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Abstract 

We determine a sufficient condi t ion  for the convergence to 0 of  general products  
formed f rom a sequence of  real or complex matrices. Our  result is applied to ob ta in  a 
condi t ion  for the weak ergodicity of  an  inhomogeneous  M a r k o v  chain. We make  some 
remarks  compar ing  coefficients of  ergodicity and  we give a me thod  for const ruct ing 
these. © 1999 Elsevier Science Inc. All r ights reserved. 

1. Introduction 

Recently there has been much interest in conditions for the convergence of  
infinite products of real or complex matrices. Several investigations have 
concentrated on products taken in one direction - left or right, see for example, 
the recent papers by Beyn and Eisner [2] and Hartfiel and Rothblum [5]. 
HoweVer, in this paper, we are  concerned with generalproducts formed f rom a 
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given infinite sequence of matrices. These are defined further on in the paper 
and they have previously been considered for nonnegative and stochastic 
matrices by Seneta in [15], Chs. 3.1 and 4.6. Such products include products 
taken in one direction. 

Our principal result is a sufficient condition for the convergence to 0 of an 
infinite general product of matrices. Our hypothesis is on the norms of the 
matrices of the given sequence, and our proof uses classical results on the 
convergence and divergence of products of positive real numbers. 

Our result is motivated by the theory of inhomogeneous Markov chains. We 
are here concerned with the weak ergodicity of such chains, see [14] and [15], 
Ch. 4 for references to the early history of this topic and for background 
material, see also [3,10,11,4]. 

Weak ergodicity of an inhomogeneous Markov chain is equivalent to the 
convergence to 0 of a sequence of stochastic matrices considered as operators 
on a common invariant space of codimension 1. The corresponding operator 
norms are called coefficients of ergodicity. Thus by applying our result on the 
convergence to 0 of a product of matrices to ergodicity coefficients, we obtain a 
sufficient condition for weak ergodicity. 

The Ii coefficient of ergodicity due to Bauer et al. [1] plays a special role in 
the theory of Markov chains as it is the only ergodicity coefficient associated 
with a norm that is less than or equal to 1 for all stochastic matrices, see [7] or 
[9]. However, we shall define coefficients of ergodicity associated with norms 
that are less than the gl coefficient for many stochastic matrices, see [12] for a 
different technique for finding such coefficients. Thus it appears to be useful to 
prove results on weak ergodicity, such as ours, which allow ergodicity coeffi- 
cients to exceed 1. 

2. Convergence of infinite products 

In this paper 0: will stand for the real field R or the complex field C. 
In this section we develop our main results concerning the convergence of 

products of complex matrices taken in an arbitrary order from an infinite se- 
quence of matrices. Such products were considered (in a slightly less general 
form) by Seneta [15], Section 4.6) in the case of stochastic matrices, see also 
[8,13]. 

Let A~, A2, • •. be a sequence of complex matrices. We shall consider products 
of matrices obtained from the sequence in the following manner: First choose 
some permutation of the given infinite sequence to obtain a sequence BI, B2,.. • 
Then form the products Cp,r of the matrices Bp+l,..., Bp+r in some order. We 
shall call Cp,~ a general product from the sequence A1,A2,... and we shall 
consider the existence of lim~_o~Cp.,. If  this limit is 0, for all permutations of 
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Ai ,A2,. . .  and all p, p i> 0, then we shall say that all general products from the 
the sequence A~,A2,... converge to 0. 

As an example of  a sequence of  general product suppose the chosen order is 
A43, Ag, A7,As, Ai4, A2,. . .  Then the sequence of  (C2,1, C2,2, • • .) may begin thus: 
C2,1 -~- AT, C2,2 ~--- A7A5, C2,3 = AsA2AT, C2,4 = A2ATAI4.'I5. Note that, for a giv- 
en sequence Cp, l, Cp,2, • •. of  general products each factor of  Cp, r occurs in Cp,r+l, 
but the order in which the factors occur in Cp,r is arbitrary. 

Let It be a matrix norm (viz. a submultiplicative norm on ~"") and denote 

It+(P) = max(it(P), 1) and It-(P) = min(it(P), 1). 

Now let A~,A2,... be a sequence of matrices in n :n" and let It be a matrix 
norm. We now define two conditions: 

Condition (C). We say that the sequence A1,A2,..., satisfies Condition (C) 
for the norm It if 

oo 

(It + (Ai) - 1 ) converges. (1) 
i=1 

Condition (D). We say that the sequence At,A2,. . .  satisfies Condition (D) 
for the norm It if 

oc 

~-"~(1 - #-  (Ai)) diverges. (2) 
j= l  

We are now ready to prove the following result. 

Proposition 2.1. Let A1, A2, . . .  be a sequence of matrices in F nn. Let It be a matrix 
norm on ~:nn. Suppose that the sequence Al ,A2,. . .  satisfies Condition (C) for the 
norm It. Then all general products from A1 ,A2,... are bounded. 

Proof. Let BI, B2, . . .  be a permutation of  At ,A2,. . .  and let Cp, r be a product of 
Bp+l,...,Bp+r in some order. By Condition (C) and [6], Theorem 14, 
~i=l(it+(Bi) 1) converges and hence ~ + - ~ i=l ( i t  (Bp+i)- 1) also converges. 
Thus, by [6], Theorem 51, the product I-Ii~l It+(Bp+i) converges and so there 
exists a positive constant M such that yIr=lit+(Bp+i)<..M, for each 
r E {1,2 , . . .} .  It follows that 

= .+(8.+, 

<<. M [ "i~=l p- (Bp+i) ] <~ M. [] (3) 
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The above proposition allows us to prove a stronger result under an addi- 
tional condition. Note that in the theory of infinite products of nonnegative 
numbers it is customary to speak of divergence to 0 (see e.g. [6], p. 93). 

Theorem 2.2. Let AI,, 'I2,... be a sequence o f  matrices in ~ .  Let # be a matrix 
norm on ~ .  Suppose that the sequence A1,A2,. . .  satisfies Conditions (C) and 
(D) for the norm #. Then all general products from A1, A2,.. .  converge to O. 

Proof. Let BI,B2,. . .  be a permutation OfAl,A2,. . .  and let Cp,r be a product 
of Bp+l,. . .  ,Bp+r in some order. As in the proof of Proposition 2.1, we have 
that 

p(Cp,r)<~M lt-(Bp+i • (4) 

By Condition (D), the sum )-'~i~l (1 -#- (Ai) )  diverges and so, by [6], The- 
orem 14, ~ J = l ( - # - ( B i ) )  diverges. Thus ~i=1(1 -#-(Bp+i)) also diverges. 

We again apply Theorem 51 of [6] to obtain that I-Jill #-(Br-~) diverges. But 
since/z- (Bi) ~< 1, the last product must diverge to 0 and the proof is done. [] 

3. Applications to stochastic matrices 

In this section we apply the foregoing results to stochastic matrices. In order 
to be consistent with our previous section we consider column stochastic ma- 
trices. Thus "stochastic matrix" will mean "column stochastic matrix". 

Let e = (1 , . . . ,  1)r E R n and let 

H = {x E ~ ' :  eZx = 0}. (5) 

IfA is a stochastic matrix in R È'n, then H is invariant under A. If  v is a norm 
on R" and A is a stochastic matrix, then corresponding coefficient ofergodicity 
is defined by 

v(Ax) 
re(A) = sup , (6) 

0~x~, v(x) 

as is usual in the literature on Markov chains, see for example [13]. We may 
extend the definition of ve to all matrices A in R nn which leave H invariant. 
Evidently ve is the (submutliplicative) operator norm induced by v on the al- 
gebra of matrices which leave H invariant. 

The £1 norm on R n plays a special role in the theory of Markov chains and 
we shall denote it henceforth by co. The corresponding coefficient of ergodicity 
was apparently first computed by Bauer et al. [1] - see also [16] - and equals 
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t/ 

(oe(A) = (1/2) max  ~-'~la,j-akjl. 
i.kc{1....,n} ~_ 1 

However ,  this quant i ty  appeared  previously in the equivalent  fo rm 

n 

1 - min~-~ min(aej, akj) 
i , k  J =  I 

in [4]; see [15], Theorem 2.10 for  a p r o o f  of  the equality o f  the two expressions. 
It is known that  O~e(A) ~< 1 for  all stochastic matr ices A and (Oe is the only 
coefficient o f  ergodicity that  satisfies this inequality [7,9], but  see also [13]. 

Definition 3.1. Let PI,P2, . . .  be a sequence of  n × n stochastic matrices.  We 
shall say that  all general products  formed f rom this sequence are weakly ergodic 
if for all general products  Bp, l, B p , 2 ,  • • • , we have that  

limBp,~X = 0 for  all x ¢ H. (7) 
r - -+oc 

Since every x E H can be writ ten x = c(u - v), where u, v ¢ ~" are nonneg-  
ative and eTu = eVv = 1 and c E R, it is easily seen that,  for  each p roduc t  
considered, our  definition is equivalent  to that  in [4,11], or  [15], Defn. 3.3. 

By Theorem 2.2 we now immediate ly  obtain  the following. 

Theorem 3.2. Let v be a norm on ~" and let ve be the corresponding coefficient o f  
ergodicity. Let Pl, P2,. . .  be a sequence o f  n × n stochastic matrices. Then all 
general products formed from this sequence are weakly ergodic i f  

Z ( V e  + (Pi) - l) converges (8) 
i = l  

and 

~--~(1 - v~- (P,)) diverges. (9) 
i = l  

Note  that  Eq. (8) is automat ica l ly  satisfied if v = o), the g l -norm.  This 
special case of  Theo rem 3.2 is conta ined in [4], Theo rem 3, see also [15], Ex- 
ercise 4.36. By means of  an inequali ty found in [15], (4.6), this result in turn 
implies [10], Theo rem 3, see also [15], Theorem 4.9. Fur ther  results related to 
the special case v = ~o, o f  Theorem 3.2 (and which therefore involve only 
Eq. (9) explicitly) are to be found in [14], Theo rem 1, and in [11]. The theorem 
in the latter paper  is there illustrated by an example  of  a sequence of  stochastic 
matrices that  satisfies Eq. (9) for the no rm ~o see [11], p. 333. 

The  following corol lary to Theorem 3.2 is due to Rhodius  ([13], Thm. 3, 
Par t  I) in the case o f  v = o~, see [8], Thm.  A (i), for  a related result. 
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Corollary 3.3. Let P1, P2, . . . be a sequence o f  stochastic matrices. I f  Ve (Pi) <~ 1 for 
all i, i = 1 ,2 , . . . ,  and there exists a point of  accumulation c of  the sequence 
v~(Pl), re(P2), • • • such that c < 1, then all general products o f  the sequence are 
weakly ergodic. 

Proof. Clearly condition (8) holds and there is an infinite subsequence of  
indices j l , j 2 , . . ,  such that ve(Pij ) < (1 + c)/2 < 1, j = 1 ,2 , . . .  Then condition 
(9) holds for this subsequence. The result follows from Theorem 3.2. [] 

Another corollary of  Theorem 3.2 is ([8], Thm. A(ii)): 

Corollary 3.4. Let PI, P2, • • • be a sequence of  stochastic matrices and let v be a 
norm on ~". I f  all points of  accumulation c of  the sequence ve(Pl), ve(P2),... 
satisfy c < 1, then all general products of  the sequence are weakly ergodic. 

Proof. The sequence re(P1), ve(P2),... , is bounded, since all elements of  the 
stochastic matrices P j , j  = 1 ,2 , . . .  , are bounded above by 1. Since the set of  
accumulation points of  a bounded sequence is compact,  there exists d < 1 such 
that only a finite number of  terms of  the above sequence of ergodicity 
coefficients exceed d. Hence Eqs. (18) and (9) hold for this sequence and the 
corollary follows from Theorem 3.2. [] 

4. Comparisons of ergodic coefficients 

Detailed comparison of our results above to some results in [15], Ch. 4 is 
difficult since in the latter the coefficient of  ergodicity is defined in [15], Defi- 
nition 4.6 as a continuous function r on the set of  stochastic matrices satisfying 
0 ~< z ~< 1, and theorems there require the hypothesis that this function is sub- 
multiplicative, see also [14] for a similar approach. On the other hand we define 
the coefficient in terms of a norm. It may be noted that in our proofs we have 
not used the subadditive property of  a matrix norm, only its submultiplicative 
property. 

The gl coefficient of  ergodicy roe is advantageous for obtaining theoretical 
results since oge(A) ~< 1 for all stochastic matrices A. However, as we pointed 
out in the introduction, there are natural and useful coefficients of  ergodicity Ve 
associated with a norm v such that ve(A) > 1 for some stochastic matrix A. In 
order to provide a class of  such examples, we state and prove a proposition. 

Proposition 4.1. Let n > 1 and let 1 <<. k <<. n. For any A C ~nn which leaves H 
invariant, let Ak E ~ - l , , - 1  be defined by 

f i o : a  U - a ~ ,  i , j :  1 , . . . , n ,  i, j C k .  (10) 
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Let  ~ be any norm on ~,-1. Then there exists a norm v on ~ such that the 
corresponding coefficient o f  ergodicity satifies re(A) = ~°(Ak) for  all stochastic 
matrices A E ~"~, where ~0 is the operator norm on ~,-1 , , - ,  induced by ~. 

Proof.  Wi thout  loss o f  generality, we may  assume that  k = 1 and we put  
~'~1 = /~- F o r  x C ~" define .~ = (x2, . . .  ,Xn) T C ~n-1. Note  that  

= ( 1 , . . . ,  1) T c E , - I  and define the n o r m  v on E" by 

v ( x ) = l x , + , ~ x 2 1 + ~ ( ~ ) ,  x E  ~". (11) 

Let  x E H.  Then x~ = _Or2 and hence v(x) = ~(~). I fA  leaves H in.yariant (and, 
in par t icular  if A is stochastic) we therefore have v(Ax)/v(x)  = ~(Ax)/~(2) when 
x # 0. But it easily checked that  (Ax) = .4Yc f o r x  C H since x T = (--~TYc,~T). The  
result follows. [] 

The special case of  Propos i t ion  4.1, where ? is the gj n o r m  on ~,-1 may  be 
found in [12], Example  1 with a different proof .  Observe that  the coefficient o f  
ergodicity so obta ined  is in general not equal to o)e. 

I f  we wish to find examples  o f  ergodicity coefficients, it follows f rom the 
above  propos i t ion  that  we do not  need to start  with a no rm on R n and use the 
definition (6) to compu te  the coefficient. Instead,  we m a y  pick k, 1 ~< k ~< n, and 
a norm ?k on ~n ~ and compute  ~0(~) .  Also, for  m a n y  purposes,  it is possible 
to consider /~ = mink=~ ...... ~°(A-k), for example  when finding upper  bounds  on 
the modul i  o f  eigenvalues of  A which do not  equal  1, and our  M A T L A B  ex- 
per iments  using the rand function show that  in mos t  cases [3 < o)e (A) when ~ is 
the g2 norm.  

We end with the easily proved  remark  that  the mapp ing  x ~ .~ o f  ~n onto  
~" 1 in the p roo f  of  Proposi t ion 4.1 is a vector  space h o m o m o r p h i s m  whose 
restriction to H is an i somorphism.  The mapp ing  A ~ Ak onto  ~,- t , , -1 f rom 
the algebra of  matr ices in ~"" that  m a p  H into itself is a h o m o m o r p h i s m  whose 
kernel consists o f  all matr ices in the algebra Of rank r, r ~< 1. 

Acknowledgements 

We would like to thank  Wenchao  H u a n g  for  some helpful remarks .  We 
thank  Olga Hol tz  for  her careful reading of  the manuscr ipt .  

References 

[1] F.L. Bauer, Eck. Deutsch, J. Stoer, Abschfitzungen ffir die Eigenwerte positiver linearer 
Operatoren, Lin. AIg. Appl. 2 (1969) 275-301. 

[2] W.J. Beyn, L. Eisner, Infinite products and paracontracting matrices, Elec. J. Lin. Alg. 2 
(1997) 1 8. 



314 Mr. Neumann, H. Schneider / Linear Algebra and its Applkzttions 287 (1999) 307..-314 

[3] J. Hajnal, The ergodic properties of non-homogeneous finite Markov chains, Proc. Cambridge 
Phil. Soc. 52 (1956) 67-77. 

[4] J. Hajnal, Weak ergodicity in non-homogeneous Markov chains, Proc. Cambridge Phil. Soc. 
54 (1958) 52-67. 

[5] D.J. Hartfiel, U.G. Rothblum, Convergence of inhomogeneous products of matrices and 
coefficients of ergodicity, Lin. Alg. Appl. 277 (1998) 19. 

[6] J.M. Hyslop, Infinite Series, Oliver and Boyd, Edinburgh, 1945. 
[7] R. Kiihne, A. Rhodius, A characterization of Dobrushin's coefficient of ergodicity, Z. Anal. 

Anw. 9 (2) (1990) 187--188. 
[8] A. Leizarowitz, On infinite products of stochastic matrices. Lin. Alg. Appl. 168 (1992) 189-- 

219. 
[9] A. Leganovsk~,, Coefficients of ergodicity generated by non-symmetrical vector norms, 

Czechoslovak Math. J. 40 (t 15) (1990) 284--294. 
[10] J.L. Mott, Conditions for the ergodicity of non-homogeneous finite Markov chains, Proc. 

Roy. Soc. Edinburgh. Section A 64 (1957) 369 380. 
[11] J.L. Mott, H. Schneider. Matrix norms applied to weakly ergodic Markov chains, Arch. Math. 

8(1957) 331 333. 
[12] A. Rhodius, On explicit forms of ergodicity coefficients, Lin. Alg. Appl. 194 (1993) 71 83. 
[13] A. Rhodius, On the maximum ergodicity coefficient, the Dobrushin coefficient and products of 

stochastic matrices, Lin. Alg. Appl. 253 (1997) 141 157. 
[14] E. Seneta, On the historical development of the theory of finite inhomogeneous Markov 

chains, Proc. Cambridge Phil. Soc. 74 (1973) 507 513. 
[15] E. Seneta, Non-negative Matrices and Markov Chains, 2nd ed., Springer, New-York, 1981. 
[16] C. Zenger, A comparison for some bounds for the nontrivial eigenvalues of stochastic 

matrices, Numer. Math. 19 (1972) 209 211. 


