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Preface

This monograph is an intertwined tale of eigenvalues and their use in
unlocking a thousand secrets about graphs. The stories will be told — how the
spectrum reveals fundamental properties of a graph, how spectral graph theory
links the discrete universe to the continuous one through geometric, analytic and
algebraic techniques, and how, through eigenvalues, theory and applications in
communications and computer science come together in symbiotic harmony. Since
spectral graph theory has been evolving very rapidly, the above goals can only be
partially fulfilled here. For example, more advanced material on the heat kernel
will be treated in a later publication.

This book is based on ten lectures given at the CBMS workshop on spectral
graph theory in June 1994 at Fresno State University. Additional chapters were
included on subgraphs with boundary conditions and on advanced techniques for
random walks. I wish to thank S.T. Yau for introducing me to powerful ideas from
spectral geometry. The last few chapters are mainly based on our collaborative
work on geometry of graphs. Special thanks are due to Ron Graham, without
whose encouragement this book would never have existed. In the course of writing, I
have greatly benefitted from numerous suggestions and valuable comments of Noga
Alon, Andy Woldar, Felix Lazebnik, David Gillman, Elizabeth Wilmer, Prasad
Tetali and Herb Wilf. I would also like to acknowledge the support of National
Science Foundation through Grant No. DMS 95-04834.

Like all authors, I would hope that these lecture notes are completely error-
free. However, to be realistic, I plan to maintain an errata list on my home page
http://www.math.upenn.edu/∼chung. Naturally, I will be grateful for any contri-
bution to this list.

Fan Chung

September, 1996

v



CHAPTER 1

Eigenvalues and the Laplacian of a graph

1.1. Introduction

Spectral graph theory has a long history. In the early days, matrix theory and
linear algebra were used to analyze adjacency matrices of graphs. Algebraic meth-
ods have proven to be especially effective in treating graphs which are regular and
symmetric. Sometimes, certain eigenvalues have been referred to as the “algebraic
connectivity” of a graph [122]. There is a large literature on algebraic aspects of
spectral graph theory, well documented in several surveys and books, such as Biggs
[25], Cvetković, Doob and Sachs [88] (also see [89]) and Seidel [222].

In the past ten years, many developments in spectral graph theory have often
had a geometric flavor. For example, the explicit constructions of expander graphs,
due to Lubotzky-Phillips-Sarnak [191] and Margulis [193], are based on eigenvalues
and isoperimetric properties of graphs. The discrete analogue of the Cheeger in-
equality has been heavily utilized in the study of random walks and rapidly mixing
Markov chains [222]. New spectral techniques have emerged and they are powerful
and well-suited for dealing with general graphs. In a way, spectral graph theory
has entered a new era.

Just as astronomers study stellar spectra to determine the make-up of distant
stars, one of the main goals in graph theory is to deduce the principal properties
and structure of a graph from its graph spectrum (or from a short list of easily
computable invariants). The spectral approach for general graphs is a step in
this direction. We will see that eigenvalues are closely related to almost all major
invariants of a graph, linking one extremal property to another. There is no question
that eigenvalues play a central role in our fundamental understanding of graphs.

The study of graph eigenvalues realizes increasingly rich connections with many
other areas of mathematics. A particularly important development is the interac-
tion between spectral graph theory and differential geometry. There is an interest-
ing analogy between spectral Riemannian geometry and spectral graph theory. The
concepts and methods of spectral geometry bring useful tools and crucial insights
to the study of graph eigenvalues, which in turn lead to new directions and results
in spectral geometry. Algebraic spectral methods are also very useful, especially
for extremal examples and constructions. In this book, we take a broad approach
with emphasis on the geometric aspects of graph eigenvalues, while including the
algebraic aspects as well. The reader is not required to have special background in
geometry, since this book is almost entirely graph-theoretic.

1



2 1. EIGENVALUES AND THE LAPLACIAN OF A GRAPH

From the start, spectral graph theory has had applications to chemistry [27,
233]. Eigenvalues were associated with the stability of molecules. Also, graph
spectra arise naturally in various problems of theoretical physics and quantum
mechanics, for example, in minimizing energies of Hamiltonian systems. The re-
cent progress on expander graphs and eigenvalues was initiated by problems in
communication networks. The development of rapidly mixing Markov chains has
intertwined with advances in randomized approximation algorithms. Applications
of graph eigenvalues occur in numerous areas and in different guises. However, the
underlying mathematics of spectral graph theory through all its connections to the
pure and applied, the continuous and discrete, can be viewed as a single unified
subject. It is this aspect that we intend to cover in this book.

1.2. The Laplacian and eigenvalues

Before we start to define eigenvalues, some explanations are in order. The
eigenvalues we consider throughout this book are not exactly the same as those
in Biggs [25] or Cvetković, Doob and Sachs [88]. Basically, the eigenvalues are
defined here in a general and “normalized” form. Although this might look a little
complicated at first, our eigenvalues relate well to other graph invariants for general
graphs in a way that other definitions (such as the eigenvalues of adjacency matri-
ces) often fail to do. The advantages of this definition are perhaps due to the fact
that it is consistent with the eigenvalues in spectral geometry and in stochastic pro-
cesses. Many results which were only known for regular graphs can be generalized
to all graphs. Consequently, this provides a coherent treatment for a general graph.
For definitions and standard graph-theoretic terminology, the reader is referred to
[250].

In a graph G, let dv denote the degree of the vertex v. We first define the
Laplacian for graphs without loops and multiple edges (the general weighted case
with loops will be treated in Section 1.4). To begin, we consider the matrix L,
defined as follows:

L(u, v) =





dv if u = v,
−1 if u and v are adjacent,
0 otherwise.

Let T denote the diagonal matrix with the (v, v)-th entry having value dv. The
Laplacian of G is defined to be the matrix

L(u, v) =





1 if u = v and dv 6= 0,

− 1√
dudv

if u and v are adjacent,

0 otherwise.

We can write

L = T−1/2LT−1/2

with the convention T−1(v, v) = 0 for dv = 0. We say v is an isolated vertex if
dv = 0. A graph is said to be nontrivial if it contains at least one edge.
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The Laplacian can be viewed as an operator on the space of functions g :
V (G)→ R which satisfies

Lg(u) =
1√
du

∑
v

u∼v

(
g(u)√
du
− g(v)√

dv

)
.

When G is k-regular, it is easy to see that

L = I − 1
k
A,

where A is the adjacency matrix of G (i.e., A(x, y) = 1 if x is adjacent to y, and 0
otherwise,) and I is an identity matrix. All matrices here are n× n where n is the
number of vertices in G.

For a general graph without isolated vertices, we have

L = T−1/2LT−1/2

= I − T−1/2AT−1/2.

We note that L can be written as

L = SS∗,

where S is the matrix whose rows are indexed by the vertices and whose columns
are indexed by the edges of G such that each column corresponding to an edge
e = {u, v} has an entry 1/

√
du in the row corresponding to u, an entry −1/

√
dv in

the row corresponding to v, and has zero entries elsewhere. (As it turns out, the
choice of signs can be arbitrary as long as one is positive and the other is negative.)
Also, S∗ denotes the transpose of S.

For readers who are familiar with terminology in homology theory, we remark
that S can be viewed as a “boundary operator” mapping “1-chains” defined on
edges (denoted by C1) of a graph to “0-chains” defined on vertices (denoted by
C0). Then, S∗ is the corresponding “coboundary operator” and we have

C1

S
−→
←−
S∗

C0.

Since L is symmetric, its eigenvalues are all real and non-negative. We can
use the variational characterizations of those eigenvalues in terms of the Rayleigh
quotient of L (see, e.g., [160]). Let g denote an arbitrary function which assigns to
each vertex v of G a real value g(v). We can view g as a column vector. Then

〈g,Lg〉
〈g, g〉 =

〈g, T−1/2LT−1/2g〉
〈g, g〉

=
〈f, Lf〉

〈T 1/2f, T 1/2f〉

=

∑
u∼v

(f(u)− f(v))2

∑
v

f(v)2dv
(1.1)
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where g = T 1/2f and
∑
u∼v

denotes the sum over all unordered pairs {u, v} for which

u and v are adjacent. Here 〈f, g〉 =
∑
x

f(x)g(x) denotes the standard inner product

in Rn. The sum
∑
u∼v

(f(u)− f(v))2 is sometimes called the Dirichlet sum of G and

the ratio on the left-hand side of (1.1) is often called the Rayleigh quotient. (We
note that we can also use the inner product 〈f, g〉 =

∑
f(x)g(x) for complex-valued

functions.)

From equation (1.1), we see that all eigenvalues are non-negative. In fact, we
can easily deduce from equation (1.1) that 0 is an eigenvalue of L. We denote the
eigenvalues of L by 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1. The set of the λi’s is usually called
the spectrum of L (or the spectrum of the associated graph G). Let 1 denote the
constant function which assumes the value 1 on each vertex. Then T 1/21 is an
eigenfunction of L with eigenvalue 0. Furthermore,

λG = λ1 = inf
f⊥T1

∑
u∼v

(f(u)− f(v))2

∑
v

f(v)2dv
.(1.2)

The corresponding eigenfunction is g = T 1/2f as in (1.1). It is sometimes convenient
to consider the nontrivial function f achieving (1.2), in which case we call f a
harmonic eigenfunction of L.

The above formulation for λG corresponds in a natural way to the eigenvalues
of the Laplace-Beltrami operator for Riemannian manifolds:

λM = inf

∫

M

|∇f |2
∫

M

|f |2
,

where f ranges over functions satisfying

∫

M

f = 0.

We remark that the corresponding measure here for each edge is 1 although in the
general case for weighted graphs the measure for an edge is associated with the edge
weight (see Section 1.4). The measure for each vertex is the degree of the vertex.
A more general notion of vertex weights will also be considered in Section 1.4.
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We note that (1.2) has several different formulations:

λ1 = inf
f

sup
t

∑
u∼v

(f(u)− f(v))2

∑
v

(f(v)− t)2dv
(1.3)

= inf
f

∑
u∼v

(f(u)− f(v))2

∑
v

(f(v)− f̄)2dv
,(1.4)

where

f̄ =

∑
v

f(v)dv

vol G
,

and vol G denotes the volume of the graph G, given by

vol G =
∑
v

dv.

By substituting for f̄ and using the fact that N
N∑

i=1

(ai − a)2 =
∑

i<j

(ai − aj)2

for a =
N∑

i=1

ai/N , we have the following expression (which generalizes the one in

[122]):

λ1 = vol G inf
f

∑
u∼v

(f(u)− f(v))2

∑
u,v

(f(u)− f(v))2dudv
,(1.5)

where
∑
u,v

denotes the sum over all unordered pairs of vertices u, v in G. We can

characterize the other eigenvalues of L in terms of the Rayleigh quotient. The
largest eigenvalue satisfies:

λn−1 = sup
f

∑
u∼v

(f(u)− f(v))2

∑
v

f2(v)dv
.(1.6)

For a general k, we have

λk = inf
f

sup
g∈Pk−1

∑
u∼v

(f(u)− f(v))2

∑
v

(f(v)− g(v))2dv
(1.7)

= inf
f ⊥TPk−1

∑
u∼v

(f(u)− f(v))2

∑
v

f(v)2dv
(1.8)
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where Pk−1 is the subspace generated by the harmonic eigenfunctions corresponding
to λi, for i ≤ k − 1.

The different formulations for eigenvalues given above are useful in different
settings and they will be used in later chapters. Here are some examples of special
graphs and their eigenvalues.

Example 1.1. For the complete graph Kn on n vertices, the eigenvalues are 0
and n/(n− 1) (with multiplicity n− 1).

Example 1.2. For the complete bipartite graph Km,n on m + n vertices, the
eigenvalues are 0, 1 (with multiplicity m+ n− 2), and 2.

Example 1.3. For the star Sn on n vertices, the eigenvalues are 0, 1 (with
multiplicity n− 2), and 2.

Example 1.4. For the path Pn on n vertices, the eigenvalues are 1 − cos πk
n−1

for k = 0, 1, . . . , n− 1.

Example 1.5. For the cycle Cn on n vertices, the eigenvalues are 1− cos 2πk
n

for k = 0, . . . , n− 1.

Example 1.6. For the n-cube Qn on 2n vertices, the eigenvalues are 2k
n (with

multiplicity
(
n
k

)
) for k = 0, . . . , n.

More examples can be found in Chapter 6 on explicit constructions.

1.3. Basic facts about the spectrum of a graph

Roughly speaking, half of the main problems of spectral theory lie in deriving
bounds on the distributions of eigenvalues. The other half concern the impact and
consequences of the eigenvalue bounds as well as their applications. In this section,
we start with a few basic facts about eigenvalues. Some simple upper bounds and
lower bounds are stated. For example, we will see that the eigenvalues of any graph
lie between 0 and 2. The problem of narrowing the range of the eigenvalues for
special classes of graphs offers an open-ended challenge. Numerous questions can
be asked either in terms of other graph invariants or under further assumptions
imposed on the graphs. Some of these will be discussed in subsequent chapters.

Lemma 1.7. For a graph G on n vertices, we have

(i): ∑

i

λi ≤ n

with equality holding if and only if G has no isolated vertices.

(ii): For n ≥ 2,
λ1 ≤ n

n− 1
with equality holding if and only if G is the complete graph on n ver-

tices. Also, for a graph G without isolated vertices, we have

λn−1 ≥ n

n− 1
.
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(iii): For a graph which is not a complete graph, we have λ1 ≤ 1.
(iv): If G is connected, then λ1 > 0. If λi = 0 and λi+1 6= 0, then G has

exactly i+ 1 connected components.
(v): For all i ≤ n− 1, we have

λi ≤ 2,

with λn−1 = 2 if and only if a connected component of G is bipartite
and nontrivial.

(vi): The spectrum of a graph is the union of the spectra of its connected
components.

Proof. Item (i) follows from considering the trace of L.

The inequalities in (ii) follow from (i) and λ0 = 0.

Suppose G contains two nonadjacent vertices a and b, and consider

f1(v) =





db if v = a,
−da if v = b,

0 if v 6= a, b.

Item (iii) then follows from (1.2).

If G is connected, the eigenvalue 0 has multiplicity 1 since any harmonic eigen-
function with eigenvalue 0 assumes the same value at each vertex. Thus, (iv) follows
from the fact that the union of two disjoint graphs has as its spectrum the union
of the spectra of the original graphs.

Item (v) follows from equation (1.6) and the fact that

(f(x)− f(y))2 ≤ 2(f2(x) + f2(y)).

Therefore

λi ≤ sup
f

∑
x∼y

(f(x)− f(y))2

∑
x

f2(x)dx
≤ 2.

Equality holds for i = n − 1 when f(x) = −f(y) for every edge {x, y} in G.
Therefore, since f 6= 0, G has a bipartite connected component. On the other hand,
if G has a connected component which is bipartite, we can choose the function f
so as to make λn−1 = 2.

Item (vi) follows from the definition. �

For bipartite graphs, the following slightly stronger result holds:

Lemma 1.8. The following statements are equivalent:

(i): G is bipartite.
(ii): G has i+ 1 connected components and λn−j = 2 for 1 ≤ j ≤ i.
(iii): For each λi, the value 2− λi is also an eigenvalue of G.
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Proof. It suffices to consider a connected graph. Suppose G is a bipartite
graph with vertex set consisting of two parts A and B. For any harmonic eigen-
function f with eigenvalue λ, we consider the function g defined by

g(x) =
{

f(x) if x ∈ A,
−f(x) if x ∈ B.

It is easy to check that g is a harmonic eigenfunction with eigenvalue 2− λ. �

For a connected graph, we can immediately improve the lower bound of λ1 in
Lemma 1.7. For two vertices u and v, the distance between u and v is the number of
edges in a shortest path joining u and v. The diameter of a graph is the maximum
distance between any two vertices of G. Here we will give a simple eigenvalue lower
bound in terms of the diameter of a graph. More discussion on the relationship
between eigenvalues and diameter will be given in Chapter 3.

Lemma 1.9. For a connected graph G with diameter D, we have

λ1 ≥ 1
D vol G

.

Proof. Suppose f is a harmonic eigenfunction achieving λ1 in (1.2). Let v0

denote a vertex with |f(v0)| = max
v
|f(v)|. Since

∑
v

f(v)dv = 0, there exists a

vertex u0 satisfying f(u0)f(v0) < 0. Let P denote a shortest path in G joining u0

and v0. Then by (1.2) we have

λ1 =

∑
x∼y

(f(x)− f(y))2

∑
x

f2(x)dx

≥

∑

{x,y}∈P
(f(x)− f(y))2

vol G f2(v0)

≥
1
D (f(v0)− f(u0))2

vol G f2(v0)

≥ 1
D vol G

by using the Cauchy-Schwarz inequality. �

Lemma 1.10. Let f denote a harmonic eigenfunction achieving λG in (1.2).
Then, for any vertex x ∈ V , we have

1
dx

∑
y

y∼x

(f(x)− f(y)) = λGf(x).
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Proof. We use a variational argument. For a fixed x0 ∈ V , we consider fε
such that

fε(y) =





f(x0) +
ε

dx0

if y = x0,

f(y)− ε

vol G− dx0

otherwise.

We have
∑

x,y∈V
x∼y

(fε(x)− fε(y))2

∑

x∈V
f2
ε (x)dx

=

∑

x,y∈V
x∼y

(f(x)− f(y))2 +
∑
y

y∼x0

2ε(f(x0)− f(y))
dx0

−
∑
y

y 6=x0

∑

y′

y∼y′

2ε(f(y)− f(y′))
vol G− dx0

∑

x∈V
f2(x)dx + 2εf(x0)− 2ε

vol G− dx0

∑

y 6=x0

f(y)dy

+O(ε2)

=

∑

x,y∈V
x∼y

(f(x)− f(y))2 +

2ε
∑
y

y∼x0

(f(x0)− f(y))

dx0

+

2ε
∑
y

y∼x0

(f(x0)− f(y))

vol G− dx0

∑

x∈V
f2(x)dx + 2εf(x0) +

2εf(x0)dx0

vol G− dx0

+O(ε2)

since
∑

x∈V
f(x)dx = 0, and

∑
y

∑

y′
(f(y)−f(y′)) = 0. The definition in (1.2) implies

that
∑

x,y∈V
x∼y

(fε(x)− fε(y))2

∑

x∈V
f2
ε (x)dx

≥

∑

x,y∈V
x∼y

(f(x)− f(y))2

∑

x∈V
f2(x)dx

.

If we consider what happens to the Rayleigh quotient for fε as ε → 0 from above,
or from below, we can conclude that

1
dx0

∑
y

y∼x0

(f(x0)− f(y)) = λGf(x0)

and the Lemma is proved. �
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One can also prove the statement in Lemma 1.10 by recalling that f = T−1/2g,
where Lg = λGg. Then

T−1Lf = T−1(T 1/2LT 1/2)(T−1/2g) = T−1/2λGg = λGf,

and examining the entries gives the desired result.

With a little linear algebra, we can improve the bounds on eigenvalues in terms
of the degrees of the vertices.

We consider the trace of (I − L)2. We have

Tr(I − L)2 =
∑

i

(1− λi)2

≤ 1 + (n− 1)λ̄2,(1.9)

where
λ̄ = max

i 6=0
|1− λi|.

On the other hand,

Tr(I − L)2 = Tr(T−1/2AT−1AT−1/2)(1.10)

=
∑
x,y

1√
dx
A(x, y)

1
dy
A(y, x)

1√
dx

=
∑
x

1
dx
−
∑
x∼y

(
1
dx
− 1
dy

)2,

where A is the adjacency matrix. From this, we immediately deduce

Lemma 1.11. For a k-regular graph G on n vertices, we have

max
i 6=0
|1− λi| ≥

√
n− k

(n− 1)k
(1.11)

This follows from the fact that

max
i 6=0
|1− λi|2 ≥ 1

n− 1
(Tr(I − L)2 − 1).

Let dH denote the harmonic mean of the dv’s, i.e.,
1
dH

=
1
n

∑
v

1
dv
.

It is tempting to consider generalizing (1.11) with k replaced by dH . This, however,
is not true as shown by the following example due to Elizabeth Wilmer.

Example 1.12. Consider the m-petal graph on n = 2m+ 1 vertices, v0, v1, . . .,
v2m with edges {v0, vi} and {v2i−1, v2i}, for i ≥ 1. This graph has eigenvalues
0, 1/2 (with multiplicity m − 1), and 3/2 (with multiplicity m + 1). So we have
maxi 6=0 |1− λi| = 1/2. However,

√
n− dH

(n− 1)dH
=

√
m− 1/2

2m
→ 1√

2
as m→∞.
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Still, for a general graph, we can use the fact that
∑
x∼y

(
1
dx
− 1
dy

)2

∑

x∈V
(

1
dx
− 1
dH

)2dx

≤ λn−1 ≤ 1 + λ̄.(1.12)

Combining (1.9), (1.10) and (1.12), we obtain the following:

Lemma 1.13. For a graph G on n vertices, λ̄ = maxi 6=0 |1− λi| satisfies

1 + (n− 1)λ̄2 ≥ n

dH
(1− (1 + λ̄)(

k

dH
− 1)),

where k denotes the average degree of G.

There are relatively easy ways to improve the upper bound for λ1. From the
characterization in the preceding section, we can choose any function f : V (G)→ R,
and its Rayleigh quotient will serve as an upper bound for λ1. Here we describe an
upper bound for λ1 (see [202]).

Lemma 1.14. Let G be a graph with diameter D ≥ 4, and let k denote the
maximum degree of G. Then

λ1 ≤ 1− 2
√
k − 1
k

(
1− 2

D

)
+

2
D
.

One way to bound eigenvalues from above is to consider “contracting” the
graph G into a weighted graph H (which will be defined in the next section). Then
the eigenvalues of G can be upper-bounded by the eigenvalues of H or by various
upper bounds on them, which might be easier to obtain. We remark that the proof
of Lemma 1.14 proceeds by basically contracting the graph into a weighted path.
We will prove Lemma 1.14 in the next section.

We note that Lemma 1.14 gives a proof (see [5]) that for any fixed k and for
any infinite family of regular graphs with degree k,

lim supλ1 ≤ 1− 2
√
k − 1
k

.

This bound is the best possible since it is sharp for the Ramanujan graphs (which
will be discussed in Chapter 6). We note that the cleaner version of λ1 ≤ 1 −
2
√
k − 1/k is not true for certain graphs (e.g., 4-cycles or complete bipartite graphs).

This example also illustrates that the assumption in Lemma 1.14 concerning D ≥ 4
is essential.

1.4. Eigenvalues of weighted graphs

Before defining weighted graphs, we will say a few words about two different
approaches for giving definitions. We could have started from the very beginning
with weighted graphs, from which simple graphs arise as a special case in which
the weights are 0 or 1. However, the unique characteristics and special strength of
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graph theory is its ability to deal with the {0, 1}-problems arising in many natural
situations. The clean formulation of a simple graph has conceptual advantages.
Furthermore, as we shall see, all definitions and subsequent theorems for simple
graphs can usually be easily carried out for weighted graphs. A weighted undirected
graph G (possibly with loops) has associated with it a weight function w : V ×V →
R satisfying

w(u, v) = w(v, u)

and

w(u, v) ≥ 0.

We note that if {u, v} 6∈ E(G) , then w(u, v) = 0. Unweighted graphs are just the
special case where all the weights are 0 or 1.

In the present context, the degree dv of a vertex v is defined to be:

dv =
∑
u

w(u, v),

vol G =
∑
v

dv.

We generalize the definitions of previous sections, so that

L(u, v) =





dv − w(v, v) if u = v,
−w(u, v) if u and v are adjacent,
0 otherwise.

In particular, for a function f : V → R, we have

Lf(x) =
∑
y

x∼y

(f(x)− f(y))w(x, y).

Let T denote the diagonal matrix with the (v, v)-th entry having value dv. The
Laplacian of G is defined to be

L = T−1/2LT−1/2.

In other words, we have

L(u, v) =





1− w(v, v)
dv

if u = v, and dv 6= 0,

−w(u, v)√
dudv

if u and v are adjacent,

0 otherwise.
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We can still use the same characterizations for the eigenvalues of the generalized
versions of L. For example,

λG := λ1 = inf
g⊥T 1/21

〈g, Lg〉
〈g, g〉(1.13)

= inf
fP

f(x)dx=0

∑

x∈V
f(x)Lf(x)

∑

x∈V
f2(x)dx

= inf
fP

f(x)dx=0

∑
x∼y

(f(x)− f(y))2w(x, y)

∑

x∈V
f2(x)dx

.

A contraction of a graph G is formed by identifying two distinct vertices, say
u and v, into a single vertex v∗. The weights of edges incident to v∗ are defined as
follows:

w(x, v∗) = w(x, u) + w(x, v),
w(v∗, v∗) = w(u, u) + w(v, v) + 2w(u, v).

Lemma 1.15. If H is formed by contractions from a graph G, then

λG ≤ λH

The proof follows from the fact that an eigenfunction which achieves λH for H
can be lifted to a function defined on V (G) such that all vertices in G that contract
to the same vertex in H share the same value.

Now we return to Lemma 1.14.

SKETCHED PROOF OF LEMMA 1.14:
Let u and v denote two vertices that are at distance D ≥ 2t+ 2 in G. We contract
G into a path H with 2t + 2 edges, with vertices x0, x1, . . . , xt, z, yt, . . . , y2, y1, y0

such that vertices at distance i from u, 0 ≤ i ≤ t, are contracted to xi, and vertices
at distance j from v, 0 ≤ j ≤ t, are contracted to yj . The remaining vertices
are contracted to z. To establish an upper bound for λ1, it is enough to choose a
suitable function f , defined as follows:

f(xi) = a(k − 1)−i/2,

f(yj) = b(k − 1)−j/2,
f(z) = 0,

where the constants a and b are chosen so that
∑
x

f(x)dx = 0.
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It can be checked that the Rayleigh quotient satisfies
∑
u∼v

(f(u)− f(v))2w(u, v)

∑
v

f(v)2dv
≤ 1− 2

√
k − 1
k

(
1− 1

t+ 1

)
+

1
t+ 1

,

since the ratio is maximized when w(xi, xi+1) = k(k − 1)i−1 = w(yi, yi+1). This
completes the proof of the lemma. �

1.5. Eigenvalues and random walks

In a graph G, a walk is a sequence of vertices (v0, v1, . . . , vs) with
{vi−1, vi} ∈ E(G) for all 1 ≤ i ≤ s. A random walk is determined by the transition
probabilities P (u, v) = Prob(xi+1 = v|xi = u), which are independent of i. Clearly,
for each vertex u, ∑

v

P (u, v) = 1.

For any initial distribution f : V → R with
∑
v

f(v) = 1, the distribution after k

steps is fP k (i.e., a matrix multiplication with f viewed as a row vector where P
is the matrix of transition probabilities). The random walk is said to be ergodic if
there is a unique stationary distribution π(v) satisfying

lim
s→∞

fP s(v) = π(v).

It is easy to see that necessary conditions for the ergodicity of P are (i) irre-
ducibility, i.e., for any u, v ∈ V , there exists some s such that P s(u, v) > 0, and
(ii) aperiodicity, i.e., gcd{s : P s(u, u) > 0} = 1. As it turns out, these are also
sufficient conditions. A major problem of interest is to determine the number of
steps s required for P s to be close to its stationary distribution, given an arbitrary
initial distribution.

We say a random walk is reversible if

π(u)P (u, v) = π(v)P (v, u).

An alternative description for a reversible random walk can be given by considering
a weighted connected graph with edge weights satisfying

w(u, v) = w(v, u) = π(v)P (v, u)/c

where c can be any constant chosen for the purpose of simplifying the values.
(For example, we can take c to be the average of π(v)P (v, u) over all (v, u) with
P (v, u) 6= 0, so that the values for w(v, u) are either 0 or 1 for a simple graph.)
The random walk on a weighted graph has as its transition probabilities

P (u, v) =
w(u, v)
du

,

where du =
∑
z w(u, z) is the (weighted) degree of u. The two conditions for

ergodicity are equivalent to the conditions that the graph be (i) connected and
(ii) non-bipartite. From Lemma 1.7, we see that (i) is equivalent to λ1 > 0 and
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(ii) implies λn−1 < 2. As we will see later in (1.14), together (i) and (ii) imply
ergodicity.

We remind the reader that an unweighted graph has w(u, v) equal to either 0
or 1. The usual random walk on an unweighted graph has transition probability
1/dv of moving from a vertex v to any one of its neighbors. The transition matrix
P then satisfies

P (u, v) =
{

1/du if u and v are adjacent,
0 otherwise.

In other words,

fP (v) =
∑
u
u∼v

1
du
f(u)

for any f : V (G)→ R.

It is easy to check that

P = T−1A = T−1/2(I − L)T 1/2,

where A is the adjacency matrix.

In a random walk with an associated weighted connected graph G, the transi-
tion matrix P satisfies

1TP = 1T

where 1 is the vector with all coordinates 1. Therefore the stationary distribution
is exactly π = 1T/vol G. We want to show that when k is large enough, for any
initial distribution f : V → R, fP k converges to the stationary distribution.

First we consider convergence in the L2 (or Euclidean) norm. Suppose we write

fT−1/2 =
∑

i

aiφi,

where φi denotes the orthonormal eigenfunction associated with λi.

Recall that φ0 = 1T 1/2/
√

vol G and ‖ · ‖ denotes the L2-norm, so

a0 =
〈fT−1/2,1T 1/2〉
‖1T 1/2‖ =

1√
vol G

since 〈f,1〉 = 1. We then have

‖fP s − π‖ = ‖fP s − 1T/vol G‖
= ‖fP s − a0φ0T

1/2‖
= ‖fT−1/2(I − L)sT 1/2 − a0φ0T

1/2 ‖
= ‖

∑

i 6=0

(1− λi)saiφiT 1/2‖

≤ (1− λ′)smaxx
√
dx

miny
√
dy

≤ e−sλ
′maxx

√
dx

miny
√
dy

(1.14)
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where

λ′ =
{

λ1 if 1− λ1 ≥ λn−1 − 1
2− λn−1 otherwise.

So, after s ≥ 1/(λ′ log(maxx
√
dx/εminy

√
dy)) steps, the L2 distance between fP s

and its stationary distribution is at most ε.

Although λ′ occurs in the above upper bound for the distance between the
stationary distribution and the s-step distribution, in fact, only λ1 is crucial in the
following sense. Note that λ′ is either λ1 or 2 − λn−1. Suppose the latter holds,
i.e., λn−1 − 1 ≥ 1 − λ1. We can consider a modified random walk, called the lazy
walk, on the graph G′ formed by adding a loop of weight dv to each vertex v. The
new graph has Laplacian eigenvalues λ̃k = λk/2 ≤ 1, which follows from equation
(1.13). Therefore,

1− λ̃1 ≥ 1− λ̃n−1 ≥ 0,

and the convergence bound in L2 distance in (1.14) for the modified random walk
becomes

2
λ1

log(
maxx

√
dx

εminy
√
dy

).

In general, suppose a weighted graph with edge weights w(u, v) has eigenvalues
λi with λn−1 − 1 ≥ 1− λ1. We can then modify the weights by choosing, for some
constant c,

w′(u, v) =
{
w(v, v) + cdv if u = v,
w(u, v) otherwise.(1.15)

The resulting weighted graph has eigenvalues

λ′k =
λk

1 + c
=

2λk
λn−1 + λ1

where

c =
λ1 + λn−1

2
− 1 ≤ 1

2
.

Then we have

1− λ′1 = λ′n−1 − 1 =
λn−1 − λ1

λn−1 + λ1
.

Since c ≤ 1/2 and we have λ′k ≥ 2λk/(2 +λk) ≥ 2λk/3 for λk ≤ 1. In particular we
set

λ = λ′1 =
2λ1

λn−1 + λ1
≥ 2

3
λ1.

Therefore the modified random walk corresponding to the weight function w′ has
an improved bound for the convergence rate in L2 distance:

1
λ

log
maxx

√
dx

εminy
√
dy
.

We remark that for many applications in sampling, the convergence in L2

distance seems to be too weak since it does not require convergence at each vertex.
There are several stronger notions of distance, several of which we will mention.



1.5. EIGENVALUES AND RANDOM WALKS 17

A strong notion of convergence that is often used is measured by the relative
pointwise distance (see [222]): After s steps, the relative pointwise distance of P
to the stationary distribution π(x) is given by

∆(s) = max
x,y

|P s(y, x)− π(x)|
π(x)

.

Let ψx denote the characteristic function of x defined by:

ψx(y) =
{

1 if y = x,
0 otherwise.

Suppose
ψxT

1/2 =
∑

i

αiφi,

ψyT
−1/2 =

∑

i

βiφi,

where φi’s denote the eigenfunction of the Laplacian L of the weighted graph asso-
ciated with the random walk. In particular,

α0 =
dx√
vol G

,

β0 =
1√

vol G
.

Let A∗ denote the transpose of A. We have

∆(t) = max
x,y

|ψy P t ψ∗x − π(x)|
π(x)

= max
x,y

|ψy T−1/2 (I − L)t T 1/2 ψ∗x − π(x)|
π(x)

≤ max
x,y

∑

i 6=0

|(1− λi)tαiβi|

dx/vol G

≤ λ̄t max
x,y

∑

i6=0

|αiβi|

dx/vol G

≤ λ̄t max
x,y

‖ψxT 1/2‖ ‖ψyT−1/2‖
dx/vol G

≤ λ̄t
vol G

minx,y
√
dxdy

≤ e−t(1−λ̄) vol G
minx dx

where λ̄ = maxi 6=0 |1− λi|. So if we choose t such that

t ≥ 1
1− λ̄ log

vol G
εminx dx

,

then, after t steps, we have ∆(t) ≤ ε.
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When 1 − λ1 6= λ̄, we can improve the above bound by using a lazy walk as
described in (1.15). The proof is almost identical to the above calculation except
for using the Laplacian of the modified weighted graph associated with the lazy
walk. This can be summarized by the following theorem:

Theorem 1.16. For a weighted graph G, we can choose a modified random
walk P so that the relative pairwise distance ∆(t) is bounded above by:

∆(t) ≤ e−tλ vol G
minx dx

≤ e−2tλ1/(2+λ1) vol G
minx dx

.

where λ = λ1 if 2 ≥ λn−1 + λ1 and λ = 2λ1/(λn−1 + λ1) otherwise.

Corollary 1.17. For a weighted graph G, we can choose a modified random
walk P so that we have

∆(t) ≤ e−c
if

t ≥ 1
λ

(
log

vol G
minx dx

+ c
)

where λ = λ1 if 2 ≥ λn−1 + λ1 and λ = 2λ1/(λn−1 + λ1) otherwise.

We remark that for any initial distribution f : V → R with 〈f,1〉 = 1 and
f(x) ≥ 0, we have, for any x,

|fP s(x)− π(x)|
π(x)

≤
∑
y

f(y)
|P s(y, x)− π(x)|

π(x)

≤
∑
y

f(y)∆(s)

≤ ∆(s).

Another notion of distance for measuring convergence is the so-called total
variation distance, which is half of the L1 distance:

∆TV (s) = max
A⊂V (G)

max
y∈V (G)

|
∑

x∈A
(P s(y, x)− π(x)) |

=
1
2

max
y∈V (G)

∑

x∈V (G)

|P s(y, x)− π(x)|.

The total variation distance is bounded above by the relative pointwise distance,
since

∆TV (s) = max
A⊂V (G)

volA≤ volG
2

max
y∈V (G)

|
∑

x∈A
(P s(y, x)− π(x)) |

≤ max
A⊂V (G)

volA≤ volG
2

∑

x∈A
π(x)∆(s)

≤ 1
2

∆(s).

Therefore, any convergence bound using relative pointwise distance implies the
same convergence bound using total variation distance. There is yet another notion
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of distance, sometimes called χ-squared distance, denoted by ∆′(s) and defined by:

∆′(s) = max
y∈V (G)


 ∑

x∈V (G)

(P s(y, x)− π(x))2

π(x)




1/2

≥ max
y∈V (G)

∑

x∈V (G)

|P s(y, x)− π(x)|

= 2∆TV (s),

using the Cauchy-Schwarz inequality. ∆′(s) is also dominated by the relative point-
wise distance (which we will mainly use in this book).

∆′(s) = max
x∈V (G)


 ∑

y∈V (G)

(P s(x, y)− π(y))2

π(y)




1/2

≤ max
x∈V (G)

(
∑

y∈V (G)

(∆(s))2 · π(y))
1
2

≤ ∆(s).

We note that

∆′(s)2 ≥
∑
x

π(x)
∑
y

(P s(x, y)− π(y))2

π(y)

=
∑
x

ψxT
1/2(P s − I0)T−1(P s − I0)T 1/2ψ∗x

=
∑
x

ψx((I − L)2s − I0)ψ∗x,

where I0 denotes the projection onto the eigenfunction φ0, φi denotes the ith or-
thonormal eigenfunction of L and ψx denotes the characteristic function of x. Since

ψx =
∑

i

φi(x)φi,

we have

∆′(s)2 ≥
∑
x

ψx((I − L)2s − I0)ψ∗x(1.16)

=
∑
x

(
∑

i

φi(x)φi)((I − L)2s − I0)(
∑

i

φi(x)φi)∗

=
∑
x

∑

i 6=0

φ2
i (x)(1− λi)2s

=
∑

i 6=0

∑
x

φ2
i (x)(1− λi)2s

=
∑

i 6=0

(1− λi)2s.

Equality in (1.16) holds if, for example, G is vertex-transitive, i.e., there is an
automorphism mapping u to v for any two vertices in G (for more discussion, see
Chapter 7 on symmetrical graphs). Therefore, we conclude:
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Theorem 1.18. Suppose G is a vertex transitive graph. Then a random walk
after s steps converges to the uniform distribution under total variation distance or
χ-squared distance in a number of steps bounded by the sum of (1−λi)2s, where λi
ranges over the non-trivial eigenvalues of the Laplacian:

∆TV (s) ≤ 1
2

∆′(s) =
1
2

(
∑

i 6=0

(1− λi)2s)1/2.(1.17)

The above theorem is often derived from the Plancherel formula. Here we have
employed a direct proof. We remark that for some graphs which are not vertex-
transitive, a somewhat weaker version of (1.17) can still be used with additional
work (see [70] and the remarks in Section 4.5). Here we will use Theorem 1.18 to
consider random walks on an n-cube.

Example 1.19. For the n-cube Qn, our (lazy) random walk (as defined in
(1.15)) converges to the uniform distribution under the total variation distance,
as estimated as follows: From Example 1.6, the eigenvalues of Qn are 2k/n with
multiplicity

(
n
k

)
for k = 0, . . . , n. The adjusted eigenvalues for the weighted graph

corresponding to the lazy walk are λ′k = 2λk/(λn−1 + λ1) = λkn/(n+ 1). By using
Theorem 1.18 (also see [96]), we have

∆TV (s) ≤ 1
2

∆′(s) ≤ 1
2

(
n∑

k=1

(
n

k

)
(1− 2k

n+ 1
)2s)1/2

≤ 1
2

(
n∑

k=1

ek logn− 4ks
n+1 )1/2

≤ e−c

if s ≥ 1
4n log n+ cn.

We can also compute the rate of convergence of the lazy walk under the rela-
tive pointwise distance. Suppose we denote vertices of Qn by subsets of an n-set
{1, 2, . . . , n}. The orthonormal eigenfunctions are φS for S ⊂ {1, 2, . . . , n} where

φS(X) =
(−1)|S∩X|

2n/2

for any X ⊂ {1, 2, . . . , n}. For a vertex indexed by the subset S, the characteristic
function is denoted by

ψS(X) =
{

1 if X = S,
0 otherwise.

Clearly,

ψX =
∑

S

(−1)|S∩X|

2n/2
φS .
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Therefore,
|P s(X,Y )− π(Y )|

π(Y )
= |2nψXP sψ∗Y − 1|
≤ |2nψXP sψ∗X − 1|
=

∑

S 6=∅
(1− 2|S|

n+ 1
)s

=
n∑

k=1

(
n

k

)
(1− 2k

n+ 1
)s.

This implies

∆(s) =
n∑

k=1

(
n

k

)
(1− 2k

n+ 1
)s

≤
n∑

k=1

ek logn− 2ks
n+1

≤ e−c

if
s ≥ n log n

2
+ cn.

So, the rate of convergence under relative pointwise distance is about twice
that under the total variation distance for Qn.

In general, ∆TV (s),∆′(s) and ∆(s) can be quite different [70]. Nevertheless, a
convergence lower bound for any of these notions of distance (and the L2-norm) is
λ−1. This we will leave as an exercise. We remark that Aldous [4] has shown that
if ∆TV (s) ≤ ε, then P s(y, x) ≥ cεπ(x) for all vertices x, where cε depends only on
ε.

Notes

For an induced subgraph of a graph, we can define the Laplacian with boundary
conditions. We will leave the definitions for eigenvalues with Neumann boundary
conditions and Dirichlet boundary conditions for Chapter 8.

The Laplacian for a directed graph is also very interesting. The Laplacian for
a hypergraph has very rich structures. However, in this book we mainly focus on
the Laplacian of a graph since the theory on these generalizations and extensions
is still being developed.

In some cases, the factor log vol G
minx dx

in the upper bound for ∆(t) can be further
reduced. Recently, P. Diaconis and L. Saloff-Coste [98] introduced a discrete version
of the logarithmic Sobolev inequalities which can reduce this factor further for
certain graphs (for ∆′(t)). In Chapter 12, we will discuss some advanced techniques
for further bounding the convergence rate under the relative pointwise distance.




