j steps described above; the domain of H j is [ j]. Clearly H1 is uniform
on Ωk,1. Suppose H j−1 is uniform on Ωk, j−1. Let h ∈ Ωk, j. Write h j−1 for the
restriction of h to the domain [ j − 1]. Then

P{H j−1 = h j−1} = |Ωk, j−1|
−1,

by the induction hypothesis. Note that

|Ωk, j| = (k − 1)|Ωk, j−1|,

since for each element of Ωk, j−1 there are k − 1 ways to extend it to an element
of Ωk, j, and every element of Ωk, j can be obtained as such an extension. By the
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construction and the induction hypothesis,

P{H j = h} = P{H j−1 = h j−1}P{H j = h | H j−1 = h j−1)

=
1

|Ωk, j−1|

1
(k − 1)

= |Ωk, j|
−1.

�

Chapter 3

S  3.1. Since the lily pad the frog is sitting on shows a head, it must
be morning, and the frog must be about to jump to the other pad. �

S  3.8. We show that the tree can be recolored, vertex-by-vertex, so
that it has all odd depth vertices with the color 2, and all even depth vertices with
the color 1.

Without loss of generality, assume all leaves are the same distance to the root.
Start at the leaves, and one-by-one, change them to the color of their grandpar-

ent. Because their parent has a color different from their grandparent, this is always
legal.

Let the height of a vertex be its distance from the closest leaf. Suppose all ver-
tices of height at most k have the same color as the grandparents. Let v be a vertex
at height k + 1. Change it to the same color as its grandparent, say color c1. This
is possible because the parent and children of v have the same color, say c2, which
is necessarily different from c1. If this causes v to have a different color than its
grandchildren, recolor them, their grandchildren, their grandchildren’s grandchil-
dren, on so on, also with c1. This is possible because these vertices are connected to
vertices only of color c2. All the vertices at height k can then be recolored in turn,
so that all vertices at height at most k+1 share the same color as their grandparents.

When the level just below the root is reached, recolor these vertices, making
sure to recolor any “even” descendant with the same color.

At this point, all vertices at even height have a single color, and all vertices at
odd height have a single color. This configuration can be recolored, again vertex-
by-vertex, so that all odd heights have color 2 and all even heights have color 1. �

S  3.10.
(a) This is by now a standard application of the parity of permutations. Note that

any sequence of moves in which the empty space ends up in the lower right
corner must be of even length. Since every move is a single transposition, the
permutation of the tiles (including the empty space as a tile) in any such posi-
tion must be even. However, the desired permutation (switching two adjacent
tiles in the bottom row) is odd.

(b) In fact, all even permutations of tiles can be achieved, but it is not entirely
trivial to demonstrate. See Archer (1999) for an elementary proof and some
historical discussion. Zhentao Lee discovered a new and elegant elementary
proof during our 2006 MSRI workshop.
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�

S  3.12. (b) Since Px{τ
+ > t} is a decreasing function of t, (3.17)

suffices to bound the entire sum:

Ex(τ+y ) =
∑
t≥0

Px{τ
+
y > t} ≤

∑
k≥0

rPx{τ
+
y > kr} ≤ r

∑
k≥0

(1 − ε)k < ∞.

�

S  3.13. �

S  3.14.

π(x)P2(x, y) = π(x)
∑
x∈Ω

P(x, z)P(z, y)

=
∑
x∈Ω

π(z)P(z, x)P(z, y)

=
∑
x∈Ω

π(z)P(z, y)P(z, x)

=
∑
x∈Ω

π(y)P(y, z)P(z, x)

= π(y)
∑
x∈Ω

P(y, z)P(z, x)

= π(y)P2(y, x).

�

S  3.18.
(a) Compute:

νnP(x) − µn(x) =
1
n

(
µPn(x) − µ(x)

)
≤

2
n
,

since any probability measure has weight at most 1 at x.
(b) Bolzano-Weierstrass, applied either directly in R|Ω| or iteratively: first take

a subsequence that converges at x1, then take a subsequence of that which
converges at x2, and so on. Either way, it’s key that the weights of the measure
are bounded and that the state space is finite.

(c) Part (a) gives stationarity, while the fact that the set of probability measures on
Ω (viewed as a set in R|Ω|) is closed gives that ν is a probability distribution.

�

Chapter 4

S  17.11.
(a) x ≤ U(k) ≤ x+dx if and only if among {U1,U2, . . . ,Un}, exactly k−1 lie to the

left of x, one is in [x, x + dx], and n − k variables exceed x + dx. This occurs
with probability (

n
(k − 1), 1, (n − k)

)
xk−1(1 − x)n−kdx.
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Thus,

E
(
U(k)

)
=

∫ 1

0

n!
(k − 1)!(n − k)!

xk(1 − x)n−kdx

=
n!

(k − 1)!(n − k)!
(n − k)!k!
(n + 1)!

=
k

n + 1
.

[The integral can be evaluated by observing that the function k!(n−k)!
(n+1)! xk(1−x)n−k

is the density for a Beta random variable with parameters k + 1 and n − k + 1.]
(b) The distribution function for U(n) is

Fn(x) = P{U1 ≤ x,U2 ≤ x, . . . ,Un ≤ x} = P{U1 ≤ x}n = xn.

Differentiating, the density function for U(n) is

fn(x) = nxn−1.

Consequently,

E
(
U(n)

)
=

∫ 1

0
xnxn−1dx =

n
n + 1

xn+1
∣∣∣∣1
0
=

n
n + 1

.

We proceed by induction, showing that

E
(
U(n−k)

)
=

n − k
n + 1

. (C.3) {Eq:RevOS}

We just established the case k = 0. Now suppose (C.3) holds for k = j. Given
U(n− j), the order statistics U(i) for i = 1, . . . , n − j − 1 have the distribution of
the order statistics for n − j − 1 independent variables uniform on [0,U(n− j)].
Thus,

E
(
U(n− j−1) | U(n− j)

)
= U(n− j)

n − j − 1
n − j

,

and so

E
(
U(n− j−1)

)
= E

(
E

(
U(n− j−1) | U(n− j)

))
= E

(
U(n− j)

) n − j − 1
n − j

.

Since (C.3) holds for k = j by assumption,

E
(
U(n− j−1)

)
=

n − j
n + 1

n − j − 1
n − j

=
n − j − 1

n + 1
.

This establishes (C.3) for j = k.
(c) The joint density of (S 1, S 2, . . . , S n+1) is e−sn+11{0<s1<···<sn+1}, as can be verified

by induction:

fS 1,S 2,...,S n+1(s1, . . . , sn+1) = fS 1,S 2,...,S n(s1, . . . , sn) fS n+1 |S 1,...,S n(sn+1 | s1, . . . , sn)

= e−sn1{0<s1<···<sn}e
−(sn+1−sn)1{sn<sn+1}

= e−sn+11{0<s1<···<sn+1}
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Because the density of S n+1 is sn
n+1e−sn+1/(n!)1{sn+1>0},

fS 1,...,S n |S n+1(s1, . . . , sn | sn+1) =
n!

sn
n+1

1{0<s1<···<sn<sn+1}.

If Tk = S k/S n+1 for k = 1, . . . , n, then

fT1,...,Tk |S n+1(t1, . . . , tn | sn+1) = n!1{0<t1<···<tn<1}.

Since the right-hand side does not depend on sn+1, the vector(
S 1

S n+1
,

S 2

S n+1
, . . . ,

S 1

S n+1

)
is uniform over the set

{(x1, . . . , xn) : x1 < x2 < · · · < xn}.

�

S  4.2. Let fk be the expected value of the time until our gambler
stops playing. Just as for regular gambler’s ruin, the values fk are related:

f0 = fn = 0 and fk =
p
2

(1 + fk−1) +
p
2

(1 + fk+1) + (1 − p)(1 + fk).

It is easy to check that setting fk = k(n − k)/p solves this system of equations.
(Note that the answer is just what it should be. If she only bets a fraction p of the
time, then it should take a factor of 1/p longer to reach her final state.) �

S  4.3. Let (Xt) be a fair random walk on the set {−n, . . . , n}, starting
at the state 0 and absorbing at ±n. By Proposition 4.1, the expected time for this
walk to be absorbed is (2n − n)(2n − n) = n2.

The walk described in the problem can be viewed as n−|Xt|. Hence its expected
time to absorption is also n2. �

S  4.5.

n∑
k=1

1
k
≥

n∑
k=1

∫ k+1

k

dt
t
=

∫ n+1

1

dt
t
= log(n + 1) ≥ log n, (C.4)

and

n∑
k=1

1
k
= 1 +

n∑
k=2

1
k
≤ 1 +

n∑
k=2

∫ k

k−1

dt
t
= 1 +

∫ n

1

dt
t
= 1 + log n. (C.5)

�
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S  4.6.(
d

k + 1

)
P(k + 1, k) +

(
d

k − 1

)
P(k − 1, k) =

d!
(k + 1)!(d − k − 1)!

k + 1
d

+
d!

(k − 1)!(d − k + 1)!
d − k + 1

d

=

(
d − 1
k − 1

)
+

(
d
k

)
=

(
d
k

)
.

The last combinatorial identity can be seen by counting the number of size k subsets
from d objects which contain a distinguished element and the number which do not
contain this distinguished element. �

Chapter 5

S  5.1.

∥∥∥µPt − π
∥∥∥

TV =
1
2

∑
y∈Ω

|µPt(y) − π(y)|

=
1
2

∑
y∈Ω

∣∣∣∣∣∣∣∑x∈Ω µ(x)Pt(x, y) −
∑
x∈Ω

µ(x)π(y)

∣∣∣∣∣∣∣
≤

1
2

∑
y∈Ω

∑
x∈Ω

µ(x)|Pt(x, y) − π(y)|

=
∑
x∈Ω

µ(x)
1
2

∑
y∈Ω

|Pt(x, y) − π(y)|

=
∑
x∈Ω

µ(x)
∥∥∥Pt(x, ·) − π

∥∥∥
TV

≤ max
x∈Ω

∥∥∥Pt(x, ·) − π
∥∥∥

TV .

Since this holds for any µ, we have

sup
µ

∥∥∥µPt − π
∥∥∥

TV ≤ max
x∈Ω

∥∥∥Pt(x, ·) − π
∥∥∥

TV = d(t).

The opposite inequality holds, since the set of probabilities on Ω includes the point
masses.
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Similarly, if α and β are two probabilities on Ω, then

‖αP − βP‖TV =
1
2

∑
z∈Ω

∣∣∣∣∣∣∣αP(z) −
∑
w∈Ω

β(w)P(w, z)

∣∣∣∣∣∣∣
≤

1
2

∑
z∈Ω

∑
w∈Ω

β(w)|αP(z) − P(w, z)|

=
∑
w∈Ω

β(w)
1
2

∑
z∈Ω

|αP(z) − P(w, z)|

=
∑
w∈Ω

β(w) ‖αP − P(w, ·)‖TV

≤ max
w∈Ω
‖αP − P(w, ·)‖TV . (C.6) {Eq:GetRid1}

Thus, applying with α = µ and β = ν gives that

‖µP − νP‖TV ≤ max
y∈Ω
‖µP − P(y, ·)‖TV . (C.7){Eq:TVExB1}

Applying (C.6) with α = δy, where δy(z) = 1{z=y}, and β = µ shows that

‖µP − P(y, ·)‖TV = ‖P(y, ·) − µP‖TV ≤ max
x∈Ω
‖P(y, ·) − P(x, ·)‖TV . (C.8){Eq:TVExB2}

Combining (C.7) with (C.8) shows that

‖µP − νP‖TV ≤ max
x,y∈Ω

‖P(x, ·) − P(y, ·)‖TV .

�

S  5.3. This is a standard exercise in manipulation of sums and in-
equalities. Apply Proposition 5.2, expand the matrix multiplication, apply the tri-
angle inequality, switch order of summation, and apply Proposition 5.2 once more:

‖µP − νP‖TV =
1
2

∑
x∈Ω

|µP(x) − νP(x)| =
1
2

∑
x∈Ω

∣∣∣∣∣∣∣∣
∑
y∈Ω

µ(y)P(y, x) −
∑
y∈Ω

ν(y)P(y, x)

∣∣∣∣∣∣∣∣
=

1
2

∑
x∈Ω

∣∣∣∣∣∣∣∣
∑
y∈Ω

P(y, x)
[
µ(y) − ν(y)

]∣∣∣∣∣∣∣∣ ≤ 1
2

∑
x∈Ω

∑
y∈Ω

P(y, x) |µ(y) − ν(y)|

=
1
2

∑
y∈Ω

|µ(y) − ν(y)|
∑
x∈Ω

P(y, x) =
1
2

∑
y∈Ω

|µ(y) − ν(y)| = ‖µ − ν‖TV .

�

S  5.2. Define An = n−1 ∑n
k=1 ak. Let nk ≤ m < nk+1. Then

Am =
nk

m
Ank +

∑m
j=nk+1 a j

m
.
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Because nk/nk+1 ≤ m−1nk ≤ 1, the ratio m−1nk tends to 1. Thus the first term tends
to a. If |a j| ≤ B, then the absolute value of the second term is bounded by

B
nk+1 − nk

nk
→ 0.

Thus Am → a. �

S  5.5. The total variation distance obeys the triangle inequality, so

‖P(x, ·) − P(y, ·)‖TV ≤ ‖P(x, ·) − π‖TV + ‖P(y, ·) − π‖TV .

Clearly, for all x, y ∈ Ω, the right-hand side is bounded above by

max
x∈Ω
‖P(x, ·) − π‖TV +max

y∈Ω
‖P(y, ·) − π‖TV = 2d(t).

Thus taking the maximum over pairs x, y ∈ Ω completes the solution. �

Chapter 6

S  6.1. Consider the following coupling of the chain started from x
and the chain started from π: run the chains independently until the time τ when
they meet, and then run them together. Recall that by aperiodicity and irreducibil-
ity, there is some r so that α := minx,y Pr(x, y) ≥ 0.

Fix some state x0. Then the probability that both chains, starting from say x
and y, are not at x0 after r steps is at most (1 − α). If the two chains are not at x0
after these r steps, the probability that they are not both at x0 after another r steps
is again (1 − α). Continuing in this way, we get that P{τ > kr} ≤ (1 − α)k. This
shows that P{τ < ∞} = 1. �

S  6.2. We show that

P{τcouple > kt0} ≤ (1 − α)k, (C.9) {Eq:CoupleTimeGeo}

from which the conclusion then follows by summing. An unsuccessful coupling
attempt occurs at trial j if Xt , Yt for all jt0 < t ≤ ( j + 1)t0. Since (Xt,Yt) is
a Markovian coupling, so is (Xt+ jt0 ,Yt+ jt0) for any j, and we can apply the given
bound on the probability of not coupling to any length-t0 segment of the trajecto-
ries. Hence the probability of an unsuccessful coupling attempt at trial j is at most
(1 − α). It follows that the probability that all the first k attempts are unsuccessful
is at most (1 − α)k. �

S  6.4. If τi is the coupling time of the ith coordinate, we have seen
already that E(τi) ≤ n2/4, so

P{τi > dn2} ≤
E(τi)
kdn2 ≤

1
4
.

Suppose that P{τi > (k − 1)dn2} ≤ 4−(k−1). Then

P{τi > kdn2} = P{τi > kdn2 | τi > (k − 1)dn2}P{τi > (k − 1)dn2}

≤ 4−14−(k−1)

= 4−k.
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Letting Gi = {τi > kdn2}, we have P(Gi) ≤ 4−1. Thus

P
{

max
1≤i≤d

τi > kdn2
}
≤ P

 d⋃
i=1

Gi

 ≤ d∑
i=1

P(Gi) ≤ d4−k.

Taking k = (1/2) log2(4d) makes the right-hand side equal (1/4). Thus

tmix ≤ (1/2)[log2(4d)]dn2 = O([d log2 d]n2).

�

Chapter 7.

S  7.1. From any ordering of the cards, the shuffle can move to ex-
actly n orderings, each with probability n−1. Furthermore, each ordering of the
deck has exactly n possible predecessors. Consequently, because

n∑
k=1

1
n!

1
n
=

1
n!
,

it follows that π = πP where π is the uniform distribution. �

S  7.4. For x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Zd
n, let

φx,y(z1, z2, . . . , zd) = (z1 + y1 − x1 mod n, . . . , zd + yd − xd mod n).

Clearly, φx,y(x) = y.
Consider z = (z1, z2, . . . , zd) and z′ = (z1, . . . , zi + δ mod n, . . . , zn), where

δ ∈ {+1,−1}. The only transitions for the chain are of the form z → z′ and z → z.
Since φx,y(z) and φx,y(z′) also differ exactly in the ith coordinate by ±1,

P(z, z′) =
1

2d
= P(φx,y(z), φx,y(z′).

�

S  7.9. By Exercise 7.8,

s(t) = s
(
t0

t
t0

)
≤ s(t0)t/t0 .

Since s(t0) ≤ ε by hypothesis, applying Lemma 7.5 finishes the solution. �

S  7.3. Let ε := [2(2n − 1)]−1. Let µ(v) = (2n − 1)−1. For v , v?,∑
w

µ(w)P(w, v) =
∑

w : w∼v
w,v

1
(2n − 1)

[
1
2
− ε

]
1

n − 1
+

1
(2n − 1)

[
1
2
+ ε

]

=
1

(2n − 1)

{
(n − 1)

[
1
2
− ε

]
1

n − 1
+

[
1
2
+ ε

]}
=

1
2n − 1
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Also, ∑
w

µ(w)P(w, v?) = (2n − 2)
1

2n − 1

[
1
2
− ε

]
1

n − 1
+

1
2n − 1

(
1

2n − 1

)
=

1
2n − 1

�

S  7.10. Following the hint and taking expectations,

E
 τ∑

t=1

Yt

 = ∞∑
t=1

E
(
Yt1{τ≥t}

)
. (C.10) {Eq:WE1}

Since the event {τ ≥ t} is by assumption independent of Yt, and E(Yt) = E(Y1) for
all t ≥ 1, the right-hand side equals

∞∑
t=1

E (Y1) P{τ ≥ t}.

The conclusion then follows by Exercise 3.12(a).
Now suppose that τ is a stopping time. For each t,

1{τ≥t} = 1 − 1{τ≤t−1} = gt(Y1,Y2, . . . ,Yt−1)

for some function gt : Rt → {0, 1}. Since the sequence (Yt) is i.i.d. and 1{τ≥t} is a
function of Y1, . . . ,Yt−1, the indicator is independent of Yt.

�

S  7.11. Let A be the set of vertices in one of the complete graphs
making up G. Clearly, π(A) = n/(2n − 1) ≥ 2−1.

On the other hand, for x < A,

Pt(x, A) = 1 − (1 − αn)t (C.11)

where

αn =
1
2

[
1 −

1
2(n − 1)

]
1

n − 1
=

1
2n

[1 + o(1)] .

The total variation distance can be bounded below:∥∥∥Pt(x, ·) − π
∥∥∥

TV ≥ π(A) − Pt(x, A) ≥ (1 − αn)t −
1
2
. (C.12)

Since
log(1 − αn)t ≥ t(−αn − α

2
n/2),

and −1/4 ≥ log(3/4), if t < [4αn(1 − αn/2)]−1, then

(1 − αn)t −
1
2
≥

1
4
.

This implies that

tmix(1/4) ≥
n
2

[1 + o(1)] .

�



264 C. SOLUTIONS TO SELECTED EXERCISES

S  7.6.

Pπ{X0 = x0, . . . , Xn = xn} = π(x0)P(x0, x1)P(x1, x2) · · · P(xn−1, xn)

= P̂(x1, x0)π(x1)P(x1, x2) · · · P(xn−1, xn)

= P̂(x1, x0)π(x2)P̂(x2, x1) · · · P(xn−1, xn)
...

= π(xn)P̂(xn, xn−1) · · · P̂(x2, x1)P̂(x1, x0)

= Pπ{X̂0 = xn, . . . , X̂n = x0}

�

S  7.7. Let φ be the function which maps y 7→ x and preserves P.
Then

P̂(z,w) =
π(w)P(w, z)

π(z)
=
π(w)P(φ(w), φ(z))

π(z)
= P̂(w, z). (C.13)

Note the last equality follows since π is uniform, and so π(x) = π(φ(x)) for all
x. �

Chapter 14

S  14.2. Notice that

P{X1 = x1} =
∑
y1∈Ω

P{X1 = x1,Y1 = y1}.

By condition on the values of X0 and Y0, this equals∑
y1∈Ω

∑
(x0,y0)∈Ω×Ω

P{X1 = x1,Y1 = y1 | X0 = x0,Y0 = y0}P{X0 = x0,Y0 = y0}.

Changing the order of summation, the above is∑
(x0,y0)∈Ω×Ω

∑
y1∈Ω

P{X1 = x1,Y1 = y1 | X0 = x0,Y0 = y0}

 P{X0 = x0,Y0 = y0}.

The conditional distribution of (X1,Y1) given X0 = x0,Y0 = y0 is a coupling of
P(x0, ·) and P(y0, ·), so the inner sum above is P(x0, x1). Thus,

P{X1 = x} =
∑

(x0,y0)∈Ω×Ω

P(x0, x1)P{X0 = x0,Y0 = y0}

=
∑
x0∈Ω

P(x0, x1)
∑
y0∈Ω

P{X0 = x0,Y0 = y0}

=
∑
x0∈Ω

P(x0, x1)µ(x0) (C.14){Eq:OS2}

= (µP)(x1).

The equality in (C.14) follows since (X0,Y0) is a coupling of µ and ν.
This shows that X1 has distribution µP. The argument that Y1 has distribution

νP is similar. �
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S  14.4. If lip( f ) ≤ 1 and (X,Y) is a coupling of µ and ν attaining the
minimum in the definition of Kantorovich distance, then∣∣∣∣∣∫ f dµ −

∫
f dν

∣∣∣∣∣ = |E ( f (X) − f (Y)) | ≤ E (ρ(X,Y)) = ρK(µ, ν),

where we used lip( f ) ≤ 1 for the inequality and the fact that (X,Y) is the optimal
coupling for the last equality. �

Chapter 8

S  8.1. Let Y i
t = 2Xi

t − 1. Since covariance is bilinear, Cov(Y i
t ,Y

j
t ) =

4 Cov(Xi
t , X

j
t ) and it is enough to check that the Cov(Y i

t ,Y
j

t ) ≤ 0.
If the ith coordinate is chosen in the first t steps, the conditional expectation of

Y i
t is 0. Thus

E(Y i
t ) =

(
1 −

1
n

)t

.

Similarly,

E(Y i
t Y

j
t ) =

(
1 −

2
n

)t

since we only have a positive contribution if both the coordinates i, j were not
chosen in the first t steps. Finally,

Cov
(
Y i

t ,Y
j

t

)
= E

(
Y i

t Y
j

t

)
− E

(
Y i

t

)
E

(
Y j

t

)
=

(
1 −

2
n

)t

−

(
1 −

1
n

)2t

≤ 0,

because (1 − 2/n) < (1 − 1/n)2.
The variance of the sum Wt =

∑n
i=1 Xi

t is

Var(Nt) =
n∑

i=1

Var(Xi
t) +

∑
i, j

Cov(Xi
t , X

j
t ) ≤

n∑
i=1

1
4
.

�

S  9.1. Suppose that the reflected walk hits c at or before time n. It
has probability at least 1/2 of finishing at time n in [c,∞). (The probability can be
larger than 1/2 because of the reflecting at 0.) Thus

P
{

max
1≤ j≤n

|S j| ≥ c
}

1
2
≤ P {|S n| ≥ c} .

�
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S  8.2.

Q(S , S c) =
∑
x∈S

∑
y∈S c

π(x)P(x, y)

=
∑
y∈S c

∑
x∈Ω

π(x)P(x, y) −
∑
x∈S c

π(x)P(x, y)


=

∑
y∈S c

∑
x∈Ω

π(x)P(x, y) −
∑
x∈S c

π(x)
∑
y∈S c

P(x, y)

=
∑
y∈S c

π(y) −
∑
x∈S c

π(x)

1 −∑
y∈S

P(x, y)


=

∑
y∈S c

π(y) −
∑
x∈S c

π(x) +
∑
x∈S c

∑
y∈S

π(x)P(x, y)

=
∑
x∈S c

∑
y∈S

π(x)P(x, y)

= Q(S c, S ).

�

S  8.3. Suppose that a graph G has vertex set V and diameter ρ.
Let Dk = {v : d(v, x0) = k} be all vertices at distance exactly k from x0.

If v ∈ Dk, then {v,w} is an edge for some w ∈ Dk−1. (Take w to be the vertex
connected to v in the minimal path from x0 to v. Since there is a path from w to x0
of length k − 1, it must be that d(w, x0) ≤ k − 1. If d(w, x0) < k − 1, then there is a
path from x0 to v of length strictly smaller than k and d(x0, v) ≤ k − 1. Therefore,
w ∈ Dk−1.) It follows that the set of vertices connected by edges to vertices in Dk−1
contains Dk, so |Dk| ≤ ∆|Dk−1|. By induction, |Dk| ≤ ∆

k, and provided ∆ ≥ 2,

|V | ≤
ρ∑

k=0

∆k ≤ ∆ρ+1.

Taking logarithms shows that log |V |/ log∆ ≤ ρ + 1. �

S  8.4. Write {v1, . . . , vn} be the vertices of the graph, and let (Xt) be
the Markov chain started with the initial configuration ~q in which every vertex has
color q.

Let N : Ω→ {0, 1, . . . , n} be the number of sites in the configuration x colored
with q. That is,

N(x) =
n∑

i=1

1{x(vi)=q}. (C.15)

We write Nt for N(Xt).
We compare the mean and variance of the random variable N under the uniform

measure π and under the measure Pt(~q, ·). (Note that the distribution of N(Xt)
equals the distribution of N under Pt(~q, ·). )
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The distribution of N under the stationary measure π is Binomial with param-
eters n and 1/q, implying

Eπ(N) =
n
q
, Varπ(N) = n

1
q

(
1 −

1
q

)
≤

n
4
.

Let Xi(t) = 1{Xt(vi)=q}, the indicator that vertex vi has color q. Since Xi(t) = 0 if
and only if vertex vi has been updated at least once by time t and the latest of these
updates is not to color q, we have

E~q(Xi(t)) = 1 −
[
1 −

(
1 −

1
n

)t] q − 1
q
=

1
q
+

q − 1
q

(
1 −

1
n

)t

,

and

E~q(Nt) =
n
q
+

n(q − 1)
q

(
1 −

1
n

)t

.

Consequently,

E~q(Nt) − Eπ(N) =
(
q − 1

q

)
n
(
1 −

1
n

)t

.

The random variables {Xi(t)} are negatively correlated; check that Yi = qXi− (q−1)
are negatively correlated as in the solution to Exercise 8.1. Thus,

σ2 := max{Var~q(Nt),Varπ(N)} ≤
n
4
,

and ∣∣∣Eπ(N) − E~q(N(Xt))
∣∣∣ = n

2

(
1 −

1
n

)t

≥ σ
2(q − 1)

q
√

n
(
1 −

1
n

)t

.

Letting r(t) = [2(q − 1)/q]
√

n(1 − n−1)t,

log(r2(t)) = 2t log(1 − n−1) +
2(q − 1)

q
log n

≥ 2t
(
−

1
n
−

1
2n2

)
+

2(q − 1)
q

log n, (C.16) {Eq:RtHC2}

where the inequality follows from log(1− x) ≥ −x− x2/2, for x ≥ 0. As in the proof
of Proposition 8.8, it is possible to find a c(q) so that for t ≤ (1/2)n log n − c(q)n,
the inequality r2(t) ≥ 32/3 holds. By Corollary ??, tmix ≥ (1/2)n log n− c(q)n. �

Chapter 9

S  9.2. False! Consider, for example, the distribution that assigns
weight 1/2 each to the identity and to the permutation that lists the elements of [n]
in reverse order. �

S  9.3. False! Consider, for example, the distribution that puts weight
1/n on all the cyclic shifts of a sorted deck: 123 . . . n, 23 . . . n1, . . . , n12 . . . n−1. �
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S  9.6. By Cauchy-Schwarz, for any permutation σ ∈ Sn we have

φσ =
∑
k∈[n]

φ(k)φ(σ(k)) ≤

∑
k∈[n]

φ(k)2

1/2 ∑
k∈[n]

φ(σ(k))2

1/2

= φ(id).

�

S  9.7. By the half-angle identity cos θ = (cos(2θ) − 1)/2, we have∑
k∈[n]

cos2
(
(2k − 1)π

2n

)
=

1
2

∑
k∈[n]

(
cos

(
(2k − 1)π

n

)
+ 1

)
.

Now, ∑
k∈[n]

cos
(
(2k − 1)π

n

)
= Re

e−π/n ∑
k∈[n]

e2kπ/n

 = 0,

since the sum of the n-th roots of unity is 0. Hence∑
k∈[n]

cos2
(
(2k − 1)π

2n

)
=

n
2
.

�

S  9.8. (a) Just as assigning t independent bits is the same as assign-
ing a number chosen uniformly from {0, . . . , 2n − 1} (as we implicitly argued
in the proof of Proposition 9.6), assigning a digit in base a, and then a digit in
base b, is the same as assigning a digit in base ab.

(b) To perform a forwards a-shuffle, divide the deck into a multinomially-distributed
stacks, then uniformly choose an arrangement from all possible permutations
that preserve the relative order within each stack. The resulting deck has at
most a rising sequences, and there are an ways to divide, then riffle together
(some of which can lead to identical permutations).

Given a permutation π with r ≤ a rising sequences, we need to count the
number of ways it could possibly arise from a deck divided into a parts. Each
rising sequence is a union of stacks, so the rising sequences together determine
the positions of r − 1 out of the a − 1 dividers between stacks. The remaining
a − r dividers can be placed in any of the n + 1 possible positions, repetition
allowed, irrespective of the positions of the r − 1 dividers already determined.

For example: set a = 5 and let π ∈ S9 be 152738946. The rising sequences
are (1, 2, 3, 4), (5, 6), and (7, 8, 9), so there must be packet divisions between 4
and 5, and between 6 and 7, and two additional dividers must be placed.

This is a standard choosing-with-repetition scenario. We can imagine
building a row of length n + (a − r) objects, of which n are numbers and a − r
are dividers. There are

(
n+a−r

n

)
such rows.

Since each (division, riffle) pair has probability 1/an, the probability that π
arises from an a-shuffle is exactly

(
n+a−r

n

)
/an.

�
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S  10.3. Solution for (a): Let Xt be the number of umbrellas at home
after t one-way trips, so X0 = k, and write Yt = 2Xt + t mod 2. Then Y0 = 2k and
Yt evolves as simple random walk on the integers. Part (i) reduces to the mean time
for Yt to hit {1, 2n}, which is (2k − 1)(2n − 2k). Part (ii) is a bit tricky: it reduces to
the mean time for Yt to hit {−1, 2n + 2}, which is (2k + 1)(2n + 2 − 2k). (Consider
one extra tattered umbrella at each location, used as a last resort.)

Part (b) requires writing out the linear equations. �

S  10.5. Using the series law, R(a↔ x) = x and R(a↔ n) = n. �

S  10.4. Let τA be the first time the walk visits a vertex in A. Check
that g(x) = Ex(h(XτA)) is harmonic for x ∈ V \A. Uniqueness follows by extending
Proposition 10.1. �

S  10.8. Let W1 b e a voltage function for the unit current flow from
x to y so that W1(x) = R(x ↔ y) and W1(y) = 0. Let W2 be a voltage function
for the unit current flow from y to z so that W2(y) = R(y ↔ z) and W2(z) = 0. By
harmonicity (the maximum principle) at all vertices v we have

0 ≤ W1(v) ≤ R(x↔ y) (C.17) {Eq:RMSt1}

0 ≤ W1(v) ≤ R(y↔ z) (C.18) {Eq:RMSt2}

Recall the hint. Thus W3 = W1 +W2 is a voltage function for the unit current flow
from x to z and

R(x↔ z) = W3(x) −W3(z) = R(x↔ y) +W2(x) −W1(z). (C.19) {Eq:RMSt3}

Applying (C.18) gives W2(x) ≤ R(y↔ z) and (C.17) gives W1(z) ≥ 0 so finally by
(C.19) we get the triangle inequality. �

S  11.3.
(a) Use the fact that, since the B j’s partition B, E(Y | B) =

∑
j P(B j)E(Y | B j).

(b) Many examples are possible; a small one is Ω = B = {1, 2, 3}, Y = 1{1,3},
B1 = {1, 2}, B2 = {2, 3}, M = 1/2.

�

S  11.4.
(a) Let σ be a uniform random permutation of the elements of A. Let Tk be the first

time at which all of σ(1), σ(2), . . . , σ(k) have been visited, and let Lk = XTk .
With probability 1/|A|, σ(1) = x and T1 = 0. Otherwise, the walk must

proceed from x to σ(1). Thus

Ex(T1) ≥
1
|A|

0 +
|A| − 1
|A|

T A
min

=

(
1 −

1
|A|

)
T A

min.

For 2 ≤ k ≤ |A| and r, s ∈ A, define

Bk(r, s) = {σ(k − 1) = r, σ(k) = Lk = s},
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so that
Ex(Tk − Tk−1 | Bk(r, s)) = Erτs.

Then
Bk =

⋃
r,s∈A

Bk(r, s)

is the event that Lk = σ(k). By (an obvious corollary to) Exercise 11.3,

Ex(Tk − Tk−1 | Bc
k) = 0 and Ex(Tk − Tk−1|Bk) ≥ T A

min.

By symmetry, P(Bk) = 1/k, so Ex(Tk − Tk−1) ≥ (1/k)T A
min. Adding all these

bounds gives the final result (note how the negative portion of the first term
cancels out the last term).

(b) Clearly Ex(C) ≥ Ex(CA) for every A ⊆ X.

�

S  11.9.

(a) An edge is defined by which coordinate flips. There are m coordinates to
choose and then 2m−1 possibilities for assigning values to the other coordinates.

(b) There are
(
m
k

)
nodes of weight k.

�

S  11.10. Observe that hm(k) is the mean hitting time from k to 0 in
Gk, which implies that hm(k) is monotone increasing in k. (This is intuitively clear
but harder to prove directly on the cube.) The expected return time from o to itself
in the hypercube equals 2m but considering the first step it also equals 1 + hm(1).
Thus

hm(1) = 2m − 1. (C.20){Eq:CHStar}

To compute hm(m) use symmetry and the commute time identity. The effective
resistance between 0 and m in Gm is R(0↔ m) =

∑m
k=1[k

(
m
k

)
]−1. In this sum all but

the first and last terms are negligible: The sum of the other terms is at most 4/m2

(check!). Thus

2hm(m) = 2R(0↔ m)|edges(Gm)| ≤ 2
(

2
m
+

4
m2

)
(m2m−1),

so
hm(m) ≤ 2m(1 + 2/m). (C.21){Eq:CH2Star}

(C.20) together with (C.21) and monotonicity concludes the proof. �

S  11.12. By Lemma 11.8,

2Ea(τbca) = [Ea(τb) + Eb(τc) + Ec(τa)] + [Ea(τc) + Ec(τb) + Eb(τa)]
= [Ea(τb) + Eb(τa)] + [Eb(τc) + Ec(τb)] + [Ec(τa) + Ea(τc)] .

Then the conclusion follows from Proposition 11.6. �
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S  11.13. Taking expectations in (11.33) yields

Ex(τa) + Ea(τz) = Ex(τz) + Px{τz < τa}
[
Ez(τa) + Ea(τz)

]
,

which shows that

Px{τz < τa} =
Ex(τa) + Ea(τz) − Ex(τz)

Ez(τa) + Ea(τz)
, (C.22){Eq:HT2}

without assuming reversibility.
In the reversible case, the cycle identity (Lemma 11.8) yields

Ex(τa) + Ea(τz) − Ex(τz) = Ea(τx) + Ez(τa) − Ez(τx). (C.23) {Eq:HT3}

Adding the two sides of (C.23) together establishes that

Ex(τa) + Ea(τz) − Ez(τz)

=
1
2

{
[Ex(τa) + Ea(τx)] +

[
Ea(τz) + Ez(τa)

]
−

[
Ex(τz) + Ez(τx)

]}
.

Let cG =
∑

x∈V c(x) = 2
∑

e c(e), as usual. Then by the commute time formula
(Proposition 11.6), the denominator in (C.22) is cGR(a ↔ z) and the numerator is
(1/2)cG [R(x↔ a) + R(a↔ z) − R(z↔ x)]. �

S  11.15.
∞∑

k=0

cksk =

∞∑
k=0

k∑
j=0

a jbk− jsk

=

∞∑
k=0

∞∑
j=0

a js jbk− jsk− j1{k≥ j}

=

∞∑
j=0

∞∑
k=0

a js jbk− jsk− j1{k≥ j}

=

∞∑
j=0

a js j
∞∑

k=0

bk− jsk− j1{k≥ j}

=

∞∑
j=0

a js j
∞∑
`=0

b`s`

= A(s)B(s).

The penultimate equality follows from letting ` = k − j. The reader should check
that the change of the order of summation is justified. �

Chapter 12

S  12.1.
(a) For any function f ,

‖P f ‖∞ = max
x∈Ω

∣∣∣∣∣∣∣∣
∑
y∈Ω

P(x, y) f (y)

∣∣∣∣∣∣∣∣ ≤ ‖ f ‖∞.
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If Pϕ = λϕ, then ‖P f ‖∞ = |λ| ‖ f ‖∞ ≤ ‖ f ‖∞. This implies that |λ| ≤ 1.
(b) By the Convergence Theorem, limt→∞ Pt = π (pointwise), where by an abuse

of notation π denotes the matrix with all rows equal to the vector π.
Suppose that λ is an eigenvalue satisfying |λ| = 1 and with corresponding

eigenvalue ϕ. Then λtϕ = Ptϕ → πϕ. If λ = −1 then the left-hand side does
not converge to anything, a contradiction. Therefore we can assume that λ = 1,
in which case ϕ = πϕ. Writing out this vector equality,

ϕ(x) =
∑
y∈Ω

π(y)ϕ(y) for all x ∈ Ω.

In particular, ϕ does not depend on x, and must be constant. In summary,
any eigenvector with |λ| = 1 is a multiple of 1, showing that |λ j| < 1 for
j = 2, . . . , |Ω|.

�

S  12.2. Let f be an eigenvector of P with eigenvalue µ. Then

µ f = P̃ f =
P f + f

2
.

Rearranging shows that (2µ − 1) is an eigenvalue of P. Thus 2µ − 1 ≥ −1, or
equivalently, µ ≥ 0. �

S  12.4. According to (12.4),

P2t+2(x, x)
π(x)

=

|Ω|∑
j=1

f j(x)2λ2t+2
j .

Since λ2
j ≤ 1 for all j, the right-hand side is bounded above by

∑|Ω|
j=1 f j(x)2λ2t

j ,
which equals P2t(x, x)/π(x). �

S  12.6. A computation verifies the claim:

(P1 ⊗ P2)(φ ⊗ ψ)(x, y) =
∑

(z,w)∈Ω1×Ω2

P1(x, z)P2(y,w)φ(z)ψ(w)

=
∑
z∈Ω1

P1(x, z)φ(z)
∑

w∈Ω2

P2(y,w)ψ(w)

=
[
P1φ(x)

] [
P2ψ(y)

]
= λµφ(x)ψ(y)
= λµ(φ ⊗ ψ)(x, y).

That is, the product λµ is an eigenvalue of the eigenfunction φ ⊗ ψ. �

Chapter 13
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S  13.3. We bound
(

n
δk

)
≤ nδk/(δk)!, similarly

(
(1+δ)k
δk

)
and

(
n
k

)
≥ nk/kk.

This gives
n/2∑
k=1

(
n
δk

)(
(1+δ)k
δk

)2(
n
k

) ≤

n/2∑
k=1

nδk((1 + δ)k)2δkkk

(δk)!3nk .

Recall that for any integer ` we have `! > (`/e)`, and bound (δk)! by this. We get

n/2∑
k=1

(
n
δk

)(
(1+δ)k
δk

)2(
n
k

) ≤

log n∑
k=1

(
log n

n

)(1−δ)k [
e3(1 + δ)2

δ3

]δk
+

n/2∑
k=log n

(
k
n

)(1−δ)k [
e3(1 + δ)2

δ3

]δk
.

The first sum clearly tends to 0 as n tends to ∞, for any δ ∈ (0, 1), and since
k/n ≤ 1/2 and

(1/2)(1−δ)
[
e3(1 + δ)2

δ3

]δ
< 0.9

for δ < 0.01, for any such δ the second sum tends to 0 as n tends to∞. �

Chapter 15

S  15.2. Note that

tanh′(β) =
1

cosh2(β)
=

1
1 + sinh2(β)

.

Thus, tanh′(0) = 1 and the derivative tanh′(β) ≤ 1 for β > 0, so tanh(β) ≤ β for all
β > 0. �

Chapter 18

S  18.1. We can write Xt = x +
∑t

s=1 Ys, where x ∈ Ω and (Ys)∞s=1 is
an i.i.d. sequence of {−1, 1}-valued random variables satisfying

P{Ys = +1} = p,
P{Ys = −1} = q.

By the Strong Law, P0{limt→∞ t−1Xt = (p − q)} = 1. In particular,

P0{Xt > (p − q)t/2 for t sufficiently large} = 1.

That is, with probability one, there are only finitely many visits of the walker to
0. Since the number of visits to 0 is a geometric random variable with parameter
P0{τ

+
0 = ∞} (see the proof of Proposition 18.3 below), this probability must be

positive. �

S  18.2. Suppose that π(v) = 0. Since π = πP,

0 = π(v) =
∑
u∈X

π(u)P(u, v).

Since all the terms on the right-hand side are non-negative, each is zero. That is, if
P(u, v) > 0, it must be that π(u) = 0.

Suppose that there is some y ∈ Ω so that π(y) = 0. By irreducibility, for any
x ∈ Ω, there is a sequence u0, . . . , ut so that u0 = x, ut = y, and each P(ui−1, ui) > 0
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for i = 1, . . . , t. Then by induction it is easy to see that π(ui) = 0 for each of i =
0, 1, 2, . . . , t. Thus π(x) = 0 for all x ∈ Ω, and π is not a probability distribution. �

S  18.4. If the original graph is regarded as a network with conduc-
tances c(e) = 1 for all e, then the subgraph is also a network, but with c(e) = 0
for all edges which are omitted. By Rayleigh’s Monotonicity Law, the effective
resistance from a fixed vertex v to ∞ is not smaller in the subgraph than for the
original graph. This together with Proposition 18.6 shows that the subgraph must
be recurrent. �

S  18.5. Define

Ax,y = {t : Pt(x, y) > 0}.

By aperiodicity, g.c.d.(Ax,x) = 1. Since Ax,x is closed under addition, there is
some tx so that t ∈ Ax,x for t ≥ tx. Also, by irreducibility, there is some s so that
Ps(x, y) > 0. Since

Pt+s(x, y) ≥ Pt(x, x)Ps(x, y),
if t ≥ tx then t + s ∈ Ay,x. That is, there exists tx,y so that if t ≥ tx,y then t ∈ Ax,y.

Let t0 = max{tx,z, ty,w}. If t ≥ t0 then Pt(x, z) > 0 and Pt(y,w) > 0. In
particular,

Pt0((x, y), (z,w)) = Pt0(x, z)Pt0(y,w) > 0.
�

S  18.6. (Xt) is a nearest-neighbor random walk on Z+ which in-
creases by 1 with probability α and decreases by 1 with probability β = 1 − α.
When the walker is at 0, instead of decreasing with probability β, it remains at 0.
Thus if α < β, then the chain is a downwardly biased random walk on Z+, which
was shown in Example 18.15 to be positive recurrent.

If α = β, this is an unbiased random walk on Z+. This is null recurrent for
the same reason that the simple random walk on Z is null recurrent, shown in
Example 18.10.

Consider the network with V = Z+, and with c(k, k + 1) = rk. If r = p/(1 − p),
then the random walk on the network corresponds to a nearest-neighbor random
walk which moves “up” with probability p. The effective resistence from 0 to n is

R(0↔ n) =
n∑

k=1

r−k.

If p > 1/2 then r > 1 and the right-hand side converges to a finite number, so
R(0 ↔ ∞) < ∞. By Proposition 18.6 this walk is transient. The FIFO queue
of this problem is an upwardly biased random walk when α > β, and thus it is
transient as well. �

S  18.7. Let r = α/β. Then π(k) = (1 − r)rk for all k ≥ 0, that is,
π is the geometric with probability r shifted by 1 to the left. Thus Eπ(X + 1) =
1/(1 − r) = β/(β − α). Since E(T | X before arrival) = (1 + X)/β, we conclude that
Eπ(T ) = 1/(β − α). �
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S  18.9. Suppose that µ = µP, so that for all k,

µ(k) =
µ(k − 1) + µ(k + 1)

2
.

The difference sequence d(k) = µ(k) − µ(k − 1) is easily seen to be constant, and
hence µ is not bounded. �

Chapter 17

S  17.6. The distribution of a sum of n independent exponential ran-
dom variables with rate λ has a Gamma distribution with parameters n and λ, so
S k has density

fk(s) =
sk−1e−s

(k − 1)!
.

Since S k and Xk+1 are independent,

P{S k ≤ t < S k + Xk+1} =

∫ t

0

sk−1e−s

(k − 1)!

∫ ∞

t−s
e−xdxds

=

∫ t

0

sk−1

(k − 1)!
e−tds

=
tke−t

k!
�

S  17.1. Let g(y, u) be the joint density of (Y,UY ). Then

fY,U(y, u) = fY (y) fUY |Y (u| y)

= g(y)1{g(y) > 0}
1{0 ≤ u ≤ Cg(y)}

Cg(y)
=

1
C

1{g(y) > 0, u ≤ Cg(y)}. (C.24) {Eq:UniformJoint}

This is the density for a point (Y,U) drawn from the region under the graph of the
function g.

Conversely, let (Y,U) be a uniform point from the region under the graph of
the function g. Its density is the right-hand side of (C.24). The marginal density of
Y is

fY (y) =
∫ ∞

−∞

1
C

1{g(y) > 0, u ≤ Cg(y)}du = 1{g(y) > 0}
1
C

Cg(y) = g(y). (C.25)

�

S  17.4. Let R be any region of T A. First, note that since rank(T ) =
d, by the Rank Theorem, T is one-to-one. Consequently, TT−1R = R, and

Volumed(R) = Volumed(TT−1R) =
√

det(T tT ) Volume(T−1R),

so that Volume(T−1R) = Volumed(R)/
√

det(T tT ). To find the distribution of Y , we
compute

P{Y ∈ R} = P{T X ∈ R} = P{X ∈ T−1R}. (C.26)
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Since X is uniform, the right-hand side is

Volume(T−1R)
Volume(A)

=
Volumed(R)

√
det(T tT ) Volume(A)

=
Volumed(R)

Volumed(T A)
. (C.27)

�

Chapter 19

S  19.1. Let (Xt) be simple random walk on Z.

Mt+1 − Mt = (Xt + ∆Xt)3 − 3(t + 1)(Xt + ∆Xt) − X3
t + 3tXt

= 3X2
t (∆Xt) + 3Xt(∆Xt)2 + (∆Xt)3 − 3t(∆Xt) − 3Xt − ∆Xt

Note that (∆Xt)2 = 1, so

Mt+1 − Mt = (∆Xt)(3X2
t − 3t),

and

Ek (Mt+1 − Mt | Xt) = (3X2
t − 3t)Ek(∆Xt | Xt) = 0.

Using the Optional Stopping Theorem,

k3 = Ek(Mτ)

= Ek
[(

X3
τ − 3τXτ

)
1{Xτ=n}

]
= n3Pk{Xτ = n} − 3nEk

(
τ1{Xτ=n}

)
Dividing through by kn−1 = Pk{Xτ = n} shows that

nk2 = n3 − 3nEk (τ | Xτ = n) .

Rearranging,

Ek (τ | Xτ = n) =
n2 − k2

3
.

The careful reader will notice that we have used the Optional Stopping Theorem
without verifying its hypotheses! The application can be justified by applying it
to τ ∧ B, and then letting B → ∞ and appealing to the Dominated Convergence
Theorem. �
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