On the Randomness of Pi and Other Decimal Expansions

George Marsaglia
Department of Statistics
Florida State University

Abstract

Tests of randomness much more rigorous than the usual frequency-of-digit counts are applied to the decimal
expansions of 7, e and /2, using the Diehard Battery of Tests adapted to base 10 rather than the original base
2. The first 10° digits of 7, e and /2 seem to pass the Diehard tests very well. But so do the decimal expansions
of most rationals k/p with large primes p. Over the entire set of tests, only the digits of /2 give a questionable
result: the monkey test on 5-letter words. Its significance is discussed in the text.

Three specific k/p are used for comparison. The cycles in their decimal expansions are developed in reverse
order by the multiply-with-carry (MWC) method. They do well in the Diehard tests, as do many fast and simple
MWC RNGs that produce base-b ‘digits’ of the expansions of k/p for b = 2%? or b = 232 —1. Choices of primes p
for such MWC RNGs are discussed, along with comments on their implementation.

1 Introduction

This article may be considered to have two themes:

1. Assessing apparent randomness of familiar decimal expansions such as those of 7, e, v/2 as well as those of not
so familiar expansions of rationals k/p for large primes p, using far more extensive testing than heretofore.

2. Describing simple and fast ways to get decimal or base-b expansions for such k/p because, along with 7, e and
V2, they seem to produce digits that serve very well for use as a set of independent, identically distributed
random digits for Monte Carlo applications.

Methods for producing, in reverse order, digits of the expansions of k/p can lead to very fast and simple random
number generators (RNGs), with immense periods and performances matching those for digits of 7, e and V2, but
more generally for other bases, particularly for bases 232 or 2321, the latter chosen because a large prime p cannot
have b = 232, a square, as a primitive root.

2 The randomness of pi

Versions of the long history of 7, and dates for the record numbers of digits, (51.5 x 10% as of Jan. 2005) are available
in many forms via web searches. A particularly popular one is 7 through the ages [7]. Many websites have taken all
or parts of it, often without attribution, to comment on an apparent paucity of 7s among the digits of = published
by Shanks[8] in 1853. The book A Budget of Paradoxes by De Morgan|2] is the primary source for the comments.
A search of the web for the phrase “a curious statistical freak” will show at least 21 references containing all or part
of this quotation from 7 through the ages[6]:

“Very soon after Shanks’ calculation a curious statistical freak was noticed by De Morgan, who found
that in the last of 707 digits there was a suspicious shortage of 7s. He mentions this in his Budget of
Paradoxes of 1872 and a curiosity it remained until 1945 when Ferguson discovered that Shanks had
made an error in the 528th place after which all his digits were wrong. In 1949 a computer was used to
calculate 7 to 2000 places.”

Unfortunately, all 21 or more of those websites got things wrong. The 607 digits from Shanks[8], (actually 608
because the leading 3 was not counted), were based on the series for 7 = arctan($) — 4 arctan(535) and accumulated
over a period of many years. Shanks [9] later amended his list and extended it to 707 digits. The first publication
led to the observation by De Morgan that 7 occurred only 44 times in that list of 608. De Morgan, (page 65, second

edition, V2) writes

“It is 45 to 1 against the number of 7s being as distant from the probable value (say 61) as 44 on one
side or 78 on the other. There must be a reason why the number 7 is thus deprived of its fair share in
the structure.”

So the observed 44 7s were from the 608 digits, not from Shanks’ later list of 707+1. De Morgan apparently
applied the binomial distribution, known from de Moivre 150 years before, to the observed number of 7s. For Shanks’
list, the digit with the least count happened to be 7, and the most frequent was 3, leading to De Morgan’s witty
debunking of conclusions relating to 3% becoming the nearest simple-digit approximation to 7, with allusions to
number mysticisms of the Great Pyramid.

A more appropriate modern assessment of the frequencies in Shanks’ 608 digits might be based on the point that
it is unreasonable to single out 7, then apply the binomial distribution to the number of 7s. A better assessment,
which is more difficult but no doubt available to De Morgan, is to assess the chances that the least-frequent digit
will appear 44 or fewer times. There is a better than 10% chance that in 608 independent choices of a random digit,
the count for the least-frequent digit will be 44 or less.

The paucity of 7s might have been proper cause for concern if based an a list of 608 digits, bumping De Morgan’s
45 to 1 or the more modern 10% to more disturbing levels. If, in De Morgan’s style, we merely apply the binomial
distribution to counts for the number of 7s in a random list of 708 digits, then it is 2700 to 1 that the number of 7s
will be as distant from the probable value (say 71) as 44 on one side or 98 on the other. Or, not singling out 7, it is
about 500 to 1 against the least-frequent digit count being 44 or less when drawing 708 random digits.

But De Morgan’s count of 44 7s was based on 608, not 708 digits, and those 21+ websites got it wrong.

Also contrary to some of the web histories of 7, Ferguson[1] found Shanks’ error by using a combination of hand
and mechanical calculation, and not by means of an electronic computer.

When the list of digits of 7 is extended to the 51.5x 10° digits available as of Jan 2005, the frequency of 7s,
and of all the other digits, seems consistent with the assumption that they came from a sequence of id (identically
distributed) variates taking values 0,1,2,3.4,5,6,7,8,9 with probabilities 1/10.

But is it reasonable to view those digits as the realization of a sequence of iid, independent identically distributed,
random choices from {0,1,2,3,4,5,6,7,8,9}7. That is the question we address here, for e, V2 as well as 7, and also for
three specific, but more or less random, choices of decimal expansions for rationals k/p.

3 Source digits for the tests of randomness

Results mentioned in the next section, and detailed in an appendix, are based on six sources, each containing around
10 digits. Three files contain digits from the expansions of 7, e, v/2 and three from expansions of these rationals:

53480293019803 - - - 3624360069 123456789012
44353 x 10%6084+1 7 7000000001 1000000000061

The numerator in that first rational has over 4600 digits, too long to list. The digits for the 7, e, v/2 expansions
were obtained by means of PiFast[3], a nice, easy-to-download-and-use program for getting many digits of important
constants. The expansion for the three rationals were obtained by the reverse-order multiply-with-carry method
described in Section 5. Each of the six files is too large to be included as attachments here, but could be reproduced
by downloading and running the PiFast program, requiring 3-4 hours for each of 7, e, /2, or less than a minute for
C implementations of the methods of Section 5 for rationals k/p.

4 Test results

Results on thirteen tests of randomness are appended: (1-4) monkey tests for 3,5,6,7-letter words, (5-6) ged and
birthday spacings tests, (7) rank of mod 5 matrices, (8-9) placement of random points in squares and in cubes,

(10-11) overlapping permutation and runs tests, (12) a parking lot and (13) a squeeze test. In addition, frequent
website references to the appearance of primes in 7 led to two more tests: for strings of 10° random digits, count the
number of overlapping 3- and 4-tuples that represent primes.

Thus the appendix contains the results of 15 tests applied to the decimal expansions of

r e 2 53480293019803 - - - 3624360069 an 123456789012
T " 44353 x 10460841 7 7000000001’ 1000000000061

Except for the two count-the-primes, the tests are based either on the Diehard Battery[4] or on some more recent
tests[5], but applied to a sequence of digits rather than a sequence of bits. Those tests were selected because, at least
in binary form, each of them has shown drastic departures from underlying probability theory for certain kinds of
RNGs.

The idea behind each test is to see if the digits in question, whether viewed one at a time, or in segments or,
more generally, as arguments in complicated functions, can be reasonably considered to have arisen as the output of
those same functions applied to a sequence of iid random digits, iid meaning independent identically distributed.

If the output is designated X, and underlying probability theory provides the distribution function Pr(X < z) =
F(xz), then the random variable p = F(X) should be uniformly distributed in [0,1), and the test returns that as a
p-value. Often, this is repeated 10,20,50 or more times, and two functions of the resulting p-values—the Anderson
Darling and Kolmogorov tests of uniformity—then provide a final pair of p-values, usually labeled ADp and Kp.

The tests and their results are pretty much self-explanatory—at least for those who understand the process of
converting, by means of their distribution functions, the outputs of random experiments into uniform distributions
in [0,1), and interpreting what, if anything, the results mean. For those who do not understand, I can only, as I do
in responding to numerous e-mails seeking interpretation of results from Diehard, suggest that proper interpretation
of tests of randomness probably requires more background in Probability and Statistics than the requestor has had.

This is not to say that, for those familiar with testing, there is agreement on either the tests to use or the
interpretation of results. An example above illustrates this, for the simple case of finding ‘only’ 44 7s in Shanks’
first 608 digits of m. De Morgan said chances were 45 to 1 against it. I would agree that it was a proper example
of converting the binomial distribution, getting a p-value of about 45/46=.978, and would agree that, if that were
the proper distribution to use, a p-value of .978 might lead one to suspect the uniformity of a process that produced
the 608 random digits. And if the 44 7s came from a process that produced 708 random digits, I would say that
the p-value of 2700/2701=.9996 is an even stronger reason for doubting the uniformity of the random process that
produced them.

But I would argue that converting the lowest digit count to a p-value is more appropriate. In the above case for
608 digits, a lowest digit count of 44 would convert to a p-value of 0.891, not at all shaky. If 708 digits had been the
proper total to use, p=.9977 would result from converting a lowest count of 44 to a uniform value, much stronger
evidence for a lack of uniformity. In most cases, we would, as was done in the case of 7, call for a more extensive
examination of the process producing the digits, to see if early doubts on the uniformity were justified. Occasional
p-values near 1 should be expected—indeed, required from myriad tests.

As I stated in the instructions for Diehard, keep in mind that “p happens”.

Among the many hundreds of p-values reported in the appendix, there was only one case that might raise an
eyebrow—the monkey test for 5-letter words on the digits of v/2. In this test, we imagine the (v/2) monkey is
randomly striking a keyboard with ten keys and find, after a string of 10 million keystrokes, how many times each
5-letter word (5-digit number) appears.

If Q5 = Y (OBS — EXP)?/EXP for 5-letter words, Q4 = Y (OBS — EXP)?/EXP for 4-letter words, then Q5 — Q4
should have a chisquare distribution with 10°> — 10* = 9000 degrees of freedom, which is converted to a uniform
distribution, a p-value. The test is repeated 50 times, then Anderson-Darling and Kolmogorov tests for uniformity
are made on the 50 ps.

Individually, the 50 p-values from the digits of /2 seem OK, but collectively they give suspect p-values from
tests for uniformity: ADp = 0.997296 for Anderson-Darling and Kp = 0.998832 for Kolmogorov. This illustrates the
uncertainty in assessing randomness. If the digits of the expansion of v/2 can serve as the realization of a sequence
of iid random digits, then there must be occasional stretches where such a set of p-values will produce an ADp and
Kp value around .998, and we happened to get one. Or perhaps there is some kind of regularity in the digits of v/2
that will consistently show aberrant behavior for the frequency of 5-letter words (5-digit strings). I leave further

exploration to the reader, an obvious step being to take the second set of 10° digits from the expansion of v/2 and
see if it fares better or no-better in the monkey test for 5-letter words. I predict it will do better.

5 Decimal expansion of rationals

In 1863, two MA’s from Cambridge, G. Suffield and J.R.Lunn, published the cycle of 7698 digits in the decimal
expansion of 1000/7699. This is mentioned as one of numerous ‘curious calculations’ in the Budget of Paradozes [2],
the most significant being Shanks’ arduous expansion of 7 mentioned above. Details of the 1000/7699 expansion are
not supplied, other than to say that it was done to illustrate Suffield’s method of ‘synthetic division’.

The period of the expansion of k/p for a prime p is the order of 10 for p, and 10 happens to be a primitive root
for p = 7699, so the expansion is periodic with period p — 1 = 7698. The first cycle of 7698 digits begins, then ends

like this:
% = .1298869983114690219509027146382647097025587738667 - - -

-+-9375243538121834004416157942589946746330692297701000 12988 - - -

Examination of long-division procedures that we still learn in grammar school suggests that the procedure used
by Suffield and Lunn might be reduced to repeated application of these simple rules, starting with an initial £ = 1000:

10k
Form d = | ——|; Form k = 10k — 7699d; Output d;

The full cycle, 12988699831 - - - 7701000, would result from 7698 iterations, the first few of which are:

d=1k=2301; d=2,k="7612; d=9,k = 6829; d =8,k = 6698; d =8,k = 5388; d = 6,k = 7686;

Diligent application of those iterations—find the new d as the integer part of 10k/p and the new k as 10k mod p—
might produce the full 7698 digit expansion in a week or two, but divisions by p and reductions mod p are not as
easy as divisions by 10 and reductions mod 10.

I found this example of De Morgan’s ‘curious calculations’ all the more curious because I had, as a consequence
of some curious calculations for a different purpose, devised a way to get the digits of a decimal expansion using
only these more desirable operations: multiplication by 10 and reduction mod 10, as in the following development
for 1000/7699:

Given initial x=9,y=2,2z=1, and a ‘carry’ ¢=13, iterate, using temporary t:

t=T(x+y)+c z—y, y—=z c— [(t/10], z — t mod 10, output z,

This iteration will produce the digits in the expansion of 1000/7699, but in reverse order !

For example, suppose the digits z,y,z and carry c are represented in this form: z,y,°z, with the carry c in
elevated form. The iteration rule is: for each elevated ¢, take 7 times the sum of the two preceding digits, add that
to ¢, then write the result in elevated form, except place the trailing digit unelevated;

97 2,131,90,30,10701,00707,07,49,1027122789,36,80,113,53,26744, .

Thus 7 * (9 + 2) + 13 = 90, which is written 0. Then 7 % (2 + 1) + 9 = 30, leading to 20, and 7 * (1 + 0) + 3 leads to
10, 7% (0 +0) + 1 leads to °1 and so on. Mental arithmetic and a little practice would provide this output of 2’s:

00010779229603364764998524975161440043812183534257398185084007394 - - -,

which is the end of the first cycle of 1000/7699, but in reverse order. At a rate of perhaps 10/minute, the full output
of 7698 z’s might take around 13 hours.

This is an example of what I call the multiply-with-carry method, which, along with the add-with-carry
method[6] was developed in response to a request that I provide a random number generator for The Connec-
tion Machine. That was, in the 80’s, a new supercomputer with 65536 processors working in parallel. But those

processors were simple, void of the registers and integer arithmetic instructions usually available when developing
RNGs.

So the problem was to create long sequences of bits, each new bit the sum, mod 2, of a few previous ones. The
arithmetic behind such a scheme was too simple to provide sequences with long periods, unless one used the ‘carry’
resulting from a previous addition to be used in forming the new bit. A little blackboard experimenting with methods
for determining the periods of such sequences led to the surprising fact that I would be creating the binary expansions
of certain integers—but in reverse order. I never did get to providing a RNG specifically for the Connection Machine,
but experimenting with the add-with-carry operation using conventional 32-bit CPUs and expansions to base b = 232
rather than b = 2 led to a variety of simple generators with astonishingly long periods [6].

Use of integer multiplication rather than addition led to multiply-with-carry sequences which produced, in reverse
order, the base b expansions for rationals of the form k/p, preferably with p a prime having b as a primitive root. In
addition to the immense periods, the generating procedure led, as above, to production of ‘digits’ in reverse order
by means of operations particularly well suited for computer implementation: divide by b, reduce mod b. This in
contrast to the divide by p, reduce mod p needed to get the ‘digits’ of k/p in the conventional order.

6 Choice of primes for RNGs based on the expansion of k/p

This section concentrates on the selection of primes p whose base-b expansions of k/p lead to quality RNGs. The
development in Section 5 shows how the base-b digits can be generated in reverse order by means of the operations:
divide by b and reduce mod b, rather than divide by p, reduce mod p for the conventional order. The obvious choice
for b is 232 for the integer arithmetic available in most CPUs, and the least complicated RNGs of this kind are
multiply-with-carry (MWC) sequences

ATp—r + Cp—1

Zp = (ap—r+cp_1) mod b, ¢, = | 5 |

Note how well-suited the two operations, (ax + ¢) mod b and |(ax + ¢)/b], are for modern CPUs when b = 232,
If we form t = az + ¢ in 64 bits, then (ax + ¢) mod b is just the bottom, and | (ac + ¢)/b] the top, 32-bit part of ¢.

Such MWC sequences are based on primes of the form p = ab” — 1, and require an initial set of seed values
1, T3, ..., T, randomly selected in 0 < x < b and an initial seed ¢, randomly chosen in 0 < ¢ < a. There are ab”
ways to chose the seed set, and for every choice of such an initial seed set, the resulting x’s will be, in reverse order,
the digits of the expansion of k/p for some 0 < k < p. The two extremes, 0/p and p/p, arise from seed sets with all
z’s and ¢ set to 0, or all 2’s set to b — 1 and ¢ set to a — 1. For those seed sets, the MWC sequence has period 1.

The ideal case is to have b a primitive root of p, so that, except for the two forbidden sets, every choice of seeds
leads to a sequence of period p — 1, and thus, for m < r, the RNG can produce every possible string of m successive
digits, a highly desirable feature for assessing the behavior of points produced by the RNG in higher dimensions.
Note, for example, that many commonly used RNGs have periods around 232 and can produce at most 1/23? of the
possible 2-tuples, 1/254 of the possible 3-tuples, etc., the reason why such RNGs fail many of the tests in Diehard.
But we will have RNGs here that can produce, for example, every possible 1000-tuple, or 4000-tuple or higher.

Unfortunately, b = 232 is a square and cannot be a primitive root for p = ab”—1. The best we can do is choose p a
safeprime, that is, a prime p for which (p—1)/2 is also prime. Then the period of the sequence will be (p—1)/2 and we
still will produce all possible m-tuples for m’s up to (p — 1)/2. Numerous safeprimes of the form ab”—1,b = 232 will
be given in a separate article. The largest such is 3686175744b'3%9 —1, so every possible sequence of 1058 successive
32-bit integers can be produced by the MWC RNG based on that prime. The period of the MWC RNG based on
that safeprime exceeds 1013100,

Problems with developing MWC RNGs from larger primes come from both the difficulty in finding the prime p
itself and in finding the order of b for that prime. Unless p is a safeprime, factoring of p—1 is required. To make that
feasible, we turn to primes of the form ab”+1, b = 232. Such primes provide what I call complimentary-multiply-
with-carry (CMWC)RNGs, with generating procedure

zp = (b—1) = [(amy—r+cp—1) mod b], ¢, = LM

b)

The seed sets for CMWC are the same as those for MWC: choose r 2’s with 0 < x < b and an initial seed 0 < ¢ < a,
for which there are ab” possible choices. But unlike MWC, for which one must avoid those two period-1 seed sets,
for CMWC every choice of seeds produces sequences with the same period, the order of b.

One of the largest CMWC primes for which I have been able to establish the order of b = 232 is p = 216996752000+
1, for which every choice of the ab**°%Y seed sets provides a sequence with period (p—1)/2% > 10240833 and every
possible sequence of 24994 successive 32-bit integers appears somewhere in that sequence. And note also, for crypto-
graphic purposes, that many such CMWC RNGs can have output that contains every possible 24000-tuple, so that
anyone having, say, 10000 successive elements from the sequence will have no easy way to determine succeeding ones.
I will, in the separate article mentioned above, provide numerous MWC and CMWC RNGs that have this property,
as well as suggest ways to choose many more, making such code-breaking extrapolations difficult.

With b = 232, 2 itself cannot be primitive for primes of the form p = ab” + 1. If the order of 2 is maximal,
e < (p—1)/2, then the order of b = 232 is e/ gcd(e, 32) = €/32, so the largest possible order of b = 232 for primes
of the form p = ab” + 1 is (p — 1)/2°, that is, we ‘lose’ at least six 2s from the exponent in p. Numerous examples
for which we lose from six to ten 2s will be listed in that forthcoming article. Resulting periods are much greater
than the already astonishing 10249833 above, but, as with the climbing of Mt. Everest and worldwide interest in large
primes themselves, they are goals we seek ‘because they are there’. A current goal is to find the order of 232 for
p = 28433 x 27830457 11 the largest known non-Mersenne prime as of 1/2005.

6.1 Choice of b = 232 —1 for providing primitive roots

The most desirable MWC and CMWC, from the standpoint of elegance of theory, are those based on the primes
p for which b is a primitive root, with b = 232 singled out because it makes implementing the multiply-with-carry
operation so simple in today’s CPU’s. Since b = 232 cannot be a primitive root for large primes, we turn to another
choice that can be primitive, but will still have the property that computer implementation of the multiply-with-carry
operations is simple. An obvious choice is b = 232 —1. Our MWC or CMWC sequences will then produce integers
2z in 0 < 2 < 2321 rather than 0 < z < 232, and the ‘divide by b and ‘reduce mod b’ operations can be based on
slight modifications of those for 232.

Recall that, with b = 232, if t = az + ¢ is formed in 64 bits then |(¢/b)] is the top 32 bits of ¢, and ¢ mod b is the
bottom 32. Put another way, if ¢t = 2320 + w, with v,w < 232, then v and w are the top and bottom 32 bits, but
t = (2%2—1)v+ (v+w) shows that |55~] = v+ [%%] and ¢ mod (2°2—1) = (v+ w) mod (232—1), both corrections
easily made, depending on whether v + w overflows when added as 32-bit integers.

The following C function provides a CMWC RNG based on p = 1878254096 + 1, the largest prime for which I
have been able show that b = 232 —1 is a primitive root.

static unsigned long Q[4096],c=362436;
unsigned long CMWC4096 (void){
unsigned long long t, a=18782LL,b=4294967295LL;
static unsigned long i=4095;
unsigned long x,r=b-1;
i=(i+1)&4095;

t=axQ[i]+c;
c=(t>>32); t=(t&b)+c; if(t>r) {c++; t=t-b;}
return(Q[il=r-t); }

The prime is p = 18782 x (232 —1)#%96 11 and the period of this CMWC RNG is p— 1 > 1039460, Tt requires 4096
seeds 0 < z; < 2321 and an initial seed 0 < ¢ < 18782, and for any such seed set, the RNG produces, in reverse
order, the base b = 232 —1 digits of the expansion of k/p for some 0 < k < p. Of course, because b is primitive, any
two such expansions are just circular rotations of one another. An initial seed ¢ < 18782 and the 4096 elements in
the static array Q[4096] should be assigned values before calls to the function CMWC4096 (), otherwise the first few
thousand returned values will be zeros. (That is consistent with the view that the choice of seeds merely chooses a
random starting point in a huge circle of over 1039460 base-(232—1) digits. Failing to initialize the Q[4096] array (set

by default to 0’s) merely provides a starting point at a long string of zeros, which should be occasionally encountered
in any random string.)

That C procedure, CMWC4096(), has one of the longest periods of RNGs I have developed—over 10330%0 times
as long as that of the Mersenne twister, which many websites cite as the longest period RNG.

But of course the speed, simplicity and immense periods of such MWC and CMWC RNGs are not as important
as the property whose apparent truth is the main theme of this article:

The digits in the expansion of irrationals such as w, e and /2, as well as those of
rationals k/p for large primes p, seem to behave as though they were the output
of a sequence of independent identically distributed (iid) random variables.

References

[1] D Ferguson, Evaluation of pi. Are Shanks’ Figures Correct?,
Mathematical Gazette 30, 1946, 89-90.

[2] A De Morgan, A Budget of Paradoxes, Longmans, Green, London., 1872,
Originally published as a collection of De Morgan’s miscellaneous notes and reviews,
edited by his wife after De Morgan’s death in 1871. Then, “budget” meant a purse
or other depository, and “paradox” was used in the sense of not orthodoz, so the title
might be interpreted today as “A collection of views contrary to universal opinion”.
Specifics here are taken from the more readily available second edition, published in
two volumes in 1915 byThe Open Court Publishing Company, London and edited by
David Eugene Smith.

[3] X Gourdon, PiFast, an easy-to-use package for computing pi
and other irrationals to large numbers of digits,
http://www.numbers.computation.free.fr/Constants/PiProgram /pifast.html. 1999.

[4] G Marsaglia, The Marsaglia Random Number CDROM,
with
The Diehard Battery of Tests of Randommness,
produced at Florida State University under a grant
from The National Science Foundation, available at
http://www.cs.hku.hk/~diehard/ or an earlier version at
http://www.stat.fsu.edu/pub/diehard, 1985.

[5] G Marsaglia and WW Tsang, Some difficult-to-pass tests of randomness,
Journal of Statistical Software 7, issue 3, 2002.

[6] G Marsaglia and A Zaman, A new class of random number generators,
Annals of Applied Probability 1, 1991, 462-480.

[7] J O’Conner and EF Robertson, m through the ages, 2001,
www-groups.dcs.st-and.ac.uk/~history /Hist Topics/Pi_through_the_ages.html.

[8] W Shanks, Contributions to Mathematics Comprising Chiefly
the Rectification of the Circle to 607 Places of Decimals, G Bell, London, 1853.

, On the Extension of the Numerical Value of pi,
Proceedings of the Royal Society of London 21, 1873, 315-319.

7 Appendix

This appendix gives results from 15 tests of randomness for 7, e, /2 and three k/p. The first 13 are modifications
from the Diehard Battery[4], or from the tough tests in [5], and have shown unsatisfactory results from many pro-
posed RNGs.
Monkey tests for k-letter words. A monkey randomly strikes keys on a typewriter having ten different keys.
For each possible k-letter word, we count how many times that word appears in a string of n keystrokes.
Qr = > (OBS-EXP)?/EXP for the counts for k-letter words, then Qr — Qx_1 is the quadratic form in the weak
inverse of the covariance matrix of the joint mean-adjusted k-letter word counts, and is asymptotically chisquare
distributed with 10¥ — 10*~! degrees of freedom.
Monkey at a 10-key typewriter, Q3 — Qo for 10° 3-letter words, 50 p’s.

.552878
.677799
.740147
.520321
.395496

.293642
.655712
.283437
.338682
.593973

.790790
.080113
.133405
. 789854
.809885

.067844
. 731327
.250916
.276014
.233036

.269217
.905250
.901491
.409010
.200455

177743
.574449
.565543
. 747264
.577053

3-letter-word Monkey Test on digits of pi:

.823542
. 728303
.956455
.234914
L477970

.594996
.099034
. 749504
.303637
.407253

.129536
.471852
.380004
.289098

ADp=

. 794445
.260955
.060083
.520678

ADp=

.551312
.345121
.872453
.467913
.528741
3-letter-word Monkey Test on digits of e:
.234524
.238186
.874294
.341827
.975320

.067591 .167376
.417602 .994201
.101420 .421932
.477520 .318558
, Kp= .422532

.256395 .021610
.228404 .585597
.823494 .803734
.407545 .089555
, Kp= .966113

.421748
.155789
.877049
. 782897

.369478
.004558
.341567
.497969

.192401
.487214
.463885
.732787

.318339
.120512
.047661
.526648

3-letter-word Monkey Test on digits of sqrt(2):

.088220
.797689
. 756233
.170249
.942661

.598482
.618344
.954593
.549558

ADp=

.988284
.486763
.2565092
.017197
.841796

.799611 .598063
.077658 .724380
.746933 .196671
.872847 .825599
, Kp= .931831

.892300
. 794994
.248521
.829404

.588479
.554164
.960442
.980072

3-letter—-word Monkey Test on digits of 53480293019803..

. 732244
.209318
.881341
.626566
.412402

.958921
.307055
.7T79515
.420973

ADp=

. 768044
. 725905
.983750
.205609
.291580

.729396 .939194
.422246 .870295
.253867 .087866
.185001 .568973
, Kp= .408170

.783962 .701225
.975578 .788192
.181399 .542946
.940889 .604395

.542534
.483530
.113810
.970860

.638905
.139581
.692812
.037733

.217228
.223304
.230076
.739305

.148380
.145260
.691983
.497160

.042199
.198334
.075428
.994200

.469451
.267120
.010216
.157758

.492628
.779921
.978671
.9956828

.167600
.929973
.882209
.447849

.255440
.623616
.846633
.415892

./ (44353%1074608+1) :

.403579
.387908
.119927
.168453

3-letter-word Monkey Test on digits of 3624360069/7000000001:

.428824
.056392
.260680
.331862
.072530

.879686
.975416
.084794
.606700

ADp=

.616725
.331093
.480731
.525972
.079045

772094 .641691
.417934 .487233
.637120 .169748
.451972 399568
, Kp= .113874

.363711
.1561302 .795516
.267291
.204444 .500602

.029508

.245484

.479642
. 726313
.472621
.334999

.133587
.804164
.582674
.139707

.600304
.222025
.692448
.813738

3-letter-word Monkey Test on digits of 123456789012/1000000000061:

.106103
.119654
.282273
.997366
.017231

.684917
.831832
.107264
.606772

ADp=

.848212
.874586
.739198
.881481
.959387

.696941 .585377
.128672 .426124
.056312 .962418
.018749 .747626
, Kp= .955399

. 7556597 .417014
.016902 .899537
.078691
.502125 .506074

.200442

.634323
.565117
.008994
.406338

.521128
.320496
.407088
.053019

.896965
.381081
.0566322
.544217

.971400
.682333
.071476
.934364

.090036
.016979
.076785
.056477

.096875
. 763417
.5561107
.922848

.568250
.173638
.213190
. 726298

. 720239
.9056861
.367807
.912981

.896898
.913977
.040929
.679437

.939788
.731094
.147444
.601014

.383617
.940505
.031877
.622470

Monkey at a 10-key typewriter, Q5 — Q4 for 107 5-letter words, 50 p’s.

.372079
. 783273
.503383
.9056861
.523355

. 722274
.041359
.069772
.681314
.526946

.096511
.142102
.804028
.930250
.924069

.7T67676
.262906
.516840
.186867
.511089

.916817
.302766
.513790
377757
.276031

.665915
.477214
.936787
. 723262
.323995,

5-letter-word Monkey Test
.329730
.030097
.940077
.103804
, Kp =
5-letter-word Monkey Test
.216001
.246005
.150172
.098075
, Kp =
5-letter-word Monkey Test
.825970
.078505
.898123
.072626
, Kp =
b-letter-word Monkey Test
.864988
.607171
.062226
.879025
, Kp =
5-letter-word Monkey Test
.317235
.994433
.547404
.167022
» Kp =

.580385
.707621
.352475
.570112
.126401

.490549
.030280
.218015
.502080

ADp =

.875977
.990831
.2568597
.391362
.319807

.464361
.408810
.066966 .846613
.392309 .504135
..441167 ADp =

.931290
.518995

.822275
.326927
.863321
.715312
.598523

.034211
.109518
.551401
.395552
.202008

.131736
.240564
.131001
.307844

ADp =

.036309
.134643
.199612
.074091
.997296

.988740
.456553
.793632
.059554
.864018

.953561
.242319
.179416
.215062

ADp =

.824997
.170496
.126529
.176654
.534139

.670463
.424239
.245576
.617705 .778261 .638282
.761975 ADp = .088273

5-letter-word Monkey
.591862 .694823 .634431
.735785 .979145 .441576
.850164 .679049 .883409
.319233 .551399 .593139
.717313 ADp = .942655

.012329
.143845
.914993

.9566258
.816340
.814688

.435433
.388600
.501367
.287775
, Kp = .959772

on digits of pi:
.409374 .234803
.741539 .386933
.298937 .946689
.5225639 .167597
.615995

on digits of e:

.421731 .375407
.858227 .580711
.760726 .005565
.814971 .062877
.554014

on digits of sqrt(2):
.164387
.996754
.102385
.5569172
.998832

.252099

.637684
.221593
.912470
.054014
.847862

.603222
.175036
.688440
.027319

.363552
.014688
.465419
.860717
.017782

.242206
.160104
.948477
.484746

Test
.560176
.907961
.433928
.785130

.942535
.290529
.063014
.994758

.896900
.501719
.377709
.327718

.125941
.085746
. 748886
.375881

.171196 .562601
.930394 .479416
.156920
.005057 .975232

.188060
.090318
.861970
.060665

. 715522
.473247
.994437
.863531

177748
.396669
.606361
.839378

.030843
.134469
.741719
.341164

.560689
.643082
.260016
. 749336

. 766097
.304046
.001844
.136957

.664686
.193544
.056689
.573213

Monkey at a 10-key typewriter, Qs — Q5 for 10® 6-letter words, 10 p’s.

.55742 .

.12131

.06682

.61629

.93234

.85469

.23031

.20691

.16491

6-letter-word Monkey Test
98224 .25092 .29776 .67444
6-letter-word Monkey Test
.25774 .81497 .70648
6-letter-word Monkey Test

.64688 .37158 .63208 .37241

6-letter-word Monkey Test
.47563 .15624 .55689
6-letter-word Monkey Test
.91066 .86426 .61637
6-letter-word Monkey Test

.34589 .93289 .57257 .87682

on digits of pi:

.13658 .35472.72908 .34168
on digits of e:
.24832 .54908 .70101
on digits of sqrt(2):
.26006 .94965 .44406 .08595
on digits of 53480293019803
.79736 .22933 .75683 .69366

.11026

.86568
.44073
.48732

.../ (4435
.21198

on digits of 3624360069/7000000001:

.97234 .50992 .50974 .95771 .05487 ADp=

.879609
.403703
.063976
.003656

.838363
.034698
.348911
.397496

.527668
.249720
. 734167
.946162

.976317
. 722378
.603772
.435685

on digits of 123456789012/1000000000061:
.588723
.280093
.240743
.638660

.917976
.789716
.478601
.421423

on digits of 3624360069/7000000001:
.462728
.690142
. 733981
.193937

.199567
.T711771
.620116
.625490

ADp=.075105,

ADp=.469382,

ADp=.329194,

3%x1074608+1) :

ADp=.318255,

.926747,

on digits of 123456789012/1000000000061 :

.995626 .88800 .82480 .30554

.36141

ADp=.968693,

.595042
.446969
.254174
.505102

.592638
.027947
.148212
.419761

.152595
.632664
.551256
.189161

.065060
. 735453
.814954
.108750

.123420
.694615
. 739461
.466127

Kp=.
Kp=.
Kp=.
Kp=.
Kp=.

Kp=.

.540900
.085283
.901918
.514666

.990553
.251017
.967198
.429955

.328263
.029355
. 750589
.608841

on digits of 53480293019803.../(44353%x1074608+1):
.030124
. 782823
.235049
. 782021

.478408
.234483
.962019
.929789

.897567
.564628
.056032
.037093

.439826
.848761
.364671
. 747525

048306

476322

531438

264949

892703

962517

Monkey at a 10-key typewriter, 7-letter words.

Because there are too many 7-letter words to easily maintain word counts, this test uses the number of missing 7-letter
words from a string of 108 keystrokes , which should be approximately normal with (exact) mean 453.999637678 - - -,
(the lack-of-memory approximation gives 453.999297624). The (simulation provided) standard deviation is 21.5, so

a p-value results from ®((missing — 454)/21.5). The files provide enough digits for ten p-values.

7-letter-word Monkey Test on digits of pi:

.99908 .44451 .21456 .07467 .03858 .42620 .17613 .48145, .55549 .17613 ADp=.889048, Kp=.854452
7-letter-word Monkey Test on digits of e:

.33775 .88673 .66225 .95737 .22838 .55549 .94823 .12246, .75731 .83565 ADp=.753828, Kp=.57549
7-letter-word Monkey Test on digits of sqrt(2):

.563706 .81158 .05689 .03141 .44451 .20124 .21456 .69554, .53706 .91131 ADp=.164625, Kp=.178223

.10459

7-letter-word Monkey Test on digits of
.96859 .01002 .91854 .59195 .04702 .27271
7-letter-word Monkey Test on digits of

53480293019803. . ./(44353%1074608+1) :
.30446, .78544 .64509 ADp=.428261, Kp=.228474
3624360069/7000000001 :

.75731 .27271 .71163 .37237 .57380 .79876 .71163 .02826, .67908 .22838 ADp=.292980, Kp=.257653
7-letter-word Monkey Test on digits of 123456789012/1000000000061 :
.86785 .01279 .04702 .96516 .67908 .10459 .90360 .40805, .67908 .74253 ADp=.617002, Kp=.649966

The gcd test, see[5].
For two succesive 9-digit integers u and v, get k, the number of steps needed to find ged(u,v) by means of Euclid’s
algorithm. See if 106 such k’s have the proper (simulation provided) distribution. Repeat, getting 50 p-values.

.671667
.533792
.887194
. 773433
.478044

.364784
.115033
.140008
.096316
.019041

.999282
.369207
.391712
.890138
.307424

.845923
.836567
.384927
.290014
.167275

.937022
.645313
.947681
.208305
.963072

The gcd Test on digits of pi:
.883772 .009811 .839441 .369754
.473864 .234884 .636397 .588939
.174462 .967615 .737803 .130399 .491017
.258881 .006449 .903006 .950138 .380904
.725147 ADp= .849312, Kp= .860114
The gcd Test on digits of e:
.534584 .842788 .559476 .768062
.704692 .911332 .007527 .307169
.526837 .464967 .880475 .698219 .938419
.089996 .004562 .363364 .673914 .743025
.977924 ADp= .313874, Kp= .432467
The gcd Test on digits of sqrt(2):
.296828 .135840 .524178 .359828 .859467
.941833 .608697 .640314 .925101 .753456
.729567 .639658 .997947 .626816 .239069
.992526 .771883 .147292 .011158 .642617
.651485 ADp= .971043, Kp= .946891
The gcd Test on digits of 53480293019803.
.796825 .996363 .140542 .127042 .329533
.990148 .624513 .126197 .526628 .044942
.603911 .995462 .993390 .403834 .290100
.552070 .636909 .917952 .445767 .760912
.507069 ADp= .983674, Kp= .902253
The gcd Test on digits of 3624360069/7000
.349717 .855292 .597600 .933463 .351986
.164540 .542974 .785757 .836442 .848460
.643784 .661742 .390999 .739609 .980587
.530316 .121309 .501365 .257151 .606444
.149828 ADp= .985834, Kp= .921637

.591650
.853354

.162040
. 713325

10

.784751
.176993
. 719674
. 754911

. 758693
.667968
.471363
.437455

.443873
.287965
.581269
.776497

.363498
.116213
.947190
.042772

.394742
.952434
.807090
.239208

.868265
.870112
.909086
.778149

.237410
.226929
.834324
.639503

.963933
.804280
.116745
.149432

.849468
.873724
.526080
.045958

.494493
.259657
.495457
.092331

.626092
.2155641
.702865
. 789266

.872635
.398160
.815406
.883723

.465484
.317481
.555057
.944231

.943743
.069268
.141919
.800914

.502491
.192768
.884861
.214991

.798141
.125629
.584027
.931298

. 729806
.402413
.737899
.619402

.336649
.217178
.934103
.770106

.876883
. 747438
.462589
.295209

.500228
.B77739
.852528
.566845

../ (44353%x1074608+1) :

.703565 .610829
.684613 .859655
.996798 .885665
.790244 .734967

. 798463
.207504
.880252
.070527

.831095
.997225
.048373
.966859

.147745
.442651
.815011
.5563830

000001:

.467830
. 742094
.505092
.364094

.894119
.922251
. 732283
.893960

.554223
.030468
.094249
.073256

.866630
.922152
.305760
.486915

.993023
.276382
.983442
.941823

.038566
.309187
.940250
.850048

The gcd
.841213
.084061
.622305
.174020

Test on
.465589
.759393
.631284
.174307

digits of 123456789012/1000000000061:

.596742 .437562 .947480
.211197 .484732 .780381
.876845 .329044 .292128
.133373 .364675 .819730

.655427 .670574
.631271 .760499
.986103 .592577
.765375 .759415

.558254
.809770
. 738636
.387761

.517118
.071113
.971134
.603292

.467300
.878222
.983040
.132554

.209585
.482427
.142789
.423091

.860927 .050215 ADp= .501575, Kp= .485551

The Birthday Spacings Test

Choose m = 4000 birthdays from a year of n = 10° days. Sort the birthdays into increasing order then make a list
of the spacings between the birthdays. If k is the number of distinct values in that list of m spacings, then y = m—k
should have nearly a Poisson distribution with mean m?/(4n) = 16. The standard > (O — E)?/E value for 10000
such y’s, counting y <=5,y =6,...,y = 29,y >= 30, should provide a chisquare variate with 24 degrees of freedom,
leading to a p value. Digits available for pi,e,y/2 permit two applications.

Birthday Spacings Test on digits of pi:

chisq24 = 29.176961, p = .786458 chisq24 = 42.531531, p = .988756
Birthday Spacings Test on digits of e:

chisq24 = 27.647512, p = .724812 chisq24 = 41.381710, p = .984880
Birthday Spacings Test on digits of sqrt(2):

chisq24 = 11.808707, p = .018022 chisq24 = 33.344739, p = .902994
Birthday Spacings Test on digits of 53480293019803.../(44353%1074608+1):

chisq24 = 2 .340080, p = .322719 chisq24 = 33.687752, p = .909627
Birthday Spacings Test on digits of 3624360069/7000000001:

chisq24 = 18.744330, p = .234517 chisq24 = 4 .628181, p = .981709
Birthday Spacings Test on digits of 123456789012/1000000000061:

chisq24 = 26.867268, p = .689322 chisq24 = 39.217804, p = .974094

Rank test for random 4x4 matrices, elements mod 5.

Sixteen successive random digits form a 4x4 matrix. Its rank (over the field mod 5) will be 4, 3, > 2 with probabilities
76063703, .23731875, .002044216. From 10° such random matrices, form s = > (04 — E4)?/E4+ Y (03 — E3)?/E3 +
S (Oy — F5)?/Es. Then p =1 — e~*/2 should be uniform in [0,1). AD,K tests for 60 ps.

Rank
.32774
.48132
.61074
.93989
.89585

Rank
.92527
.79059
.55171
.66011
.89945

Rank
.45698
.58389
.68984
.28582

Test on digits
.24743 .62036
.20022 .62314
.92016 .85609
.45602 .15134
.07997 .43159
Test on digits
.88829 .83371
.97036 .09684
.43761 .51266
.34184 .25025
.22753 .26508
Test on digits
.83961 .53255
.67670 .76330
.82302 .41968
.80010 .85732

of pi:
.47920
.16924
.21022
. 74659
.62127
of e:

.20468
.23057
.53639
.89763 .62858
.10193 .95007
of sqrt(2):

.79063 .86799
.02088 .04918
.31665 .15397
.40758 .16248 .35456

.61236
.23673
.93233
.90680
.55079

.39825
.41914
.37278
. 78556
.68497

.83451
.11120
.19652
.83395
.03057

.33955
.96091
.84700
.03744
.41909

.21810
.92289

.02846 .38497
.17036 .87940
.66664 .62260 .27112
.89305 .98828 .43715

ADp = .536879 ,

.55130
.92530
.96348 .28388
.26146 .01031
Kp = .646582

.91112
.81269

.12951
.61347
.00025
.03010
.51060

.00878
.75906
.30696

.71883
. 78590
.23939
.40861
. 22256

.07410
.90164
.29681
.26139
.44659

.51399
.04031

.70295
.80715
.72281 .41517 .90074
.64248 .70410 .43540

ADp = .069178 ,

.91429
.14913

.16873
.16800
.87909 .41690
.66902 .65901
Kp = .075480

.12677
.44514

.09128
.39950
.24468
.31481

.53850
.01534
.56181

.67548
.05008
.96717
. 76690

.60443
.20734
.79632 .53108 .45995
.69930 .80077 .71324

.59196
.07539

.15325
.21107

.99432
.62461

.16537
.59035
.10632 .44436
.82052 .52464

.03549 .71394

Rank
.86008
.19441

.69229

.75174
Test on
.69381
.69731
.45123

.06035
.09487
.67551

.82363
digits
.04901
.02436
.62256

.11021 .005683 .91421
of 53480293019803. .
.17196 .43270 .69836
.67054 .42110 .81008
.28227 .36480 .48864

11

.47826 ADp = .307258 ,

./ (44353%1074608+1) :

.48883 .12735 .35862 .64930
.01807 .46099 .19884 .41108
.34517 .30020 .83924 .84685

Kp = .216126

.03218 .18508
.04983 .14816
.91042 .83713

.94957
.93960

.09067 .04419
.02133 .63535
Rank Test on
.76202 .46063
.82648 .02318
.40317 .93261
.91542 .19989
.50394 .93620
Rank Test on
.40407 .45985
.96720 .36105
.79891 .16382
.49052 .09132
.20119 .90128

.59719
.01682
digits
.41079
.87729
.51054
.47248
.31934
digits
.21544
.10843
.67890
.36349
.97997

.40424 .89413 .41900 .57339 .68666 .16281 .92216
.67704 .51112 .80560 .42531 ADp = .849494 ,
of 123456789012/1000000000061 :
.82090 .58449 .18265 .17822 .76772
.79113 .10266 .44187 .18629 .12213
.17408 .83883 .78718 .52989 .45490 .01319 .15533
.06703 .29830 .47725 .65899 .10816 .54400 .50611
.23941 .39870 .04917 .39145 ADp = .857473 ,
of 3624360069/7000000001:
.71676 .07310 .39731 .84733
.36816 .95347 .13008 .91868
.33172 .67367 .79725 .02915
.42277 .98883 .94481 .60543
.84571 .10466 .65603 .26555

.73189 .00692
Kp = .652042

.50457
. 75466
.97598
.956329
.56005

.00657
.69347

.61762
.00993

.21230
.03970
.08037 .78510
.18640 .19026
Kp = .812906

.33668
.08674

.50548
.08503
.43418
.T1157
.89085

.12748
.48640

.66914
.20395
.43167 .38174 .99944 .36345 .57114
.71442 .74579 .33952 .27278 .30311
ADp = .235736 , Kp = .113819

.77494
.23753

.94007
.76300

.04601
. 78650

The Minimum Distance Test

Do this 50 times: choose n = 8000 random points in a square of side 1000. Find d, the minimum distance between
the (g) pairs of points. If the points are truly independent uniform, then d2, the square of the minimum distance,
should be (very close to) exponentially distributed with mean .995 . Thus p = 1—e~%"/-99 gshould behave as uniform,
so that AD and K tests on the 50 resulting p-values serve as tests for independence and uniformity of the random

points in the square.

Minimum Distance Test on digits of

pi:

.4120
.4265
.8913
.8451

.1357
.1890
.8315
.8761

.0077
.7530
.6694
.6936

.5161
.6943
.3083
.7635

.8357
.4637
.8477
.7058

.4595
.2885
.0105
.8041

.3482
.6139
.7873
.4195

.9175 .2556 .0988
.7265 .7700
.2264
.8067 .2958 .9455

.1455
.1235 .3112

Minimum Distance

.8348 .8902 .2946
.9076 .0673 .3586
.8686 .4735 .5822
.1892 .3659 .6158

Minimum Distance

.4407 .4620 .7883
.6412
.7444 3441
.4582 .9657 .7950

.1529 .5894
.8183

Minimum Distance

.8938 .2474 .4979
.2905 .0368 .7528
.8355 .4241
.7498 .8317 .2259

.8762

Minimum Distance

.0835 .6336 .8672
.2042
.2135
.5184 .9021

.1283 .0340
.1312 .1995
.0617
Minimum Distance
.9125 .0510
.3978 .0347
.9384 .2148
.0603 .8834

.5167
.0446

.0699 .4526
.3800 .2094
.3297 .7302 .3860
.0285 .4041 .7998
Test on digits of
.4938 .9401 .6976
.5735 .3909 .7321
.6445 .6147 .7286
.0636 .0334 .5828
Test on digits of
.0799 .6719 .1602
.8086 .7753 .4417
.5741 .0056 .9611
.2678 .1827 .9586
Test on digits of
.3588 .9394 .9412
.0974 .7670 .5444
L7788 .3617 .2047
.0243 .0631 .1460
Test on digits of
.3824 .0020 .4191
.9325 .4848 .0200
.5809 .6799 .3381
.3266 .2121 .6527
Test on digits of
.3347 .3996 .2245
.3132 .6388 .9161
.0177 .1956 .1304
.4647 .8749 .8749

L7175
.2827
.4436
.6931
e:
L2712
.6515
.6512
.2407

.2981 .5344 .9872 .
.3144 .3004 .2808 .
L7775 .7097 .4254 .

5052 .0365
2852 .8862
5360 .2667

ADp=.63717, Kp=.79394

.0378 .3852 .9216 .
.8213 .9362 .2354 .
.1989 .7446 .5623 .

5803 .7594
3881 .8479
7921 .5824

ADp=.66537, Kp=.87180

sqrt(2):

L4676

.5426 .3991 .9066 .

2523 .3823

.0348 .0458 .8484 .3757 .5262 .9345

.3099
L4173

. 7104

.5381 .4850 .2280 .

9116 .4221

ADp=.14338, Kp=.15792
53480293019803. . . / (44353%10"4608+1) :

.8043 .8729 .1297 .

4149 .2219

.6224 .5252 .3824 .4843 .3665 .7193

.9318
.4909

.2951

.9879 .8050 .2330 .4975 .2646

.1383 .0178 .4023 .

1077 .6065

ADp=.00907, Kp=.00880
3624360069/7000000001 :

L7993 .4287 .7920 .

1861 .7822

.1856

.0175 .6803 .2068 .7132 .5502 .5180
ADp=.39568, Kp=.28278
123456789012/1000000000061 :

.6818

.3798
L9112
.5768
.1865

12

.5560 .3698 .0870
.7615 .5676 .2115
.6472 .1301 .6133

ADp=.73134 Kp=.

L4287 .2176
.6418 .3012
.2343 .8092

708020

. 7453
.2590
.1402

.9491
.0197
.8493

.35634
L9771
.2799

.95694
.3829
.4083

.5226
.2623
.8787

.6243
.1733
.0867

The Random Spheres Test

Choose 4000 random points in a cube of edge 1000. At each point, center a sphere large enough to reach the next
closest point. Then the volume of the smallest such sphere is (very close to) exponentially distributed with mean
1207/3. Thus the radius cubed should behave as exponential with mean 3. The test generates 4000 points in twenty

edge-1000 cubes. Each minimal radius r leads to a uniform p-value by means of p = 1—e~""/3. Then AD and K
tests are done on 20 p-values.

Random Spheres Test on digits of pi:
.13324 .14133 .06849 .26272 .17096 .72980 .07004 .44462 .45081 .69426 .16412 .35971 .63095
.44411 .57254 .15747 .21987 .55526 .50223 .41768 ADp=.967585, Kp=.925277

Random Spheres Test on digits of e:
.86788 .36776 .77080 .43359 .49372 .60749 .56377 .84927 .61154 .72559 .59682 .34150 .89111
.81615 .62711 .14515 .27623 .09146 .77067 .82867 ADp=.794671, Kp=.721647

Random Spheres Test on digits of sqrt(2):
.83747 .80577 .98976 .25698 .13862 .72333 .07953 .31667 .65774 .50034 .33809 .77751 .04578
.23542 .12255 .01773 .92521 .74169 .27930 .29777 ADp=.387178. Kp=.712280

Random Spheres Test on digits of 53480293019803.../(44353*%1074608+1)
.55927 .14516 .62104 .76105 .55530 .91638 .38106 .97330 .00192 .75081 .54258 .44357 .72508
.09787 .93296 .84232 .11626 .09494 .46035 .46473 ADp=.174649, Kp=.247757

Random Spheres Test on digits of 3624360069/7000000001:
.61933 .15648 .18816 .62217 .31516 .30767 .78522 .02561 .95307 .41675 .36260 .55015 .15653
.61953 .14190 .47992 .26477 .59653 .26854 .65864 ADp=.710045, Kp=.835487

Random Spheres Test on digits of 123456789012/1000000000061:
.61640 .79071 .20031 .15108 .03438 .93839 .31778 .01145 .48771 .57387 .30419 .39804 .38313
.76003 .92604 .71981 .47910 .43223 .14415 .59400 ADp=.121779, Kp=.177810

The Overlapping 5-Permutation Test

This is the OPERMS5 test. It looks at a sequence of ten million 9-digit integers. Each set of five consecutive integers
can be in one of 120 states, for the 5! possible orderings that would result if the five were sorted, (a rare i = j is counted
as ¢ < j). Thus the 5th, 6th,...integers each lead to a state, (but this is not a Markov process). As many thousands
of state transitions are observed, cumulative counts are made of the number of occurences of each state. A quadratic
form in C~, a weak inverse of the 120x120 covariance matrix C', should have a chisquare distribution with degrees of
freedom the rank of C, leading to a p-value for testing that the counts came from the specified (asymptotically jointly
normal) distribution with the specified 120x120 covariance matrix C. This version uses 10,000,000 integers, ten times.

OPERM5 Test on digits of pi:

.9971 .1165 .3786 .8458 .3110 .2483 .3922 .5333 .7244 .7192 ADp=.198201, Kp=.042075
OPERM5 Test on digits of e:

.1369 .7283 .6581 .7493 .7363 .5089 .7026 .5570 .7394 .5000 ADp=.884353, Kp=.941002
OPERM5 Test on digits of sqrt(2):

.3268 .6270 .0273 .5704 .6183 .7432 .7781 .1704 .4118 .1665 ADp=.272362, Kp=.367715
OPERM5 Test on digits of 53480293019803.../(44353%x1074608+1) :

.7807 .6140 .6171 .6926 .3044 .0377 .8617 .4061 .5980 .4939 ADp=.394569, Kp=.283185
OPERM5 Test on digits of 3624360069/7000000001:

.2640 .4178 .3434 .2756 .8069 .3949 .6555 .9673 .1909 .3971 ADp=.457414, Kp=.662883
OPERM5 Test on digits of 123456789012/1000000000061:

.4467 .3650 .5587 .2181 .4417 .9622 .5630 .3778 .0976 .4238 ADp=.622551, Kp=.837349

13

A Runs Test
Count runs up, and runs down, in a sequence of uniform [0,1) variables, obtained by floating the 9-digit integers
in the specified file. Example of how runs are counted: .123, .357, .789, .425, .224, 416, .95 contains an up-run of
length 3, a down-run of length 2 and an up-run of (at least) 2, depending on the next values. Count upruns and
downruns until there are 100 million of each. (For k > 2, the prob. of a run of length k is 2k/(k + 1)!)

Runs Test on digits of pi:

Length Expected UpRuns (0-E)"2/E DownRuns (0-E)~2/E
2 666666.7 667054 .23 666664 .00
3 25000 .0 249379 1.54 250317 .40
4 66666 .7 66747 .10 66505 .39
5 13888.9 14050 1.87 13703 2.49
6 238 .9 2374 .02 2446 1.78
7 347.2 342 .08 312 3.57
8 44 .2 47 .18 45 .01
9 5.0 4 .19 7 .84
p= .06184 p= .51293
Runs Test on digits of e:
Length Expected UpRuns (0-E)"2/E DownRuns (0-E)~2/E
2 666666 .7 665943 .79 666332 .17
3 25000 .0 250229 .21 250131 .07
4 66666.7 66904 .84 66948 1.19
5 13888.9 14094 3.03 13833 .22
6 238 .9 2454 2.24 2343 .60
7 347.2 330 .85 374 2.07
8 44 .2 43 .03 34 2.35
9 5.0 1 3.16 4 .19
p= .65453 p= .26158
Runs Test on digits of sqrt(2):
Length Expected UpRuns (0-E)"2/E DownRuns (0-E)~2/E
2 666666 .7 667194 .42 666515 .03
3 25000 .0 249506 .98 250027 .00
4 66666 .7 66453 .69 66825 .38
5 13888.9 14040 1.64 13768 1.05
6 238 .9 2378 .00 2492 5.18
7 347.2 373 1.92 326 1.29
8 44 .2 53 1.75 42 11
9 5.0 2 1.77 3 77
p= .48314 p= .45109
Runs Test on digits of 53480293019803.../(44353*%1074608+1) :
Length Expected UpRuns (0-E)"2/E DownRuns (0-E)~2/E
2 666666.7 667447 .91 666891 .08
3 25000 .0 249739 .27 250114 .05
4 66666.7 66236 2.78 66479 .53
5 13888.9 13795 .63 13729 1.84
6 238 .9 2404 .22 2364 .12
7 347.2 326 1.29 365 .91
8 44 .2 39 .61 49 .52
9 5.0 11 7.36 7 .84
p= .83097 p= .10162

14

Runs Test on digits of 123456789012/1000000000061:

Length Expected UpRuns (0-E)"2/E DownRuns (0-E)~2/E
2 666666.7 666247 .26 667031 .20
3 25000 .0 250512 1.05 249445 1.23
4 66666.7 66421 .91 66851 .51
5 13888.9 13926 .10 13912 .04
6 238 .9 2456 2.37 2353 .33
7 347.2 384 3.90 350 .02
8 44 .2 45 .01 49 .52
9 5.0 8 1.86 8 1.86

p= .59900 p= .09057
Runs Test on digits of 3624360069/7000000001:

Length Expected UpRuns (0-E)"2/E DownRuns (0-E)~2/E
2 666666.7 665869 .95 666392 .11
3 25000 .0 251165 5.43 250505 1.02
4 66666.7 66249 2.62 66445 .74
5 13888.9 13959 .35 13890 .00
6 238 .9 2358 .22 2366 .09
7 347.2 350 .02 356 .22
8 44 .2 41 .23 40 .40
9 5.0 5 .00 5 .00

p= .54448 p= .01045

The Parking Lot Test

In a square of side 100, randomly ‘park’ a car: a disc with radius 1. Then try to park a 2nd, a 3rd, and so on, each
time parking ‘by ear’'—that is, if an attempt to park a car causes a crash with one already parked, try again at a
new random location. (To avoid path problems, consider parking helicopters rather than cars.) Each attempt leads
to either a crash or a success, the latter followed by an increment to the list of cars already parked. If we plot n,
the number of attempts, versus k, the number successfully parked, we get a curve that should be similar to those
provided by a perfect random number generator. A simple characterization of such an extensive experiment is used:
k, the number of cars successfully parked after n = 12000 attempts. Simulation shows that k& should average 3523
with sigma 21.9, and it seems close to normally distributed. Thus ®((k — 3523)/21.9) should provide a p-value, and

each file has enough digits to provide twenty such ps.

.92154
.03389

. 73867
.32397

. 73868
.93407

.59030
.89119

.57246
.02478

.70813
.92802

Parking Lot Test on digits of pi:

.13656 .03747 .92154 .46362 .99399 .02480 .44552 .81944
.46362 .51821 .90728 .53638 .55448 .92154 .83120 ADp=

Test on digits of e:

.53638 .00353 .40970 .863444 .53638 .89947 .64255 .05500
.35744 .554480 .32397 .64255 .75331 .93973 .62538 ADp=

Parking Lot Test on digits of sqrt(2):

.26132 .60795 .98737 .60795 .07198 .35744 .29186 .78120
.93407 .67603 .99647 .01263 .75330 .40970 .44552 ADp=

.98407 .65945 .64255
.910269, Kp=.848908

.856319 .48179 .81944
.652575, Kp=.769028

.76749 .35744 .46361
.664483, Kp=.381541

Parking Lot Test on digits of 53480293019803.../(44353%1074608+1):

.27639 .55448 .59030 .02226 .51821 .30773 .87318 .34055
.64255 .60795 .92154 .89947 .59030 .70813 .81944 ADp=

Parking Lot Test on digits of 3624360069/7000000001:

.53638 .84245 .79444 .83120 .29186 .39205 .85319 .48179
.37462 .80719 .76749 .37462 .32397 .67603 .73868 ADp=

.42754 .11757 .94500
.701556, Kp=.743065

.53638 .87318 .75331
.876019 Kp=.837159

Parking Lot Test on digits of 123456789012/1000000000061:

.69227 .32397 .35744 .59030 .81944 .13656 .70813 .62538
.24669 .87318 .69227 .62538 .92154 .78120 .88243 ADp=

15

.05500 .55448 .50000
.839585, Kp=.874860

The Squeeze Test
Random 9-digit integers are floated to get uniforms in [0,1). Initializing k¥ = 23!, the test finds j, the number of
iterations necessary to reduce k to 1, using the reduction k «— [kU], with U provided by floating integers from the
file being tested. Such j’s are found 100,000 times, then counts for the number of times j was < 6,7,...,47,> 48
are used to provide a x3, test for cell frequencies, repeated ten times.

Squeeze Test on digits of pi:
Chisquare_42= 36.88, z= -.5588, p= .28815 Chisquare_42= 44.09, z= .2281, p= .59021
Chisquare_42= 45.01, z= .3287, p= .62883 Chisquare_42= 45.37, z= .3678, p= .64349
Chisquare_42= 43.94, z= .2119, p= .58391 Chisquare_42= 46.47, z= .4874, p= .68701
Chisquare_42= 36.01, z= -.6534, p= .25675 Chisquare_42= 23.91, z= -1.973, p= .02420
Chisquare_42= 39.27, z= -.2981, p= .38281 Chisquare_42= 34.83, z= -.7828, p= .21687
AD and K tests on the above ten p-values: .586129 .771924
Squeeze Test on digits of e:
Chisquare_42= 49.24, z= .7899, p= .78520 Chisquare_42= 46.33, z= .4729, p= .68187
Chisquare_42= 36.24, z= -.6289, p= .26469 Chisquare_42= 4 .21, z= -.1953, p= .42259
Chisquare_42= 49.11, z L7763, p= .78120 Chisquare_42= 26.67, z= -1.672, p= .04720
Chisquare_42= 37.90, z= -.4469, p= .32748 Chisquare_42= 46.27, z= .4654, p= .67919
Chisquare_42= 53.40, z= 1.243, p= .89322 Chisquare_42= 75.82, z= 3.689, p= .99989
AD and K tests on the above ten p-values: .704968 .650456
Squeeze Test on digits of sqrt(2):
Chisquare_42= 51.05, z= .9878, p= .83839 Chisquare_42= 41.01, z= -.1075, p= .45721
Chisquare_42= 43.82, z .1985, p= .57866 Chisquare_42= 56.15, z= 1.544, p= .93871
Chisquare_42= 36.62, z= -.5869, p= .27865 Chisquare_42= 34.62, z= -.8053, p= .21032
Chisquare_42= 38.93, z= -.3347, p= .36893 Chisquare_42= 29.07, z= -1.411, p= .07918
Chisquare_42= 44.53, z= .2758, p= .60866 Chisquare_42= 49.21, z= .7870, p= .78437
AD and K tests on the above ten p-values: .000540 .001727
Squeeze Test on digits of 3650075.../(105994x107105994+1) :
Chisquare_42= 33.63, z= -.9131, p= .18058 Chisquare_42= 46.26, z= .4644, p= .67881
Chisquare_42= 44.78, z= .3038, p= .61936 Chisquare_42= 38.53, z= -.3782, p= .35264
Chisquare_42= 51.93, z= 1.084, p= .86079 Chisquare_42= 43.27, z= .1390, p= .55529
Chisquare_42= 52.45, z= 1.141, p= .87299 Chisquare_42= 5 .55, z= .9334, p= .82470
Chisquare_42= 33.06, z= -.9756, p= .16464 Chisquare_42= 47.80, z= .6326, p= .73651
AD and K tests on the above ten p-values: .490230 .542116
Squeeze Test on digits of 3624360069/7000000001:
Chisquare_42= 27.47, z= -1.585, p= .05649 Chisquare_42= 68.21, z= 2.860, p= .99788
Chisquare_42= 44.06, z= .2251, p= .58905 Chisquare_42= 47.53, z= .6038, p= .72702
Chisquare_42= 42.57, z= .0618, p= .52463 Chisquare_42= 43.82, z= .1988, p= .57879
Chisquare_42= 69.65, z= 3.017, p= .99872 Chisquare_42= 65.14, z= 2.525, p= .99421
Chisquare_42= 43.82, z= .1985, p= .57867 Chisquare_42= 58.73, z= 1.825, p= .96600
AD and K tests on the above ten p-values: .998123 .962399
Squeeze Test on digits of 123456789012/1000000000061:
Chisquare_42= 33.49, z= -.9289, p= .17647 Chisquare_42= 37.69, z= -.4704, p= .31903
Chisquare_42= 32.08, z= -1.082, p= .13955 Chisquare_42= 4 .67, z= -.1453, p= .44225
Chisquare_42= 38.85, z= -.3437, p= .365563 Chisquare_42= 28.09, z= -1.517, p= .06459
Chisquare_42= 65.65, z= 2.580, p= .99506 Chisquare_42= 39.35, z= -.2894, p= .38615
Chisquare_42= 41.39, z= -.0661, p= .47366 Chisquare_42= 41.60, z= -.0439, p= .48249
AD and K tests on the above ten p-values: .819619 .957027

16

I added the following two tests after seeing numerous website references to the appearance of primes among the
digits of
Count the 3-Digit Primes Test
With n = 10%, count K, the number of 3-digit primes in a string of n+2 random digits. Use overlapping 3-tuples;
thus the string 10197 contains primes 101, 019 and 197. The mean and variance of K are y = 168n/10° and
02 = (138640n + 3224)/105. Thus p=®((K — p)/o) should be very close to uniform with p = 168000, 0 = 372.34.
(Note that K is not binomial with n,p = 168/10%, npg = 1397761n/10°.) Repeat 999 times, do tests of uniformity
(Anderson-Darling and Kolmogorov) on those 999 ps.

3-digit
3-digit
3-digit
3-digit
3-digit

3-digit

Primes Test on
ADp= .575829
Primes Test on
ADp= .883840
Primes Test on
ADp= .991416
Primes Test on
ADp= .679134
Primes Test on
ADp= .901572
Primes Test on
ADp= .628301

Count the 4-Digit Primes Test

With n = 10%, count K, the number of 4-digit primes in a string of n+3 random digits.

digits

digits
, Kp=

of pi:

.612172

of e:

.967424

of sqrt(2):

.975246

of 53480293019803.../(44353%1074608+1)

.509247

of 3624360069/7000000001:

.919128

of 123456789012/1000000000061 :

. 728232

Use overlapping 4-

tuples; thus the string 10197 contains primes 1019 and 0197. The mean and variance of K are p = 1229n/10* and
0?2 = (10619573n+525112) /108. Thus p=®((K — p)/o) should be very close to uniform with p = 122900, ¢ = 325.88.
(Note that K is not binomial n,p = 1229/10%,npg = 10779559n/108.) Repeat 999 times, then do Anderson-Darling
and Kolmogorov tests on the resulting 999 ps.

4-digit
4-digit
4-digit
4-digit
4-digit

4-digit

Primes Test on
ADp= .588839
Primes Test on
ADp= .821890
Primes Test on
ADp= .987949
Primes Test on
ADp= .299561
Primes Test on
ADp= .477074
Primes Test on
ADp= .280296

digits

digits
» Kp=

of pi:

.854419

of e:

.578593

of sqrt(2):

.996103

of 53480293019803.../(44353%1074608+1) :

.2385685

of 3624360069/7000000001:

.405052

of 123456789012/1000000000061 :

.440059

17

