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Introduction
Richard Bellman [1] coined the phrase the curse of
dimensionality to describe the extraordinarily rapid
growth in the difficulty of problems as the num-
ber of variables (or the dimension) increases. A
common experience is that the cost of an algo-
rithm grows exponentially with dimension, making
the cost prohibitive for moderate or large values
of the dimension.

In this article we consider the problem of nu-
merical integration over the d-dimensional unit
cube [0,1]d. If d = 1 and the integrand is suffi-
ciently smooth, then the integral can be evaluated
easily by, say, Simpson’s rule, in which case the
error of an n-point rule, with n odd, is of order
O(n−4) . When d is 2 or more, the most obvious 
strategy is to apply a rule such as Simpson’s rule
in each dimension, creating what is called a prod-
uct rule. But now we meet the curse of dimen-
sionality: the total number of points at which the
integrand must be evaluated (which we may take
as the cost) is N = nd. And with what error? Even
if the integrand is an innocuous function of only
the first component, x1, for example x4

1, the re-
sulting error for the product Simpson rule is clearly
still of order O(n−4) , since from the point of view
of this integrand the integration rule is still the
n-point Simpson’s rule. The essential difficulty

becomes apparent when that error is expressed in
terms of the total number of points N: the error is
now of order O(N−4/d). Put differently, perhaps we
are willing to use 11 points in each coordinate di-
rection (i.e. n = 11). But if the problem is 100-
dimensional (i.e., d = 100), then the total number
of function evaluations required will be 11100, and
the time until the end of the universe will not suf-
fice for this calculation. Even if we take just 2
points in each direction, the computation for
d = 100 is impossible. Of course one can improve
the one-dimensional rule (for example, by using the
Gauss rule), but the essential problem remains:
any product rule is prohibitively costly when d is
large, because the cost for a given level of accuracy
increases exponentially in d.

Nevertheless, there are other ways of tackling a
high-dimensional integral, as shown in dramatic
fashion in 1995, when Traub and Paskov at Co-
lumbia University successfully (but without sup-
porting theory) treated a mathematical finance
problem from Wall Street as an integration prob-
lem over the 360-dimensional unit cube.

The aim of this article is to present in a non-
technical way one strand of the story of high-
dimensional numerical integration (specifically, we
tell the lattice side of the story) as it has developed
over the past half century. Part of the story is con-
cerned with the development of a theoretical setting
within which the problem is tractable, that is to say,
loosely, a setting in which a suitably defined mea-
sure of the error does not grow with the dimension
d (or perhaps grows only polynomially in d). But the
arguments used in the study of tractability were until

Frances Y. Kuo is Vice-chancellor’s Postdoctoral Fellow in
Mathematics at the University of New South Wales, Aus-
tralia. Her email address is f.kuo@unsw.edu.au.

Ian H. Sloan is Scientia Professor of Mathematics at the
University of New South Wales, Australia. His email address
is i.sloan@unsw.edu.au.



DECEMBER 2005 NOTICES OF THE AMS 1321

recently not constructive. That is to say, we knew
under certain conditions that good integration
rules exist for large values of d, but we had no idea
how to find them. Only in the last half decade has
that situation turned around with the development
of very fast constructions that make feasible the
tailored construction of integration rules that are
of known high quality and that allow d in the hun-
dreds (or even thousands), together with any prac-
tical number of function evaluations.

Do problems with d in the hundreds really arise
in practice? This introduction concludes with a
qualitative description of the 360-dimensional
problem referred to above, since many features of
that problem are common to problems from math-
ematical finance.

That problem is concerned with the valuation of
a parcel of mortgage-backed securities held by a
bank. In brief, customers of the bank borrow money
for up to thirty years. Each month every customer
has the right to repay the loan, and of course re-
paying the loan early will reduce its value to the
bank. In a simple model, the proportion of those
who choose to repay will depend on the interest
rate at that time: the higher the interest rate, the
more likely they are to repay the loan. The inter-
est rate is assumed to follow a (geometric) Brown-
ian motion. The month-by-month changes in the in-
terest rate are random variables, so the present
value of the bundle of mortgages is a (suitably dis-
counted) 360-dimensional expected value, because
there are 360 possible repayment occasions. This
integral over the 360-dimensional Euclidean space
is then converted into an integral over the 360-
dimensional unit cube by an appropriate variable
transformation. Many other high-dimensional prob-
lems in finance (including options of all varieties)
are also multidimensional expected values, with the
dimensionality arising either from discretization in
time, as here, or because there are multiple assets
with different characteristics, or both.

What Strategies Are Possible?
When d is large, we can approximate an integral
over the unit cube

If =
∫

[0,1]d
f (x) dx

by an integration rule of the form

(1) QNf =
N∑
k=1

akf (xk);

that is, we sample f at N points x1, . . . ,xN in the
unit cube and approximate If by a weighted aver-
age of these function values.

So how can we choose these sample points? We
already explained that a product rule such as the
one shown in Figure 1 is too costly: the 64 points

in the unit square effectively collapse down to just
8 points in each coordinate direction.

One feasible strategy is to organize the points
of a product rule in a hierarchical way and use only
a few levels of points. This is the principle behind
sparse-grid methods, which are generalizations of
a construction first devised by Smolyak. Figure 2
shows an example of a regular sparse grid with 49
points.

Modern sparse-grid methods are dimension-
adaptive: they find the important dimensions au-
tomatically and use more integration points in
those dimensions. For details on sparse-grid meth-
ods, we refer readers to the recent survey article
by Bungartz and Griebel [2].

Another possible strategy is the Monte Carlo
method, the real workhorse of present-day high-
dimensional integration. In its simplest form the
Monte Carlo method is an equal weight rule
(i.e. ak = 1/N), with the points x1, . . . ,xN gener-
ated randomly from a uniform distribution on
[0,1]d. Figure 3 shows 64 (pseudo) random points.

The well-known probabilistic error estimate for
the Monte Carlo method is

σ (f )√
N
,

where σ 2(f ) = If 2 − (If )2 is the variance of f. Per-
haps the most remarkable aspect of the Monte
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Figure 1. Product rule with 64 points.
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Figure 2. Sparse grid with 49 points.
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Carlo method is that it does not suffer from the
curse of dimensionality: in particular the O(N−1/2)
convergence rate, while slow and erratic, does not
depend on the dimension d so long as f is square
integrable. Furthermore, it is cheap and easy to pro-
vide an effective error estimate, since the first term
If 2 of the variance can be estimated by making use
of the same function values as already used for ap-
proximating If.

Quasi-Monte Carlo methods are equal weight
rules, just like the Monte Carlo method, except
that the points x1, . . . ,xN are now designed in a
clever way to be more uniformly distributed than
random points so that a convergence rate close to
O(N−1) is possible. (Note, however, that the implied
constant can depend exponentially on d.) Figure 4
shows the first 64 points of a 2-dimensional Sobol ′
sequence, the first example of the now widely
renowned concept of (t,m, s) -nets and (t, s) -
sequences established by Niederreiter.

Informally, the basic idea is to have the right
number of points in various subcubes. For exam-
ple, if in Figure 4 we divide the unit square into
strips of size 1 by 1/64, then there is exactly one
point in each of the 64 strips, with any point on
the boundary counting toward the next strip. Sim-
ilarly, if we divide the unit square into squares of
size 1/8 by 1/8, we get exactly one point in each
square. In fact, as long as we partition the unit
square into 64 rectangles of the same shape and

size, each rectangle will include exactly one point.
Details on both theory and construction of nets and
sequences can be found in the book of Niederre-
iter [3].

Lattice rules are a different kind of quasi-Monte
Carlo method. The points x1, . . . ,xN of a lattice
rule are so regular that they form a group under
the operation of addition modulo the integers. Fig-
ure 5 shows a lattice rule with 55 points.

In this article we focus on lattice rules. Before
continuing we should acknowledge a disadvantage
of all deterministic methods, such as sparse-grid
or quasi-Monte Carlo, when compared to the Monte
Carlo method—namely, that they come without
any practical information about the error. (The a
priori estimates involving, for example, higher de-
rivatives of f are essentially never useful for prac-
tical error estimation.) This has led to a growing
interest in hybrid methods that are essentially de-
terministic but that also have some element of
randomness, thereby seeking to capture the ben-
efits of both approaches. We shall see an example
of a hybrid method later in the article.

More on Lattice Rules
There are many kinds of lattice rules (indeed, even
the product of left-rectangle rules is a lattice rule),
but for our purposes it is enough to consider just
the oldest and simplest kind, technically known
now as a rank-1 lattice rule, which takes the form

(2) QNf =
1
N

N∑
k=1

f
({
k
z
N

})
.

Here z ∈ Zd is the generating vector, and the braces
indicate that each component is to be replaced by
its fractional part in [0,1). In this case the additive
group formed by the points is the cyclic group
generated by {z/N} . Without loss of generality we
may restrict the components of z to the set
{0,1, . . . ,N − 1}. Furthermore, we will drop 0 from
this set, since if any component of z is zero, then
so is the corresponding component of each inte-
gration point, which is clearly not interesting.
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Figure 3. 64 random points.
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Figure 4. First 64 points of 2D Sobol′ sequence.
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Figure 5. “Fibonacci” lattice rule with 55 points.
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The lattice rule in Figure 5 is a Fibonacci lattice
rule with N = 55 and z = (1,34). (The Fibonacci lat-
tice rule with N = Fk points, where Fk is the kth
number of the Fibonacci sequence 1,1,2,3,5, . . .,
has generating vector z = (1, Fk−1) .) While the Fi-
bonacci rules are in some sense optimal for d = 2,
higher-dimensional generalizations, where they
exist, are less persuasive.

Lattice rules were developed by number theo-
rists, especially Hlawka and Korobov, during the late
1950s in the context of numerical integration of pe-
riodic functions. The periodicity of smooth inte-
grands allows a convergence rate faster than
O(N−1) for equal weight rules. For historical results
on lattice rules applied to periodic integrands,
readers are referred to the books of Niederreiter [3]
and Sloan and Joe [5].

While the usefulness of lattice rules for numer-
ical integration of periodic functions has been rec-
ognized for fifty years, their value for nonperiodic
functions in high dimensions has been known only
for the past half decade. That is a story to be told
later in the article. The best possible convergence
rate for any equal weight rule is then at best O(N−1),
but that may seem like a very good rate indeed if
the problem is 100-dimensional and if the implied
constant is independent of d.

What makes a “good” lattice rule? This depends
very much on the integrand at hand. A good lat-
tice rule is one that is tailored to the integrand, tak-
ing into account its special features. Thus first we
must consider the nature of the integrands we may
encounter.

How to Model Reality—What Is Really the
Dimension?
Consider a simple function

f (x) = f (x1, x2, x3, x4) = x1 cosx2 + x3.

What is really the dimension? The nominal di-
mension is 4, yet clearly only the first three vari-
ables are present. Moreover, f is a sum of two
terms, with each term depending on at most 2 vari-
ables. Thus we could say that the effective dimen-
sion of f is only 3 or even, from the point of view
of each individual term, only 2.

More generally, it is possible to write any d-
dimensional function f as a sum of 2d terms, with
each term depending on only a subset of variables:

f (x) =
∑

u⊆{1,...,d}
fu(xu).

Here xu denotes the |u| -dimensional vector con-
taining those components of x whose indices belong
to the set u. Each term fu depends only on variables
in xu , and we may say that fu describes the interac-
tion between these variables. The terms fu with
|u| = � are referred to collectively as the order-�

terms. Note that such a decomposition of f is by
no means unique. The nicest way to ensure unique-
ness is to insist that for each nonempty subset u
we have 

∫ 1
0 fu(xu) dxj = 0 for all j ∈ u . In this case

the decomposition corresponds exactly to the
ANOVA (for analysis of variance) decomposition
used in the statistics literature. A special feature
associated with the ANOVA decomposition is that
the variance of the function f is simply the sum of
the variances of the individual terms fu.

For some functions it may happen that all the
terms involving variables other than, say, x1, . . . , x10

are negligible, or it may be that all variables are pre-
sent and equally important, but the higher-order
terms are negligible compared with the lower-order
ones. In these situations we can ignore the effect
of variables other than x1, . . . , x10 or drop unim-
portant higher-order terms. In both cases such
functions are said to have low effective dimension.

The concept of effective dimension was for-
mally introduced by Caflisch, Morokoff, and Owen
in 1997. By considering the ANOVA decomposition
of f and the way that the variance is allocated
among the ANOVA terms, they defined two con-
cepts of effective dimension: f has truncation di-
mension dt if the combined variance captured by
the ANOVA terms fu with u ⊆ {1, . . . , dt} exceeds 99
percent of the total variance σ 2(f ); on the other
hand, f has superposition dimension ds if the com-
bined variance captured by the ANOVA terms fu
with order |u| ≤ ds exceeds 99 percent of the total
variance. For the example at the beginning of this
section, the truncation dimension is 3, whereas
the superposition dimension is 2.

Designing the Function Spaces and
Introducing Weights
Many high-dimensional problems that occur in
practical applications are of low effective dimen-
sion. To model these situations, Sloan and Woźni-
akowski introduced in 1998 the concept of weighted
function spaces (see [7]). They assumed the vari-
ables are ordered so that successive variables be-
come less and less important. To be more precise,
they considered a function space that is formed by
taking a tensor-product of one-dimensional Hilbert
spaces. (Loosely speaking, functions in the tensor-
product space are products, sums of products,
and limits of sums of products of functions from
the one-dimensional spaces.) The one-dimensional
building blocks for the tensor-product space are
Sobolev spaces consisting of absolutely continuous
functions on [0,1] with square-integrable first de-
rivatives. The norm in the jth one-dimensional
space is parameterized by a weight γj which con-
trols the variability of f with respect to the jth vari-
able xj . A small value of γj means that f depends
only weakly on xj .
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By now there are many variants of these
weighted spaces. A popular variant (and the only
one we consider here) is the unanchored Sobolev
space F which corresponds directly to the ANOVA
decomposition. If f and g have the ANOVA de-
compositions f =∑u fu and g =∑u gu respectively,
then their inner product in F is given by

〈f , g〉F =
∑

u⊆{1,...,d}
〈fu, gu〉Fu ,

where

(3)

〈fu, gu〉Fu

= 1∏
j∈u γj

∫
[0,1]|u|

∂|u|fu(xu)
∂xu

∂|u|gu(xu)
∂xu

dxu.

(Technically speaking, the space F is a direct sum
of function spaces Fu, with each Fu depending
only on variables in xu and every f ∈ F having the
ANOVA decomposition f =∑u fu , with fu ∈ Fu.)

We have described here the original idea for the
weights, in which each variable xj has associated
with it a weight γj, and a subset of variables xu is
automatically assigned the weight 

∏
j∈u γj. This is

not always satisfactory, because the interactions be-
tween variables may not be modeled correctly. For
example, for functions with low superposition di-
mension, it may well be that all variables are equally
important but that only their lower-order interac-
tions matter. To give more flexibility, the concept
of weights has recently been generalized so that a
weight γu is associated with each subset of variables
xu . Thus for a d-dimensional space, we have alto-
gether 2d weights instead of just d weights as be-
fore. The inner product for the unanchored Sobolev
space with generalized weights can be obtained 
by replacing 

∏
j∈u γj in (3) by γu . Note that these

generalized spaces are no longer tensor-product
spaces. Following the generalization of weights,
the traditional choice of weights, which leads to 
tensor-product spaces, is now referred to as the
product weights. In some cases the interaction be-
tween variables in xu depends only on the cardi-
nality of u; this leads to order-dependent weights.

An important development is the modeling of
functions with low superposition dimension by
finite-order weights (i.e., there exists a fixed inte-
ger q such that γu = 0 for all |u| > q). Many prac-
tical problems do appear to be approximately of
small order, for example, of order 2 or order 3.

To keep the story simple, throughout this arti-
cle we shall consider only product weights.

The Magic of Reproducing Kernels
It makes sense to ask of an integration rule that it
perform well not just for a single function f but
rather for some family of functions. Our choice, if
F is a Banach space, is to study the worst-case

error: for a quasi-Monte Carlo rule QN and a par-
ticular space F with norm ‖ · ‖F, the worst-case
error is defined to be the greatest error for any func-
tion f in the unit ball of F,

eN = e(QN,F ) = sup
‖f‖F≤1

|QNf − If |.

It is an annoying truth that the worst-case error
is generally impossible to compute accurately or
even to estimate other than loosely. This means that
the worst-case error cannot generally be used to de-
cide which is the better of two quasi-Monte Carlo
rules. In one beautiful scenario, however, the situ-
ation is quite different, namely, when F is a re-
producing kernel Hilbert space (RKHS). (In brief,
the Hilbert space F with inner product 〈·, ·〉F is an
RKHS with kernel K(x,y) if K(·,y) ∈ F for all y ,
K(x,y) = K(y,x) for all x and all y , and

〈K(·,y), f 〉F = f (y)

for all f ∈ F and all y .) By the Riesz representa-
tion theorem, a Hilbert space is an RKHS if and only
if point evaluations are bounded linear function-
als in F. The usefulness of reproducing kernel
spaces in computational analysis and statistics
was pointed out by Wahba fifteen years ago.

If F is an RKHS, then it is easy to show that the
worst-case error for a quasi-Monte Carlo rule can
be written explicitly in terms of the reproducing ker-
nel. This is especially useful if the kernel is avail-
able as a simple analytic expression.

In particular, our unanchored Sobolev space is
an RKHS, since point evaluations are bounded.
Less obvious, perhaps, is that the kernel has the
simple expression

K(x,y) =
d∏
j=1

(
1+ γj

[
1
2B2(|xj − yj|)

+ (xj − 1
2 )(yj − 1

2 )
])
,

where B2(x) = x2 − x+ 1/6 is the Bernoulli poly-
nomial of degree 2. For this kernel, the worst-case
error of a quasi-Monte Carlo rule with points
x1, . . . ,xN is given by

(4) e2
N = −1+ 1

N2

N∑
k=1

N∑
�=1

K(xk,x�),

which can be computed in O(N2d) operations.

There Is Always One Choice as Good as
Average
How is it possible to prove, even nonconstruc-
tively, that there exists a “good” choice of quasi-
Monte Carlo points x1, . . . ,xN (whatever “good”
may mean)? Here we use a beautiful argument bor-
rowed from the number theorists: there is always
one choice for which the worst-case error is as
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good as the average over all possible choices. As a
result, it is enough to show that some average of
the worst-case error has the desired property.

The simplest average to compute is

eN =
(∫

[0,1]d
· · ·

∫
[0,1]d

e2
N dx1 · · · dxN

)1/2

,

the root mean square average of the worst-case
error eN over all possible choices for each point
x1, . . . ,xN in a quasi-Monte Carlo rule. An explicit
formula for eN is easily obtained if F is a tensor-
product RKHS. In our unanchored Sobolev space
the result is

(5)

eN =
1√
N


 d∏
j=1

(
1+ γj

6

)
− 1




1/2

≤ 1√
N

exp


 1

12

d∑
j=1

γj


 .

So if we fix d, then for each increasing value of N
there exists at least one choice of points x1, . . . ,xN
for which the Monte Carlo rate of convergence
O(N−1/2) is achieved.

Actually, we shall see that faster convergence
than O(N−1/2) is possible. To set a limit to our am-
bition, note that we could not hope to do better than
O(N−1) , since that is known to be the best possi-
ble order even for d = 1. Thus a reasonable aim
would be to obtain (for fixed d) a convergence
order close to O(N−1) . We shall see that this aim
can be achieved, but first we need to consider the
behavior of the error with increasing d.

The Tractability of Integration Depends on
the Weights
Earlier we introduced weights into our definitions
of function spaces. We did this to help model cer-
tain problems that arise, for example, in mathe-
matical finance, but we did this without explain-
ing very convincingly why it might be necessary to
bother about this level of detail. Now we come to
the key point: that without the weights the inte-
gration problem in our function space F is in-
tractable. That is to say, if γj = 1 for all j , then it
is impossible to choose sequences QN of d -
dimensional N-point quasi-Monte Carlo rules in
such a way that

(6) eN ≤ c
d b

Na

for positive constants a, b, c. The claim is that
such a bound is impossible no matter how large we
may choose c and b nor how close to zero we may
choose a.

The intractability of the unweighted problem
follows from an explicit lower bound that holds for
all choices of QN . In particular, for our unanchored
space it can be shown from (4) that

(7) e2
N ≥

1
N

(
13
12

)d
− 1.

Thus if N and d are both allowed to go to infinity,
then the error is bounded away from zero unless
N grows exponentially with respect to d. For most
cases it is known, too, that allowing general inte-
gration weights ak in rule (1) does not help to break
the curse of dimensionality. For a recent survey of
tractability results for integration, see the review
article by Novak and Woźniakowski [4]. For the
foundations of tractability and intractability, we
refer readers to the book Information-Based Com-
plexity by Traub, Wasilkowski, and Woźniakowski
[8].

So now we come to the key role of the weights
γj: it is a remarkable fact that the integration prob-
lem is strongly tractable (i.e., (6) holds with b = 0)
if and only if the weights satisfy

(8)
∞∑
j=1

γj <∞.

If the condition is not satisfied, then one has a lower
bound similar to (7) but with (13/12)d replaced by
another sequence that goes to infinity as d →∞.
On the other hand, if the condition (8) is satisfied,
then from (5) we know already (but not construc-
tively) that there is some choice of quasi-Monte
Carlo rule QN for which

eN ≤
1√
N

exp


 1

12

∞∑
j=1

γj


 ,

giving an error bound that is independent of d and
that converges to zero with the Monte Carlo rate
O(N−1/2).

An even better result is known: by exploiting a
connection between nonperiodic and periodic
spaces, Hickernell and Woźniakowski showed in
2000 that if the weights satisfy the stronger con-
dition

∞∑
j=1

γ1/2
j <∞,

then there exists some quasi-Monte Carlo rule QN
such that

eN ≤
Cδ
N1−δ , δ > 0,

where Cδ is independent of N and d. This rate of
convergence O(N−1+δ) is optimal in the sense of
being arbitrarily close to O(N−1) .

The result established by Hickernell and Woźni-
akowski is impressive but does not help us toward
a construction. We shall say no more about it, be-
cause in fact a better result is now known—better
not in the sense of order of convergence, but in the
sense that the same O(N−1+δ) can be achieved, and
under the same condition, within the much more
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limited class of shifted lattice rules. While the proofs
are still nonconstructive, that topic, in the next
section, will take us much closer to a construction,
because the allowed set of rules is so much smaller.

Lattice Rules Can Beat the Average
Earlier we introduced the notion of a rank-1 lattice
rule (2). Because we are dealing with functions that
are not generally periodic, it turns out to be use-
ful to introduce a small generalization: the shifted
rank-1 lattice rule is defined by

QNf =
1
N

N∑
k=1

f
({
k
z
N
+∆

})
,

where z is the generating vector as before and
∆ ∈ [0,1)d is the shift.

In 2001 Sloan and Woźniakowski proved a re-
sult equivalent to the following: if 

∑∞
j=1 γj <∞,

then for the unanchored space and for each prime
N there exist z and ∆ such that

eN (z,∆) ≤ 1√
N

exp


 1

12

∞∑
j=1

γj


 .

That is, at least for prime N one can do as well as
the average quasi-Monte Carlo method even within
the small class of shifted lattice rules. Moreover,
they showed that the improved result of Hickernell
and Woźniakowski also holds: that is, if N is prime
and 

∑∞
j=1 γ

1/2
j <∞ , then there exist z and ∆ such

that

(9) eN (z,∆) ≤ Cδ
N1−δ , δ > 0,

with Cδ again independent of N and d.
Both results were obtained by variants of the pre-

vious averaging argument. To be precise, the av-
eraging argument proceeds in two steps. The first
step is to determine the root mean square average
of eN (z,∆) over all ∆ ∈ [0,1)d, which we denote by
eN (z). For the O(N−1/2) result above, the next step
is to determine the root mean square of eN (z) over
all z ∈ {1, . . . ,N − 1}d. It turns out that both these
steps can be done in a closed form for our unan-
chored Sobolev space. (The primality of N simpli-
fies the argument in the second of these steps.) To
obtain the improved rate of convergence, the sec-
ond averaging step uses a different form of aver-
age over z ∈ {1, . . . ,N − 1}d, namely,

 1
(N − 1)d

∑
z∈{1,...,N−1}d

eN (z)1/(1−δ)




1−δ

,

which after a considerable struggle can be bounded
in the way indicated in (9).

To summarize the story to this point, we now
know that in the worst-case setting and for suit-
ably weighted tensor-product Hilbert spaces there

exist quasi-Monte Carlo rules (and indeed even
shifted lattice rules) that achieve an error bound
that is independent of d and that (under suitable
conditions) goes to zero with rate O(N−1+δ) for ar-
bitrary δ > 0. But we do not yet know how to find
any rules that achieve this result. That is the story
of the next section.

Finding a Good Lattice Rule One
Component at a Time
Now the tale takes a surprising twist: what began
as a theoretical study of tractability turned out,
against expectation, to yield a method of con-
struction.

Actually, all existence results of the kind re-
ported here (asserting the existence of integration
rules for which the worst-case error is smaller than
some explicit upper bound) already contain within
them the germ of a method of construction: one
need only search among all the possible rules until
one finds a rule for which the worst-case error
achieves the desired bound (assuming, of course,
that the worst-case error is explicitly computable).
And the search can be carried out in complete con-
fidence that it will be successful. The problem is
that a full search of this kind is either impossible
in principle (one cannot search over all values of
a continuous variable) or else exponentially ex-
pensive (a search over all values of z in
{1, . . . ,N − 1}d requires (N − 1)d evaluations of the
worst-case error). Somehow the cost of the search
must be reduced without sacrificing the quality of
the result.

We have seen already that the search can be re-
stricted (at least if N is prime) to shifted lattice
rules. There are two ways of handling the problem
caused by the continuous nature of the shift
∆ ∈ [0,1)d. One way is to limit the components of
∆ to odd multiples of 1/(2N), since it can be shown
that this restriction can only reduce the root mean
square average of the error. The approach we pre-
fer is to leave ∆ continuous but to treat its com-
ponents as continuous random variables uniformly
and independently distributed on [0,1). The first
advantage of using a random shift ∆ is that we no
longer need to find the shift! The second is that,
just as in the Monte Carlo method, we can obtain
a probabilistic error estimate if we repeat the cal-
culation with several independently chosen random
shifts (see below). The third advantage is that we
can work with the root mean square worst-case
error eN (z) defined previously, which is much eas-
ier to compute than the worst-case error eN (z,∆),
since it involves only a single sum: explicitly, it can
be shown that

e2
N (z) = −1+ 1

N

N∑
k=1

d∏
j=1

(
1+ γjB2

({
k
zj
N

}))
.
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Now we need to find a good choice of
z ∈ {1, . . . ,N − 1}d. The question we face is how to
shorten the search over the values of z yet still find
a z for which the theoretical error estimate

(10) eN (z) ≤ Cδ
N1−δ , δ > 0,

is achieved, assuming 
∑∞
j=1 γ

1/2
j <∞ .

It turns out that the following component-by-
component algorithm, introduced by Sloan, Kuo,
and Joe in 2002 (see [6]), achieves the desired re-
sult. In this algorithm the components of
z = (z1, . . . , zd) are determined successively as fol-
lows:

1. Set z1 = 1.
2. For j from 2 to d, with z1, . . . , zj−1 fixed, choose
zj from {1, . . . , n− 1} to minimize eN (z1, . . . , zj ) .

That such a simple “greedy” algorithm can succeed
is in a certain sense surprising, since in the classi-
cal literature of lattice rules it is well accepted that
a good lattice rule in d dimensions does not extend
to a good lattice rule in d + 1 dimensions.

The proof that the simple algorithm achieves the
desired bound (10) is, naturally enough, by induc-
tion. And as the reader will by now expect, the in-
ductive step itself relies on an averaging argument:
with the components z1, . . . , zj−1 held fixed and as-
sumed to yield the desired bound with d replaced
by j − 1, one shows that an appropriate average
over all possible choices of the next component zj
satisfies the analogous bound with d replaced by
j . In the original paper of Sloan, Kuo, and Joe, only
a bound of order O(N−1/2) was established in this
way. That the same algorithm yields the essen-
tially optimal order of convergence in (10) was es-
tablished by Kuo in 2003 by a further refinement
of the averaging argument.

In the practical implementation of the rule, once
we have a generating vector z, we generate a num-
ber of independent random shifts ∆1, . . . ,∆m and
form the approximations Q1, . . . ,Qm, where Qi is
the shifted lattice rule approximation to the inte-
gral If based on the generating vector z and the
shift ∆i . Then the mean

Q = 1
m

(Q1 + · · · +Qm)

is our final approximation to If. An unbiased esti-
mate for the error of our approximation is given
by √√√√ 1

m
· 1
m− 1

m∑
i=1

(Qi −Q)2.

Fast Construction of a Good Lattice Rule
The obvious implementation of the component-by-
component algorithm of the last section requires
O(N2d) operations to compute all components of
z = (z1, . . . , zd) . Since this is only polynomial in d,
it certainly overcomes the cost aspect of the curse
of dimensionality, but it is still too expensive when
N is large. In 2005 Nuyens and Cools developed a
revolutionary implementation of the algorithm that
reduces the computational cost to O(N(logN)d)
operations. This allows fast construction of good
lattice rules with N up in the millions and brings
our lattice story to a satisfying conclusion.

The main idea is as follows. In the jth step of
the component-by-component algorithm, we need
to evaluate the worst-case error with zj taking the
values 1,2, . . . ,N − 1. This corresponds to some
matrix-vector product, with the core of the matrix
being (with N prime)

[kz mod N]1≤z≤N−1
1≤k≤N

.

Leaving out the k = N column, we can permute the
rows and the columns of this matrix in such a way
that we get a circulant matrix of order N − 1. While
a matrix-vector product in general requires O(N2)
operations, for a circulant matrix it can be achieved
in O(N(logN)) operations by making use of the Fast
Fourier Transform. Therein lies the secret behind
the fast construction.

An Unfinished Story
The story, as told above, finishes with the devel-
opment of a fast algorithm, one that yields inte-
gration rules of guaranteed quality in a specific set-
ting (i.e., worst-case error in a specified weighted
space). But many challenges remain before the re-
sulting rules can be used sensibly for practical
problems. The principal difficulty is in knowing how
to choose appropriate weights for a particular

The worst-case error for one component of the
generating vector. The green line represents
the average worst-case error over all choices of
this component. Clearly “there is always one
choice as good as average” and indeed there
are many such choices. The component-by-
component algorithm takes the best choice,
which is typically very much better than
average.
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problem or class of problems. That is the subject
of much current research. Related problems are
how best to transform a given problem to the unit
cube and whether or not to use the variance re-
duction techniques that are familiar to the Monte
Carlo community. (Practical experience suggests
that variance reduction procedures are as useful
as they are in the Monte Carlo method.) Much in-
terest now lies in finding integration rules that are
of acceptable quality for a range of weights. Per-
fection in the choice of weights is of course hard
to achieve and fortunately not needed in practice,
especially if we remember that the use of random
shifts allows estimation of the error. (However, it
is now known that the classical weights, as used
implicitly for example in the book of Sloan and Joe,
are much too large to yield good results.)

Many extensions have been considered by other
researchers. The results have been extended to
non-Hilbert space setting, to general weights, to in-
tegration over unbounded regions, and to the prob-
lem of approximation. The assumption that N is
prime has been removed at the cost of complicat-
ing the analysis and slightly weakening the results.

Perhaps the most interesting extension has been
the recent adaptation by Dick and Pillichshammer
of the entire framework above, from the definition
of weighted spaces through averaging arguments
to component-by-component construction, to yield
not a shifted lattice rule but rather a digitally shifted
digital net, which is a particular kind of (t,m, s)-net.
The story continues!
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The structured matrix arising from the component-by-component algorithm and its permuted
circulant form when N is prime. In its natural ordering the matrix exhibits a flower-like pattern or a

wave interference effect as shown on the left. Using number theoretic permutations, this matrix can
be transformed into a circulant form as shown on the right. The circulant structure means that the
matrix-vector product can be computed in a fast way using the Fast Fourier Transform. When N is

not prime, the same pattern shows up in multitude; see the cover and its corresponding description
for N a power of 2.


