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Chapter 1

Markov Chains: Time reversibility,
recurrence and ergodicity.

1.1 Markov chains, detailed balance condition and re-

versibility.

We begin with n cities (states) and matrix of one-step transition probabilities P = {p(i, j)}.
If µ population distribution (in fractions) among the n cities, then after one unit of time,
the population is distributed according to µP (µ is an n-dimensional vector).

We recall Chapman-Kolmogorov theorem,

pn(i, j) =
∑

k

pm(i, k)pn−m(k, j).

Thus after n units of time, µP n is our new distribution.

1.1.1 Markov chains, stationary distributions and reversibility via
traffic flows.

The stationary distribution π is defined so that

πP = π ⇔
∑

i

π(i)p(i, j) = π(j).

Thus
∑

i π(i)p(i, j) = π(j)
∑

i p(j, i), and for any city j,∑
i6=j

π(i)p(i, j) = π(j)
∑
i6=j

p(j, i).

Thus in terms of population traffic, the inflow to the city j is equal to outflow from j, for
each j. Thus the distribution of population stays unchanged.

The following are the detailed balance conditions (d.b.c.) also called time reversibility:

π(i)p(i, j) = π(j)p(j, i).
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In other words, for every two cities i and j the traffic in between them is balanced, i.e. the
traffic flow from i to j is equal to the traffic flow from j to i. It is easy to see that if d.b.c.
are satisfied, the population distribution will not change with time.

Exercise. Show mathematically that if π satisfies the detailed balance conditions, then it
is stationary, i.e. π satisfies d.b.c. ⇒ π is stationary.

Exercise. Give a counterexample in order to prove: π is stationary ; π satisfies d.b.c.

A Markov chain is said to be time reversible if it has a stationary distribution π such that
the probability of starting at i and going to j in n steps via any given path

i → i1 → i2 → · · · → in−1 → j

is the same as if we were to start at j and go in the reversed order to i:

j → in−1 → · · · → i2 → i1 → i.

In other words, if we reverse the direction of time axis, the same trajectory will have the
same probability. Time reversibility can be used to extend a stationary chain to negative
times.

Theorem 1. The detailed balance condition implies reversibility.

Proof:

Prob[i → i1 → i2 → · · · → in−1 → j] = π(i)p(i, i1)p(i1, i2) · · · · · p(in−1, j)

= p(i1, i)π(i1)p(i1, i2) · · · · · p(in−1, j)

= p(i2, i1)p(i1, i)π(i2)p(i2, i3) · · · · · p(in−1, j)

. . .

= π(j)p(j, in−1) · · · · · p(i2, i1)p(i1, i)

= Prob[j → in−1 → · · · → i2 → i1 → i].

�

Example. Birth-and-death chain States: 0, 1, . . . ,.
Probabilities: p(0, 1) = p0 = 1− p(0, 0) and

p(j, j + 1) = pj and p(j, j − 1) = qj = 1− pj for any j = 1, 2, . . . .

Now, from reversibility we have π(1) = p0

q1
π(0),

π(2) =
p1

q2

π(1) =
p0p1

q1q2

π(0),
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π(3) =
p2

q3

π(2) =
p0p1p2

q1q2q3

π(0),

. . .

π(j) =
pj−1

qj

π(j − 1) =
p0p1 . . . pj−1

q1q2 . . . qj

π(0),

and so on. We find π(0) from π(0)+π(1)+π(2)+ · · · = 1, but we can do it only if the series∑
j

p0p1 . . . pj−1

q1q2 . . . qj

< ∞ .

Example. Diamond plus birth-and-death. States: 0, 1, 1∗, . . . ,.
Probabilities: p(0, 1) = p0 = 1− p(0, 1∗) = 1− p∗0,

p(1, 2) = p1 = 1− p(1, 0), p(1∗, 2) = p∗1 = 1− p(1∗, 0),

p(2, 3) = p2, p(2, 1) = q2, p(2, 1∗) = q∗2 where p2 + q2 + q∗2 = 1

and p(j, j + 1) = pj = 1− p(j, j − 1) for j = 3, 4, . . . .

1.1.2 Recurrence.

Let Tx be the first time city (site) x is visited.

Definition. State x is said to be recurrent if

Prob[Tx < ∞ | X0 = x] = 1,

and otherwise it is called transient.

Definition. A recurrent state x is said to be positive recurrent if

E[Tx | X0 = x] < ∞ ;

x is said to be null recurrent if

E[Tx | X0 = x] = ∞ .

If the Markov chain is irreducible and aperiodic, and has a stationary distribution π,
then every site x is positive recurrent and

E[Tx | X0 = x] =
1

π(x)
.

Let Fm = F(X0, X1, ..., Xm) denote the history of the process up to time m.
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Definition. A random variable τ is a stopping time if for any m ≥ 0,

{τ ≤ m} ∈ Fm.

In other words knowing the trajectory of the process up to time m is sufficient to determine
whether {τ ≤ m} occurred.

Thus Tx is a stopping time.

Example.Why Fm is a σ-algebra?
Consider a collection of independent Bernoulli random variables ξ1, ξ2, ... with states 0

and 1, and a Markov chain {Xn}n,

where X0 = 0 and Xn = ξ0 + ξ1 + · · ·+ ξn.

The history of the process up to time m can be represented by a random binary number
0.ξ1ξ2ξ3 . . . ξm =

∑m
j=1

ξj

2j , or rather by the half-open interval[
0.ξ1ξ2ξ3 . . . ξm, 0.ξ1ξ2ξ3 . . . ξm +

1

2m

)
.

We begin with the [0, 1) interval. We split it in two halves. If ξ1 = 0 we select the left
subinterval [0, 1

2
), and if ξ1 = 1 we select the right subinterval [1

2
, 1). The selected interval is

again being split in two: We take the left subinterval if ξ2 = 0, and the right subinterval if
ξ2 = 1. And so on.

Now after m iterations we arrive with one of 2m small intervals[
0,

1

2m

)
,

[
1

2m
,

2

2m

)
,

[
2

2m
,

3

2m

)
, . . . ,

[
2m − 1

2m
, 1

)
.

Each interval represents one of 2m possible histories. Thus Fm is the σ-algebra generated by
the above intervals, i.e. any event A that is entirely determined by the history Fm can be
represented as a subset of [0, 1) that is a union of some of these intervals. We write A ∈ Fm.

Here the stopping time could be the first time T2 the Markov chain {Xn}n hits 2. One
can check that the event {T2 ≤ 3} corresponds to 0.ξ1ξ2ξ3 being equal to either 0.011, 0.101,
0.110 or 0.111 in base two. Thus

{T2 ≤ 3} =

[
3

8
,
1

2

)⋃[
5

8
,
3

4

)⋃[
3

4
,
7

8

)⋃[
7

8
, 1

)
∈ F3 .

Definition. Filtration of σ-algebras: F0 ⊂ F1 ⊂ F2 ⊂ . . . .

1.2 Recurrence and electrical networks.

G.Lawler; Y.Peres; Aldous and Fill;
[Doyle and Snell] is the primary reference (posted on the web). I will rephrase many lines

from Yuval Peres.
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1.2.1 Finite electrical networks.

Yuval Peres: While electrical networks are only a different language for reversible Markov
chains, the electrical point of view is useful because of the insight gained from the familiar
physical laws of electrical networks.

Here each edge e of a finite connected graph (network) G has a conductance value ce

attached to it. We also define the resistance of an edge as the reciprocal value re = 1
ce

.
If we define π(x) =

∑
y:x∼y cxy and p(x, y) = Prob[Xn+1 = y | Xn = x] = cxy

π(x)
(where

x ∼ y means sites x and y are connected by an edge of G) to be respectively a probability
distribution and transition probabilities. Then the Markov chain will be reversible (with
respect to π(·), that can be rescaled by 2

∑
e ce to be a probability distribution):

π(x)p(x, y) = cxy = π(y)p(y, x).

And vice-versa, if the Markov chain is reversible with stationary distribution π, the
conductance cxy can be defined as above. Thus the reversibility allowes us to represent the
Markov chain {Xn} as a random walk on a weighted graph with weights {ce}e.

Example. Simple random walk on G. There cx,y = 1 for x ∼ y and therefore px,y = 1
deg (x)

for x ∼ y.

Example. Chess knight random walk.
Aldous and Fill: Start a knight at a corner square of an otherwise-empty chessboard. Move
the knight at random, by choosing uniformly from the legal knight-moves at each step. What
is the mean number of moves until the knight returns to the starting square? Solution: we
let the conductance between sites that are knight-move away from each other to be = 1.
Thus

∑
e ce will be equal to the number of edges in the graph |E| = 168 and π(x) = deg (x)

2|E| .

Since we began the knight walk at a corner site v with deg (v) = 2,

π(v) =
1

|E|
and E[Tv | X0 = v] =

1

π(v)
= |E| = 168 .

We fix two nodes (vertices) a and b to be the two poles of the electrical network. Let Ta

be the first time the Markov chain {Xn} arrives to a, and similarly, let Tb be the first time
the Markov chain arrives to b. Then {Ta < Tb} is the event that the Markov chain hits a
before it hits b. Suppose we are given the voltage values, Va > Vb, at a and b. Then for
the rest of the vertices, we define the voltage as

Vx = Vb + Prob[{Ta < Tb} | X0 = x] · (Va − Vb).

Here Prob[{Ta < Tb} | X0 = x] = Vx−Vb

Va−Vb
the expression that one obtains when h(x) = Vx is

a harmonic function of x and h(Xn) is a martingale. Please keep this connection in mind
when we soon cover some of the martingale theory.
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Indeed h(x) = Vx is harmonic:

∑
y

p(x, y)h(y) = h(x)

since
∑

y p(x, y)Prob[{Ta < Tb} | X0 = y] = Prob[{Ta < Tb} | X0 = x].

Now, given a voltage V on the network, the current flow associated with V is defined
on oriented edges by

I(−→xy) =
Vx − Vy

rxy

.

The above definition is really just the Ohm’s law: rxyI(−→xy) = Vx − Vy .

The current flow satisfies the cycle law: If cx0x1 6= 0, cx1x2 6= 0, cx2x3 6= 0, . . . , cxn−2xn−1 6=
0 and cxn−1xn 6= 0, where xn = x0, then

n∑
k=1

rxi−1xi
I(−−−→xi−1xi) = 0.

In general, a flow θ from a to b is an antisymmetric function on oriented edges (i.e.
θ(−→xy) = −θ(−→yx)) that obeys

Kirchhoff’s node law:
∑

w:w∼v

θ(−→vw) = 0 for each v 6∈ {a,b}.

The strength of an arbitrary flow θ is measured at one of the poles a:

‖θ‖ =
∑

x

θ(−→ax).

Note: The current flow I is the only flow from a to b of strength ‖I‖ that satisfies the cycle
law. How: Consider the difference flow θ − I. Node law plus cycle law imply θ − I is zero
along any path from a to b.

Finally, we define the effective resistance,

R(a ↔ b) =
Va − Vb

‖I‖
,

and the effective conductance C(a ↔ b) = 1
R(a↔b)

.
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Now, the probability of leaving a an getting to b before returning back to a,

Prob[a → b] =
∑

x

p(a, x)Prob[{Tb < Ta} | X0 = x]

=
∑

x

p(a, x)
Va − Vx

Va − Vb

=
1

π(a)(Va − Vb)

∑
x

ca,x(Va − Vx)

=
1

π(a)(Va − Vb)
· ‖I‖

=
1

π(a)R(a ↔ b)

Thus

Prob[a → b] =
1

π(a)
C(a ↔ b) (1.1)

This will be important for solving recurrence/transience questions.
Now it is time to recall the long forgotten laws of electricity:

Parallel Law. If two vertices, x1 and x2 are connected by two different edges, e1 and e2

with respective conductance values c1 and c2. Then both edges can be replaced with one,
with conductance c1 + c2. Thus the new resistance equals 1

(1/r1+1/r2)
.

Series Law. If the vertex x is connected (wit edges of non-zero conductance) only to two
vertices, x1 and x2, then

rx1x2 := rx1x + rxx2 and I(−−→x1x2) := I(−→x1x) = I(−→xx2)

One can also glue vertices that have the same voltage value together into one vertex
since the current never flows between vertices with the same voltage.

Example. Finite birth-and-death chain. States: 0, 1, . . . ,M .
Transition probabilities: p(0, 1) = p0 = 1− p(0, 0),

p(j, j + 1) = pj and p(j, j − 1) = qj = 1− pj for all j = 1, 2, . . . ,M − 1

and p(M, M − 1) = 1.
Question: Find the probability Prob[0 → M] of departing from zero and hitting m before
returning to zero.
Solution: As we have seen, the above Markov chain is reversible. Thus the above con-
ductance/resistance representation works. Namely, a = 0 and b = M , and the effective
resistance

R(0 ↔ M) =
1

c01

+
1

c12

+ · · ·+ 1

cM−1M

=
1

π(0)p0

+
1

π(1)p1

+
1

π(2)p2

+ · · ·+ 1

π(M − 1)pM−1

.
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Now, from reversibility we know that π(1) = p0

q1
π(0),

π(2) =
p1

q2

π(1) =
p0p1

q1q2

π(0),

π(3) =
p2

q3

π(2) =
p0p1p2

q1q2q3

π(0),

. . .

π(M − 1) =
pM−2

qM−1

π(M − 2) =
p0p1 . . . pM−2

q1q2 . . . qM−1

π(0).

Thus

R(0 ↔ M) =
1

π(0)p0

+
q1

π(0)p0p1

+
q1q2

π(0)p0p1p2

+
q1q2q3

π(0)p0p1p2p3

+ · · ·+ q1q2 . . . qM−1

π(0)p0p1p2 . . . pM−1

.

Hence, by (1.1),

Prob[0 → M] =
1

π(0)R(0 ↔ M)
=

p0

1 + q1

p1
+ q1q2

p1p2
+ q1q2q3

p1p2p3
+ · · ·+ q1q2...qM−1

p1p2...pM−1

.

Conservation of Energy: If θ is a flow from a to b, then

(Va − Vb) · ‖θ‖ =
1

2

∑
x,y:x∼y

(Vx − Vy)θ(xy).

Proof: Use Kirchhoff’s node law.

1

2

∑
x,y:x∼y

(Vx − Vy)θ(
−→xy) =

1

2

(∑
x

Vx

∑
y:x∼y

θ(−→xy) +
∑

x,y:x∼y

Vyθ(
−→yx)

)
=

∑
x

Vx

∑
y:x∼y

θ(−→xy)

= Va · ‖θ‖ − Vb · ‖θ‖

�

Thomson’s Principle. [Doyle and Snell, p.50; Y.Peres, p.26]
If I is a unit current flow (‖I‖ = 1) from a to b, then the energy E(I) =

∑
e[I(e)]2re

minimizes the energy E(θ) :=
∑

e[θ(e)]
2re among all unit flows θ (‖θ‖ = 1) from a to b.

Moreover

R(a ↔ b) = inf{E(θ) : θ is a unit flow from a to b} = E(I).
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Proof:Let θ (‖θ‖ = 1) be a unit flow from a to b and let D(e) = θ(e) − I(e) be the
difference flow with ‖D‖ = 0.

E(θ) =
1

2

∑
x,y:x∼y

[I(−→xy) + D(−→xy)]2rxy

=
1

2

∑
x,y:x∼y

[I(−→xy)]2rxy +
∑

x,y:x∼y

I(−→xy)D(−→xy)rxy +
1

2

∑
x,y:x∼y

[D(−→xy)]2rxy

= E(I) +
∑

x,y:x∼y

(Vx − Vy)D(−→xy) + E(D)

= E(I) + E(D) ≥ E(I)

by Conservation of Energy law.
Now,

E(I) =
1

2

∑
x,y:x∼y

[I(−→xy)]2rxy

=
1

2

∑
x,y:x∼y

(Vx − Vy)I(−→xy)

= (Va − Vb) · ‖I‖ = Va − Vb

=
Va − Vb

‖I‖
= R(a ↔ b)

�
Remark. Suppose the strength of the current flow ‖I‖ = α 6= 1. For each edge e we divide
the corresponding conductance value by α and get new conductance values c′e = ce

α
. The

transition probabilities for the Markov chain (the random walk on the weighted graph) will
remain the same, as well as the voltage values

Vx = Vb + Prob[{Ta < Tb} | X0 = x] · (Va − Vb).

The new current circuit I ′(−→xy) := c′xy(Vx − Vy) = 1
α
I(−→xy) will have strength ‖I ′‖ = 1. The

above argument for ‖I‖ = α shows

E(I) = (Va − Vb) · ‖I‖ = α2Va − Vb

‖I‖
= α2R(a ↔ b).

Now, by definition,

E(I) =
1

2

∑
x,y:x∼y

rxy[I(−→xy)]2 =
1

2

∑
x,y:x∼y

cxy(Vx − Vy)
2 = α · 1

2

∑
x,y:x∼y

c′xy(Vx − Vy)
2

= αE(I ′) = αR′(a ↔ b),

whereR′(a ↔ b) is the effective resistance with respect to {c′e}. ThusR′(a ↔ b) = αR(a ↔ b).
Hence

Prob[a → b] =
1

π(a)R(a ↔ b)
=

1

π′(a)R′(a ↔ b)
,
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where π(a) =
∑

x∼a cxa and π′(a) =
∑

x∼a c′xa = 1
α
π(a).

Consider adding an extra edge to the network which is not incident to a. How will
this affect Prob[a → b]? Yuval Peres: Probabilistically the answer is not obvious. In the
language of electrical networks, the question is answered by

Rayleigh’s Monotonicity Law. [Figure 29 and Figure 30 on p.51-52 of Doyle and Snell]
If {re} and {r′e} are two different sets of resistances and if re ≤ r′e for all e, then the resistance
R(a ↔ b) ≤ R′(a ↔ b), where R′ corresponds to {r′e}e set.

Thus decreasing the resistance of an existing edge increases Prob[a → b]. Therefore
decreasing the resistance of an edge with conductivity zero from infinity to a finite number
increases Prob[a → b].

The proof of the Rayleigh’s Monotonicity Law follows form Thompson’s Principle:

inf
θ

∑
e

re[θ(e)]
2 ≤ inf

θ

∑
e

r′e[θ(e)]
2.

1.2.2 Infinite electrical networks.

For a reversible Markov chain on an infinite graph G containing vertex a, the same weighted
random walk representation with conductance values (and reciprocal resistance values) stands:
[From Y.Peres notes.] Let {Gn} be a collection of finite connected subgraphs containing a
and satisfying ∪nGn = G. If all the vertices in G \ Gn are replaced by a single vertex bn,
then we can define

R(a ↔∞) = lim
n→∞

R(a ↔ bn).

Then C(a ↔∞) = 1
R(a↔∞)

and

Prob[a →∞] =
C(a ↔∞)

π(a)
,

where π(a) =
∑

x:x∼a cax.
Thomson’s Principle remains valid for infinite networks as well:

R(a ↔∞) = inf{E(θ) : θ is a unit flow from a to ∞}.

An edge-cutset
∏

separating a from b is a set of edges of a connected graph such that
any path from a to b must include some edge in

∏
.

Nash-Williams Inequality (Rayleigh’s Method, first applied by Nash-Williams).
[From Y.Peres]
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If {
∏

n} are disjoint edge-cutsets on a connected graph (network) G which separate a from
b, then

R(a ↔ b) ≥
∑

n

(
1∑

e∈
Q

n
ce

)
.

The above inequality works for b = ∞ (i.e. limn→∞ bn), in which case if

∑
n

(
1∑

e∈
Q

n
ce

)
= ∞ ,

the weighted random walk is recurrent.

Proof: If θ is a unit flow from a to b, then for any n,∑
e∈

Q
n

ce

 ·

∑
e∈

Q
n

re[θ(e)]
2

 ≥

∑
e∈

Q
n

√
cere|θ(e)|

2

=

∑
e∈

Q
n

|θ(e)|

2

≥ ‖θ‖2 = 1

as
∏

n is an edge-cutset. Therefore

E(θ) =
∑

e

re[θ(e)]
2 ≥

∑
n

∑
e∈

Q
n

re[θ(e)]
2 ≥

∑
n

(
1∑

e∈
Q

n
ce

)
.

The theorem follows from Thomson’s Principal.
�

Example. Simple random walk on Z2 is recurrent. Take ce = 1 for each edge e of G = Z2

and consider the edge-cutsets
∏

n consisting of of edges joining vertices in ∂�n to vertices
in ∂�n+1, where �n = [−n, n]2. Each

∏
n has 4(2n + 1) edges in it. Thus∑

e∈
Q

n

ce = 4(2n + 1)

and, by Nash-Williams,

R(a ↔∞) ≥
∑

n

1

4(2n + 1)
= ∞.

Thus the simple random walk on Z2 is recurrent.

Example. Simple random walk on Z3 is transient. [Almost entirely from Y.Peres.]
Take ce = 1 for each edge e of G = Z3. To each directed edge −→e in the lattice Z3, attach
an orthogonal unit square �e intersecting −→e at its midpoint me. Define θ(−→e ) to be the
area of the radial projection of �e onto the sphere ∂B(0, 1

4
), taken with a positive sign if

the dot product −→e ·me > 0, and with a negative sign if −→e ·me < 0. By considering a unit
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cube centered at each lattice point and projecting it to ∂B(0, 1
4
), we can easily verify that

θ satisfies the Kirchhoff’s node law at all vertices except the origin. Hence θ is a flow from
a = 0 to b = ∞ in Z3. It is easy to bound its energy:

E(θ) ≤
∑

n

C1n
2

(
C2

n2

)2

< ∞.

Here the number of edges −→e touching the boundary of �n = [−n, n]3 is bounded by C1n
2,

where for each such −→e , |θ(−→e )| ≤ C2

n2 . Thus R(0 ↔∞) < ∞ and C(0 ↔∞) > 0. Therefore,

Prob[0 →∞] =
C(0 ↔∞)

π(0)
=
C(0 ↔∞)

6
> 0.

1.3 Martingales and Lyapunov functions

Bremaud Ch.5

Definition. A homogeneous Markov chain {Xn} such that E[|Xn|] < ∞ (or Xn ≥ 0) for all
n ≥ 0 is a martingale if

E[Xn+1 | Xn] = Xn .

Definition. Given a Markov chain {Xn}, let {Yn} be a real-valued process such that for
each n ≥ 0,

• Yn is Fn-measurable, i.e. Yn is a function of X0, . . . , Xn;

• E[|Yn|] < ∞ or Yn ≥ 0

is called a martingale with respect to {Xn} if

E[Yn+1 | Fn] = Yn .

If E[Yn+1 | Fn] ≤ Yn it is called a supermartingale, and if E[Yn+1 | Fn] ≥ Yn it is called
a submartingale.

1.3.1 Martingales and harmonic functions

If {Xn} is a homogeneous Markov chain (HMC), and if h(·) is a harmonic function with
respect to the transition probabilities {p(i, j)}, i.e. if h satisfies the averaging property∑

y

p(x, y)h(y) = h(x),
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then h(Xn) is a martingale. Indeed E[h(Xn+1) | Xn = x] =
∑

y p(x, y)h(y) = h(x), so

E[h(Xn+1) | Fn] = h(Xn).

The equation
∑

y p(x, y)h(y) = h(x) is often written in operator form as

Ph = h .

1.3.2 Stopping theorem

Bremaud p.185

Theorem 2. Suppose {Mn} is a martingale with respect to {Xn}, and T is a stopping time
with respect to Xn. If either T is bounded or Prob[T < ∞] = 1 and there is K > 0 such
that |Mn| ≤ K when n < T , then

E[MT ] = E[M0].

Proof: Consider Yn = MTΛn, then Yn is a martingale w.r.t. {Xn} and therefore

E[MTΛn] = E[Yn] = E[Y0] = E[M0].

Thus

|E[MT ]− E[M0]| = |E[MT ]− E[MTΛn]| ≤ 2KProb[T > n] → 0 as n →∞.

�

Example. Gambler’s ruin.

Example. Birth-and-death chain

1.3.3 Lyapunov functions

Bremaud Ch.5 and Durrett
Harmonic functions can be generalized to Lyapunov functions, the latter in reversible

case
Suppose {Xn} is an irreducible Markov chain on state space Z+ = {0, 1, 2, . . . }, and

suppose there is a non-negative function φ such that

lim
x→∞

φ(x) = ∞, and E[φ(Xn+1) | Xn = x] ≤ φ(x) when x ≥ K,

for some K > 0. Then we can show that {Xn} is recurrent.
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Indeed we can show that the Markov chain visits {0, 1, . . . , K} infinitely often. Let τK

be the time of hitting set {0, 1, . . . , K}. We fix M > K, and let τM be the time of hitting
set {M, M + 1, . . . }. Then τ := min{τK , τM} is a stopping time.

Without loss of generality we let φ ≡ 0 on {0, 1, . . . , K − 1}. Now, φ(Xn) is a bounded
supermartingale on {K, K + 1, . . . ,M}. Thus

E[φ(Xτ ) | X0 = x] ≤ φ(x).

Therefore
(1−Prob[τK < τM ]) · E[φ(XτM

) | X0 = x, τM < τK ] = φ(x).

Thus, for any x ∈ Z+,

Prob[τK < τM ] = 1− φ(x)

E[φ(XτM
) | X0 = x, τM < τK ]

→ 1 as M → +∞

as E[φ(XτM
) | X0 = x, τM < τK ] ≥ min{φ(y) : y = M, M + 1, . . . } → ∞.

Hence Prob[τK < ∞] = limM→+∞Prob[τK < τM ] = 1 and Prob[T0 < ∞] = 1, i.e. the
chain is recurrent.

Such φ(·) is called a Lyapunov function by analogy with Lyapunov functions used to
show stability of differential equations. In general, the Lyapunov functions can be used just
as well in higher dimensions. A similar condition for Zd is

lim
‖x‖→∞

φ(x) = ∞, and E[φ(Xn+1) | Xn = x] ≤ φ(x) when ‖x‖ ≥ K,

for some K > 0. The proof of recurrence is as above.

1.3.4 Example: 1-D Random Walk in Random Environment.

Consider a sequence of i.i.d. (0, 1)-valued random variables p0, p1, p2, . . . and a Markov
chain (random walk) {Xn} on Z+ = {0, 1, . . . } with the following transition probabilities:
p(0, 1) = p0 = 1− p(0, 0),

p(j, j + 1) = pj and p(j, j − 1) = qj = 1− pj for all j = 1, 2, . . . .

Here {pj} is called random environment, and {Xn} is a random walk in random envi-
ronment (RWRE). Let

ρj :=
1− pj

pj

.

Theorem 3. (F.Salomon 1975) The random walk in random environment is

• recurrent with probability one if µ = E[log ρj] ≥ 0

• transient with probability one if µ = E[log ρj] < 0
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Proof via martingales / Lyapunov functions: We let

φ(x) = 1 + ρ1 + ρ1ρ2 + ρ1ρ2ρ3 + ρ1ρ2ρ3ρ4 + · · ·+ ρ1ρ2 . . . ρx−1.

Then for each x ≥ 1, φ(x + 1)− φ(x) = ρ1ρ2 . . . ρx−1ρx = (φ(x)− φ(x− 1))ρx and therefore
px(φ(x + 1)− φ(x)) = (1− px)(φ(x)− φ(x− 1)). So

φ(x) = pxφ(x + 1) + (1− px)φ(x− 1).

Hence, conditioned on the environment {pj}, φ(Xn) is a martingale on {1, 2, . . . }:

E[φ(Xn+1) | Xn, {pj}] = φ(Xn).

Thus for M > 0 and x ∈ {0, 1, 2, . . . ,M},

Prob[TM < T0] =
φ(x)− φ(0)

φ(M)− φ(0)
.

In order to show recurrence we need to show limx→∞ φ(x) = ∞. Now, by the strong law of
large numbers,

Prob

[
log ρ1 + log ρ2 + · · ·+ log ρn

n
→ µ

]
= 1.

If µ > 0,

ρ1ρ2 . . . ρx = exp

{
log ρ1 + log ρ2 + · · ·+ log ρx

x
· x
}
≥
(

1 +
µ− 1

2

)x

> 1

for x large enough and limx→∞ φ(x) = ∞ with probability one, thus proving recurrence.
If µ < 0,

ρ1ρ2 . . . ρx = exp

{
log ρ1 + log ρ2 + · · ·+ log ρx

x
· x
}
≤
(

1− 1− µ

2

)x

for large x and limx→∞ φ(x) < ∞ each time, thus proving transience.
Now, if µ = 0, one can show that the random walk process

Yn = log ρ1 + log ρ2 + · · ·+ log ρn,

where steps {log ρj} are mean zero i.i.d. random variables, returns to R+ infinitely often:
Yn restricted to [0,−K] (K > 0) is a bounded martingale, and the probability of getting to
R+ before (−∞,−K] increases to one as K → +∞. Thus

ρ1ρ2 . . . ρx ≥ 1

infinitely often and limx→∞ φ(x) = ∞ implying recurrence. Q.E.D.

Proof via electrical networks: The edge from 0 to itself has conductivity c0, edge
[0, 1] has conductivity c1, edge [1, 2] has conductivity c2, [2, 3] has conductivity c2 and so on.
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Now, π(0) = c0 + c1, π(1) = c1 + c2, π(2) = c2 + c3 etc. So

c1 = π(0)p0, c2 = π(1)p1, c3 = π(2)p2, . . . ,

where site conductivity π(·) satisfies detailed balance conditions and therefore π(1) = p0

(1−p1)
π(0),

π(2) =
p1

(1− p2)
π(1) =

p0p1

(1− p1)(1− p2)
π(0),

π(3) =
p2

(1− p3)
π(2) =

p0p1p2

(1− p1)(1− p2)(1− p3)
π(0),

. . .

π(j) =
pj−1

(1− pj)
π(j − 1) =

p0p1 . . . pj−1

(1− p1)(1− p2) . . . (1− pj)
π(0),

and so on. Thus

c2 = p1π(1) =
c1

ρ1

, c3 = p2π(2) =
c1

ρ1ρ2

, c4 = p3π(3) =
c1

ρ1ρ2ρ3

, . . .

and

R(0 ↔∞) =
1

c1

(1 + ρ1 + ρ1ρ2 + ρ1ρ2ρ3 + . . . ) .

The rest of the proof is as above. Q.E.D.

1.3.5 Martingale convergence theorem

Bremaud, p.185

Theorem 4. Let {Yn} be either a nonnegative supermartingale, or a bounded submartingale,
with respect to {Xn}. Then, with probability one, limn→∞ Yn exists and is finite.

The proof is done via the upcrossing inequality.

1.4 Homework #1

Problem 1. 2-D RWRE Consider two sequences of i.i.d. (0, 1)-valued random variables
p1, p2, p3, . . . and p̄1, p̄2, p̄3, . . . and a Markov chain (random walk) {Xn} on Z2

+ = {0, 1, . . . }2

with the following transition probabilities:

p((i, j), (i + 1, j)) =
pi

2
, p((i, j), (i− 1, j)) =

1− pi

2
,

p((i, j), (i, j + 1)) =
p̄j

2
, and p((i, j), (i, j − 1)) =

1− p̄j

2
for all i, j ∈ Z2

+,

where p0 = p̄0 = 1. Suppose µ = E
[
log
(

1−p1

p1

)]
> 0 and µ̄ = E

[
log
(

1−p̄1

p̄1

)]
> 0. Show

that {Xn} is recurrent.

Problem 2. Suppose ξ1, ξ2, . . . are i.i.d. with mean E[ξi] = 0. Let Sn = ξ1 + ξ2 + · · · + ξn

be a random walk. Show that {Sn} visits R+ = {x : x ≥ 0} infinitely often. Observe that
ξi could have unbounded higher moments, e.g. E[ξ2

i ] = ∞.



Chapter 2

Long Run Behavior of Stochastic
Processes.

Bremaud Ch.6

2.1 Coupling method, convergence rates via coupling.

Bremaud, p.129; Convergence to steady state: Liggett, p.65; Bremaud, p.128-131

Theorem 5. Let {p(i, j)} be the transition probabilities for an irreducible and aperiodic
Markov chain on a finite set S, i.e. ∃m s.t. mini,j∈S pm(i, j) = ε > 0. Then the limit

π(j) = lim
n→∞

pn(i, j)

exists for all i, j ∈ S and is independent of i, where π is the unique stationary distribution.

Coupling proof: [Liggett, p.65] Let (Xn, Yn) be a Markov chain on S × S with transition
probabilities

Prob[(Xn+1, Yn+1) = (j1, j2) | (Xn, Yn) = (i1, i2)] =


p(i1, j1)p(i2, j2) if i1 6= i2,

p(i1, j1) if i1 = i2 and j1 = j2,

0 if i1 = i2 but j1 6= j2.

So until the coupling time T = min{n ≥ 0 | Xn = Yn} the two processes {Xn} and {Yn}
move as two independent Markov chains with transition probabilities {p(i, j)}. After T , they
move as one Markov chain

XT = YT , XT+1 = YT+1, XT+2 = YT+2, XT+3 = YT+3, . . .

with transition probabilities {p(i, j)}. Now

Prob[T ≤ m | (X0, Y0) = (ix, iy)] =
∑
j∈S

Prob[Xm = Ym = j | (X0, Y0) = (ix, iy)]

≥
∑
j∈S

pm(ix, j)pm(iy, j) ≥ ε

21
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for any ix, iy ∈ S. Thus Prob[T < ∞] = 1 and

Prob[Xn 6= Yn | (X0, Y0) = (ix, iy)] → 0

as n →∞. Hence, for any ix, iy ∈ S,.

|pn(ix, j)−pn(iy, j)| = |Prob[Xn = j | (X0, Y0) = (ix, iy)]−Prob[Yn = j | (X0, Y0) = (ix, iy)]|

= |Prob[Xn = j, T > n | (X0, Y0) = (ix, iy)]−Prob[Yn = j, T > n | (X0, Y0) = (ix, iy)]|

≤ Prob[Xn 6= Yn | (X0, Y0) = (ix, iy)] → 0

�

Here we will quote [R.Durrett, “Probability: Theory and Examples.”]:
“Example. A coupling card trick. The following demonstration used by E.B.Dynkin in
his probability class is a variation of a card trick that appeared in Scientific American. The
instructor asks a student to write 100 random digits from 0 to 9 on the blackboard. Another
student chooses one of the first 10 numbers and does not tell the instructor. If that digit is
7 say she counts 7 places along the list, notes the digit at that location, and continues the
process. If the digit is 0 she counts 10. A possible sequence is underlined on the list below:

3 4 7 8 2 3 7 5 6 1 6 4 6 5 7 8 3 1 5 3 0 7 9 2 3 . . .

The trick is that, without knowing the student’s first digit, the instructor can point to her
final stopping position. To this end, he picks the first digit, and forms his own sequence in
the same manner as the student and announces his stopping position. He makes an error
if the coupling time is larger than 100. Numerical computation done by one of Dynkin’s
graduate students show that the probability of error is approximately .026”

2.2 Second largest eigenvalue.

Linear algebra is central to Markov chains. Let us recall a few facts: Suppose A is an r × r
matrix with all non-negative entries and r distinct eigenvalues λ1, . . . , λr, and u1, . . . , ur and
v1, . . . , vr are respectively left and right eigenvectors (1 row, r columns), i.e.

uiA = λiui and AvT
i = λiv

T
i i = 1, 2, . . . , r.

Then λiuiv
T
j = uiAvT

j = λjuiv
T
j and therefore ui · vj = uiv

T
j = 0 if i 6= j. One can scale the

eigenvectors so that ui · vi = uiv
T
i = 1 for all i. So A is diagonalizable, i.e.

Λ = UAV T ,

where u1, . . . , ur are rows of U , v1, . . . , vr are rows of V and Λ is the diagonal matrix of
eigenvalues λ1, . . . , λr. Here U−1 = V T .
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Thus we obtain spectral decomposition

An = V T ΛU =
r∑

i=1

λn
i v

T
i ui

Consider a finite Markov chain on state space S of cardinality |S| = r with transition
probabilities matrix P = {p(i, j)} and unique stationary distribution π. Let

1 = λ1 > λ2 ≥ λ3 ≥ · · · ≥ λr > −1

be the eigenvalues of P . Since P is a nonnegative matrix whose rows add up to one, if there
was an eigenvalue λ with |λ| > 1, then there is a nonnegative vector u with ‖u‖l1 = 1 (i.e.
its coordinates add up to one) such that ‖uP‖l1 > 1, but 1 = ‖u‖l1 = ‖uP‖l1 .

Now λ1 = 1, u1 = π and v1 = 1 = (1, 1, . . . , 1) as πP = π and the rows of P add up to
one.

Example. Two state Markov chain. See Bremaud, p.196.

P =

(
1− α α

β 1− β

)
The eigenvalues are λ1 = 1 > λ2 = 1− α− β > −1 with

u1 = π =

(
β

α + β
,

α

α + β

)
, v1 = 1 = (1, 1)

and

u2 = (1,−1), v2 =

(
α

α + β
,
−β

α + β

)
.

Thus

P n =
2∑

i=1

λn
i v

T
i ui =

1

α + β

(
β α
β α

)
+

(1− α− β)n

α + β

(
α −α
−β β

)
and we obtain the result of the limit theorem that we already proved with coupling.
Thus

P n → Π =
1

α + β

(
β α
β α

)
=

(
π1 π2

π1 π2

)
where π = (π1, π2).

Here it is important that we also know the rate of convergence

P n − Π =
(1− α− β)n

α + β

(
α −α
−β β

)
.

Convergence to steady state via Perron-Frobeniuous theorem. A finite state
Markov chain is irreducible and aperiodic if there is m > 0 such that Pm has all positive
entries, we say Pm > 0. A nonnegative matrix A that satisfies this condition (Am > 0 for
some m) is said to be primitive.
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Theorem 6. (Perron-Frobenius) If A is a nonnegative primitive matrix, then there is an
eigenvector λ of multiplicity one such that λ1 > |λj| for all other eigenvalues λj. Moreover
the corresponding left and right eigenvectors u1 and v1 can be chosen positive and such that
u1v

T
1 = 1.

Now if λ(2) is the second largest in absolute value eigenvector of P , and m2 is its algebraic
multiplicity, then

P n = λn
1v

T
1 u1 + O(nm2−1|λ(2)|n) = Π + O(nm2−1|λ(2)|n)

thus obtaining the rates via Perron-Frobenius theorem.

Remark. If the finite Markov chain generated by P irreducible, but not aperiodic. Then if
we define a new transition probability matrix P̂ = 1

2
I + 1

2
P , i.e. each time we toss a coin and

either do nothing with probability 1
2
, or take a step according to P . Then P̂ is irreducible

and aperiodic, and thus has the unique stationary distribution π. But πP = π if and only if
πP̂ = π. Thus P has a unique stationary distribution. One can show that all the eigenvalues
of P̂ are nonnegative.

2.2.1 Spectral gap and spectral theorem.

Bremaud, p.195-221
There are two ways to label the eigenvalues: We can label the eigenvalues in decreasing

order
1 = λ1 > λ2 ≥ λ3 ≥ · · · ≥ λr > −1,

or we can order them in decreasing order with respect to absolute values

1 = λ(1) > |λ(2)| ≥ |λ(3)| ≥ · · · ≥ |λ(r)| ≥ 0.

Value 1−λ2 is called the spectral gap, and value 1−|λ(2)| is called the absolute spectral
gap.

Now if we slow down the Makov chain by skipping the move each time with probability
1
2
, i.e. considering P̂ = 1

2
I + 1

2
P . Then for the P̂ chain, λ2 = λ(2) and the spectral gap is

the same as absolute spectral gap. Observe that in the long run (n is large) P̂ is only twice
slower than P .

Therefore for the rest of the section we can assume without loss of generality that

λ2 = λ(2)

as well as that the Markov chain is not only irreducible, but also aperiodic. We also assume
that it is reversible.

Example. Relaxation time is the reciprocal of the spectral gap:

τrlx =
1

1− λ2

.
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Why relaxation time? Suppose λ2 = λ(2) has multiplicity m2 = 1. Then after
n = K · τrlx iterations the distribution tail

P n − Π = O(λn
2 ),

where

λn
2 = e

log λ2
1−λ2

K
= e−(1+

(1−λ2)
2

+
(1−λ2)2

3
+... )K ≤ e−K .

Now, we assumed reversibility

π(i)p(i, j) = π(j)p(j, i).

We can define the inner product with respect to π,

< x, y >π:=
∑
i,j∈S

x(i)y(i)π(i)

and the corresponding l2(π) norm

‖x‖π =
√

< x, x >π.

Observe that < x,1 >π= Eπ[x] - the mean of x w.r.t. probability distribution π and
‖x‖π = Eπ[x2] is the second moment.

In general, if µ is a measure on S, we let l2(µ) denote the r-dimensional space Rr with
inner product

< x, y >µ=
∑
i,j∈S

x(i)y(i)µ(i)

Theorem 7. In the reversible case (which we assumed), P is self-adjoined in l2(π), i.e.

< xP T , y >π=< x, yP T >π

for all x, y ∈ l2(π).

Proof:

< xP T , y >π=
∑
i,j

π(i)p(i, j)x(j)y(i) =
∑
i,j

π(j)p(j, i)x(j)y(i) =< x, yP T >π

�
Converse is also true: if P is self-adjoint then the chain is reversible. This follows from

taking x = ~ei and y = ~ej in Rr and substituting into < xP T , y >π=< x, yP T >π.
We let

D =


π(1) 0 0 0

0 π(2) 0 0
0 0 . . . 0
0 0 0 π(r)

 and P ∗ = D
1
2 PD− 1

2 .
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Here the eigenvalues of P ∗ are the same λ1, . . . , λr as those for P . Moreover P ∗ is symmetric
(i.e. (P ∗)T = P ∗) as P is reversible w.r.t. π and

p∗(i, j) =

√
π(i)

π(j)
p(i, j) =

√
p(i, j)p(j, i) =

√
π(j)

π(i)
p(j, i) = p∗(j, i).

Thus P ∗ has an orthonormal set of left eigenvalues w1, . . . , wr, where by symmetry wT
1 , . . . , wT

r

are corresponding right eigenvalues. Then u1, . . . , ur and v1, . . . , vr defined as

ui = wiD
1
2 and vT

i = D− 1
2 wT

i

are respectively the left and the right eigenvalues of P . Observe that

ui = viD.

Now, xDyT =< x, y >π and therefore

< vi, vj >π= δij and < ui, uj > 1
π
= δij

as < vi, vj >π= viDvT
j = (wiD

− 1
2 )D(D− 1

2 wT
j ) = wiw

T
j = δij, i.e. u1, . . . , ur are orthonormal

w.r.t. < ·, · > 1
π

and v1, . . . , vr are orthonormal w.r.t. < ·, · >π. Hence

x =
r∑

j=1

< x, uj > 1
π

uj and x =
r∑

j=1

< x, vj >π vj

and

xP n =
r∑

j=1

λn
j < x, uj > 1

π
uj and P nxT =

r∑
j=1

λn
j < x, vj >π vT

j .

Recall that u1 = π and v1 = 1, and therefore w1 = (
√

π(1), . . . ,
√

π(r)).

Definition. Dirichlet form

Eπ(x, x) =< x(I − P )T , x >π=< x(I − P T ), x >π .

We will adapt the following notation: E(x, x) = Eπ(x, x).

Theorem 8. E(x, x) = 1
2

∑
i,j∈S π(i)p(i, j)[x(j)− x(i)]2
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Proof:

< x(I − P )T , x >π =
∑

i

(
x(i)−

∑
j

p(i, j)x(j)

)
x(i)π(i)

=
∑

i

(∑
j

p(i, j)[x(i)− x(j)]

)
x(i)π(i)

=
∑
i,j

[x(i)− x(j)]x(i)π(i)p(i, j)

=
∑
i,j

[x(i)− x(j)]x(j)π(j)p(j, i)

=
1

2

∑
i,j

[x(i)− x(j)]x(i)π(i)p(i, j) +
1

2

∑
i,j

[x(i)− x(j)]x(j)π(j)p(j, i)

=
1

2

∑
i,j∈S

π(i)p(i, j)[x(j)− x(i)]2

�

Recall that in the electrical networks representation of reversible chains,

E(I) =
1

2

∑
i,j

π(i)p(i, j) (V (j)− V (i))2 .

Also, in general, the same proof works in showing

E(x, y) :=< x(I − P T ), y >π=
1

2

∑
i,j∈S

π(i)p(i, j)(x(j)− x(i))(y(j)− y(i)) .

Theorem 9. (Rayleigh’s Spectral Theorem for the second largest eigenvalue.)

1− λ2 = inf

{
E(x, x)

‖x‖2
π

: < x,1 >π= 0

}
In general, Rayleigh’s Theorem asserts

1− λk = inf

{
E(x, x)

‖x‖2
π

: < x, vi >π= 0, 1 ≤ i < k

}
.

Proof:

(I − P )xT =
r∑

j=1

< x, vj >π vT
j −

r∑
j=1

λj < x, vj >π vT
j =

r∑
j=1

(1− λj) < x, vj >π vT
j
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and

x(I − P )T =
r∑

j=1

(1− λj) < x, vj >π vj .

Thus

Eπ(x, x) =< x(I − P )T , x >π=
r∑

j=1

(1− λj) < x, vj >2
π .

Now we compare Eπ(x, x) to

‖x‖2
π =< x, x >π=

〈
x,

r∑
j=1

< x, vj >π vj

〉
π

=
r∑

j=1

< x, vj >2
π

when < x, v1 >π=< x,1 >π= 0. There

E(x, x)

‖x‖2
π

=

∑r
j=2(1− λj) < x, vj >2

π∑r
j=2 < x, vj >2

π

≥ (1− λ2)

as (1− λ2) ≤ (1− λ3) ≤ (1− λ4) ≤ . . . ≤ (1− λr), where

inf

{
E(x, x)

‖x‖2
π

: < x,1 >π= 0

}
= 1− λ2

is attained at x = v2. �

Thus any y = (y(1), . . . , y(r)) such that y(1) + · · · + y(r) = 0 provides an upper bound on
spectral gap

(1− λ2) ≤ E(y, y)

‖y‖2
π

and a lower bound on relaxation time

τrlx ≥ ‖y‖2
π

E(y, y)
.

2.2.2 Relaxation times.

Bremaud, p.212; [Diaconis and Strook, 1991]
The reversibility and assumptions section are imposed. Let us return the random walk

on weighted graph construction of electrical networks. So,

cij = π(i)p(i, j) .

For each pair of states i 6= j, we randomly select exactly one edge self-avoiding (i.e. no edge
is used more than once) path

ρij = {i → i1 → i2 → · · · → im → j}
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of positive probability p(i, i1)p(i1, i2) . . . p(im, j) > 0. Then the resistance of the path is

R(ρi,j) = rii1 + ri1i2 + · · ·+ rimj =
1

π(i)p(i, i1)
+

1

π(i1)p(i1, i2)
+ · · ·+ 1

π(im)p(im, j)
.

Each pair i 6= j has a unique such path in the collection P . We define the Poincaré
coefficient associated with P

κ = κ(P) = max
e

∑
i,j: e∈ρi,j

π(i)R(ρi,j)π(j) .

Theorem 10. Given the assumptions of this section,

λ2 ≤ 1− 1

κ
.

Then τrlx ≤ κ.

Proof: For any x ∈ R such that < x,1 >π= 0,

‖x‖2
π = < x, x >π=< x, x >π − < x,1 >2

π

=
1

2

∑
i,j

(x(j)− x(i))2π(i)π(j)

=
1

2

∑
i,j

 ∑
e=[i−,i+] : e∈ρi,j

1
√

ce

√
ce · (x(i+)− x(i−))

2

π(i)π(j)

≤ 1

2

∑
i,j

R(ρi,j)

 ∑
e=[i−,i+] : e∈ρi,j

ce · (x(i+)− x(i−))2

π(i)π(j) (Cauchy-Schwarz)

≤ 1

2

∑
e=[i−,i+]

ce · (x(i+)− x(i−))2 ·

 ∑
i,j: e∈ρi,j

π(i)R(ρi,j)π(j)


≤ κ · E(x, x)

Thus 1
κ
≤ E(x,x)

‖x‖2π
for all x ∈ R such that < x,1 >π= 0. Hence, by the Spectral Theorem,

1

κ
≤ 1− λ2 .

�

Example. Random walk on a graph G. [Bremaud. p.214] There π(i) = deg (i)
2|E| , where |E| is

the number of edges in G. Also ce = 1
2|E| for all e ∈ E and

κ(P) = max
e∈E

1

2|E|
∑

i,j: e∈ρi,j

deg (i) · |ρi,j| · deg (j),
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where R(ρi,j) = 2|E| · |ρi,j|.
We let d = maxi∈G deg (i), |ρ| = maxi,j∈G |ρi,j| and define the bottleneck coefficient

B = max
e∈E

{# of paths ρi,j ∈ P s.t. e ∈ ρi,j}.

Then

τrlx ≤ κ(P) ≤ 1

2|E|
|ρ|d2B .

2.3 Mixing times.

The hitting times are an important tool that we will be using in this section.
Mean hitting time. Consider a simple random walk {Xn} on Z. Given two positive

integers, a and b, let T−a and Tb be respective hitting times for −a and b. Also let T =
T−a ∧ Tb. We want to compute E[T | X0 = 0].
Let g(x) = (b− x)(x + a) then g satisfies

g(x) = 1 +
∑

y

p(x, y)g(y)

as g(x) = 1 + 1
2
((b − x) − 1)((x + a) + 1) + 1

2
((b − x) + 1)((x + a) − 1). Also g ≡ 0 on

A = {−a, b} and T is the hitting time with respect to set A. Thus Mn = g(XT∧n) + (T ∧ n)
is a martingale w.r.t. {Xn}. Therefore, by the optional stopping theorem,

E[T | X0 = x] = E[MT | X0 = x] = E[m0 | X0 = x] = g(x)

for all x ∈ [−a, b]. Hence
E[T | X0 = 0] = g(0) = ab .

Thus for the random walk on the ring Z/nZ,

E[Tij] = E[Tj | X0 = i] = (j − i)(n− j + i)

for all i, j ∈ {0, 1, . . . , n− 1}.

2.3.1 Strong stationary times.

Bremaud, p.219; [Diaconis]

Total variation distance:

‖µ− ν‖TV :=
1

2

∑
x∈S

|µ(x)− ν(x)| = sup
A⊂S

|µ(A)− ν(A)|

Definition. Let {Xn} be a time-homogeneous Markov chain. A stopping time T is called
strong stationary time if Prob[T < ∞] = 1, and XT ∼ π and is independent of T .
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Definition. Mixing time: process {Xt} with stationary distribution π. If Xt ∼ νt = ν0Pt,

tmix := inf

{
t : ‖νt − π‖TV ≤

1

4
, all ν0

}
.

So, if one compares the process with initial condition X0 ∼ ν with the process with initial
conditions X0 ∼ π,

‖νP t − π‖TV =
1

2

∑
x∈S

|Prob[Xt = x | X0 ∼ ν]−Prob[Xt = x | X0 ∼ π]|

=
1

2

∑
x∈S

|Prob[Xt = x, t < T | X0 ∼ ν]−Prob[Xt = x, t < T | X0 ∼ π]|

≤ max
x0

Prob[t < T | X0 = x0]

≤ maxx0 E[T | X0 = x0]

t

by Markov inequality. Thus letting t ≥ 4 ·maxx0 E[T | X0 = x0] obtain ‖νP t − π‖TV ≤ 1
4
.

Thus tmix ≤ 4·maxx0 E[T |X0 = x0]. A sharper estimate can be achieved with the knowledge
of higher moments of T .

Example. Coupon collector.

Example. Bremaud p.224; originally done in [Diaconis and Fill, 1991] This is the example
of “lazy” simple random walk on a one dimensional torus

Z/nZ = (Z mod n) = {0, 1, . . . , n− 1}.

The random walk is called lazy because of its transition probabilities:

p(i, i) =
1

2
and p(i, i + 1) = p(i, i− 1) =

1

4
,

i.e. half of the time the process does not move. In general, if P is the transition probability
for a process, then P̂ = 1

2
(P + I) is the transition probability for the lazy version of the

process. Recall the discussion on P̂ = 1
2
(P + I).

Let n = 2L, where L ∈ Z+. So if T1 is the first time the walker completes 1/4 of the
circle, and T2 is the amount of time after T1 that it takes for the walker to complete 1/8 of
the circle, and so on. Then

T = T1 + T2 + · · ·+ TL−1 + 1

is a strong stationary time. Here

E[T ] = E[T1] + E[T2] + · · ·+ E[TL−1] + 1 =
1

2
·
[(n

4

)2

+
(n

8

)2

+ · · ·+
( n

2L−1

)2

+ 1

]
and therefore

E[T ] =
n2

2
·

L∑
j=2

1

22j
≤ n2 ·

∞∑
j=2

1

22j+1
.
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2.3.2 Card shuffling examples and cutoff asymptotics.

Here we will explain some of the best known card shuffling examples.

Example. Random card to random location.

Example. [Aldous and Diaconis, 1981] Top-to-random card shuffling. (Also see Bremaud
p225, and T.Lindvall) Here the strong stationary time is the time τ = τn when the card that
was the bottom card n at time zero elevates to the top of the deck and then shuffled to the
random location in the deck. One can show with the standard coupon collector argument
that E[τ ] = n log n + O(n) and therefore tmix = O(n log n). Indeed, let T(1) be the first time
a card lands under n , T(2) be the second time a card lands under n , and so on. Then

τ = T(1) + T(2) + · · ·+ T(n−1) + 1,

where each Tj) is geometric with parameter j
n
. Thus

E[τ ] = n ·
n∑

j=1

1

j
= n log n + O(n) .

However tn = n log n is also a cutoff time: if νt denotes the distribution of Xt, the
t-times shuffled deck, in Sn. Then

‖ν(1−ε)tn − π‖TV → 1 and ‖ν(1+ε)tn − π‖TV → 0 as n →∞.

Indeed we have a coupon collector bound on τ : if Vj is the time the collection gets the
jth coupon, Vj ∼ T(n−j+1)

‖νt − π‖TV ≤ Prob[τ > t]

= Prob
[
∪n

j=1{coupon #j is not collected in t drawings}
]

≤
n∑

j=1

Prob [{coupon #j is not collected in t drawings}]

= n

(
1− 1

n

)t

→ 0

where n
(
1− 1

n

)t ≈ n−ε → 0 if t = (1− ε)tn = (1− ε)n log n. Thus showing

‖ν(1+ε)tn − π‖TV → 0 as n →∞.

Moreover letting t = n log n + cn obtain

‖νt − π‖TV ≤ Prob[τ > t] ≤ n

(
1− 1

n

)t

≈ e−c =
1

4

if c = log 4. Thus tmix = n log n + O(n).
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Also ‖ν(1−ε)tn − π‖TV → 1 as if only cards 1 , 2 , . . . , k took part in the t shuffles, then
the probability measure νt is distributed among the n!

(n−k)!
combinations in Sn where card n

is under n-1 which in turn is under n-2 , and so on up to card k+1 .

Example. Random transpositions. [Diaconis] and [Diaconis and Shahshahani, 1981]

2.3.3 Mixing times via coupling.

Example. Lazy random walk on a two-dimensional torus S = Z2/nZ2. The original “lazy”
process has transition probabilities

p([i, j], [i + 1]) =
1

8

p([i, j], [i− 1, j]) =
1

8

p([i, j], [i, j + 1]) =
1

8

p([i, j], [i, j − 1]) =
1

8

p([i, j], [i, j]) =
1

2

We construct a coupled process to estimate the mixing time. Here are the transition proba-
bilities for the coupled process in S × S: Suppose Xt = (i1, j1) and Yt = (i2, j2), where the
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coordinates are given mod n. Then Xt+1 is determined according to

p([i1, j1, i2, j2], [i1, j1, i2, j2 + 1]) =
1

8

p([i1, j1, i2, j2], [i1, j1, i2, j2 − 1]) =
1

8

p([i1, j1, i2, j2], [i1, j1 + 1, i2, j2]) =
1

8

p([i1, j1, i2, j2], [i1, j1 − 1, i2, j2]) =
1

8

p([i1, j1, i2, j2], [i1 + 1, j1, i2, j2]) =
1

8
if i1 6= i2

p([i1, j1, i2, j2], [i1 − 1, j1, i2, j2]) =
1

8
if i1 6= i2

p([i1, j1, i2, j2], [i1, j1, i2 + 1, j2]) =
1

8
if i1 6= i2

p([i1, j1, i2, j2], [i1, j1, i2 − 1, j2]) =
1

8
if i1 6= i2

p([i1, j1, i2, j2], [i1 + 1, j1, i2 + 1, j2]) =
1

8
if i1 = i2

p([i1, j1, i2, j2], [i1 − 1, j1, i2 − 1, j2]) =
1

8
if i1 = i2

p([i1, j1, i2, j2], [i1, j1, i2, j2]) =
1

4
if i1 = i2 .

In words, each time, with probability 1/2, one of the walkers moves and the other skips
the move until T1, the first time they are on the same vertical line. After T1, they move
simultaneously along the horizontal axis, and alternate the moves (according to coin toss)

in the vertical direction. Thus E[T1] ≤ 2 ·
(

n
2

)2
and the mean coupling time

E[Tcoupling] ≤ n2 .

Suppose Xt ∼ ν0P
t and Yt ∼ µ0P

t. If T is the coupling time for (Xt, Yt), then

‖ν0P
t − µ0P

t‖TV =
1

2

∑
x∈S

|Prob[Xt = x]−Prob[Yt = x]|

=
1

2

∑
x∈S

|Prob[Xt = x, T > t]−Prob[Yt = x, T > t]|

≤ Prob[T > t].

If we let µ0 = π then this bounds ‖ν0P
t− πP t‖TV . In other words, the coupling time T is a

strong stationary time.
If we have the general bound on Prob[T > t] for all µ0, then we will have an upper

bound for the mixing time:

max
x
‖ν0P

t − xP t‖TV ≥ ‖ν0P
t − π‖TV
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as
∑

x π(x)‖ν0P
t − xP t‖TV ≥ ‖ν0P

t − π‖TV by convexity of f(x) = ‖ν0P
t − xP t‖TV .

Example. Random transpositions via simplest coupling. Order O(n2).

Example. Random adjacent transpositions via coupling. [Aldous and Fill, Ch 4-3]; originally
in [D.B.Wilson 1997] Sharp order O(n3 log n).

2.3.4 Mixing and relaxation times.

More general definition of mixing time: fix ε ∈ [0, 1), then if Xt ∼ νt = ν0Pt,

tmix(ε) := inf {t : ‖νt − π‖TV ≤ ε, all ν0} .

Now, we know from Perron-Frobenious theorem that

P t = Π + O(tm2−1λt
2),

where by our assumption, λ2 = λ(2) > 0. Recall that m2 was the multiplicity of λ2. We have
shown that for t = K · τrlx, λt

2 ≤ e−K if m2 = 1. So,

‖ν0P
t − π‖TV = ‖ν0P

t − ν0Π‖TV ≤ C · e−K = ε

for all ν0 if K = log C
ε
. Thus

tmix(ε) ≤ log
C

ε
· τrlx.

In fact, C = 1
minx∈S{π(x)} will work (see [Peres]). Conversely,

tmix(ε) ≥ (τrlx − 1) log

(
1

2ε

)
.

In order to show this we observe that any vj (j = 2, . . . , r),

|λt
jvj(x)| = |(P tvT

j )(x)| =

∣∣∣∣∣∑
y∈S

pt(x, y)vj(y)− π(y)vj(y)

∣∣∣∣∣ ≤ 2‖vj‖∞ · ‖xP t − π‖TV

as < 1, vj >π= 0 for all j = 2, . . . , r. Taking x ∈ S that maximizes vj, i.e. vj(x) = ‖vj‖∞,
we obtain

|λj|t ≤ 2‖xP t − π‖TV ≤ 2 max
ν0∈S

‖ν0P
t − π‖TV ≤ 2ε

if t = tmix(ε). Hence tmix(ε) ≥
log( 1

2ε)

log

„
1
|λj |

« ≥ log( 1
2ε)„

1
|λj |

−1

« ≥ (τrlx − 1) log
(

1
2ε

)
as |λ(2)| ≥ |λj|.
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2.4 Long run behavior of continuous time processes.

Aldous and Fill, Bremaud Ch.8 Taking independent exponential waiting times transforms a
discrete time model into a continuous time one, where if the exponential parameter is one,
the probabilities turn into rates.

Superposition. If Xλ is an exponential random variable with parameter λ > 0, and Xµ

is an exponential random variable with parameter µ > 0, then Y = Xλ∧Xµ is an exponential
random variable with parameter λ + µ. Check!

So if we are given two continuous time processes on the same discrete state space S.
Then the superposition of the two processes is a continuous time process whose rates are the
sums of the corresponding rates for the two processes, e.g. consider two Poisson processes
Nt and Mt with rates λ > 0 and µ > 0, then Nt + Mt is the Poisson process with rate λ + µ.

Thinning. Consider a geometric random variable with probability of success p and
waiting times in between the trials distributed as independent exponential random variables
with parameter λ > 0. Then it is an exponential random variable with parameter λp.

2.4.1 Example: Ising model and Glauber dynamics.

[Y.Peres]

π(σ) =
1

Z(β)
eβ·

P
u∼v σ(u)σ(v) ,

where β is the reciprocal of the temperature, β = 1
T
, and Z(β) is the normalization constant.

Glauber dynamics:

Prob[σnew(v) = 1] =
eβ·

P
u:u∼v σ(u)

e−β·
P

u:u∼v σ(u) + eβ·
P

u:u∼v σ(u)
.

Coupling.[Y.Peres] If d(·, ·) is a metric on S such that d(i, j) ≥ 1 for i 6= j. If one
constructs a coupling so that

E[d(Xt+1, Yt+1)] ≤ e−γE[d(Xt, Yt)] for some γ > 0,

then for ν0(x) = δi(x) and µ0(x) = δj(x),

‖ν0P
t − µ0P

t‖TV ≤ e−γtd(i, j) ≤ e−γtDiam(S)

and

tmix(ε) ≤ γ−1 log
Diam(S)

ε
.

2.5 Homework #2.

Problem 1. Coupling in Z3. Consider a lazy random walk on S = Z3, i.e. do nothing
with probability 1/2, or move to one of the six neighbor vertices with probability 1

12
each.
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Construct a successful coupling, i.e. a coupled process (Xt, Yt) on S×S with finite coupling
time: Prob[Tcoupling < ∞] = 1.

Problem 2. Mixing time for lazy simple random walk on d-dimensional torus. Consider a
lazy random walk on S = Zd/nZd = (Zd mod n), a d-dimensional torus. Here the walker
does nothing with probability 1/2, or moves to one of the 2d neighbor vertices with proba-
bility 1

4d
each. Show that the mixing time

tmix = O(n2) .

Problem 3. Mixing time for the free dynamics on a graph with n vertices. Consider a spin
system on Zn = {1, 2, . . . , n} where each site is occupied by either +1 or −1. There is an
exponential clock with parameter p > 0, when it rings, one of the n sites (chosen uniformly)
changes the spin. (There is an equivalent definition: each site has an independent exponential
clock with fixed rate p

n
. When the corresponding clock rings, the site changes the sign of the

spin.) Show that tmix = O(n log n).
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Chapter 3

Gibbs Fields

[Bremaud Ch.7] and [Grimmett]
Given a site space S, a collection of random variables indexed by S, {Xv}v∈S is called a

random field.

3.1 Markov random fields.

Let S be a graph, then each vertex v ∈ S has a neighborhood system Nv = {u ∈ S : u ∼ v},
where u ∼ v denotes two vertices connected by an edge.

Definition. The random field {Xv}v∈S is called a Markov random field if for any vertex
v ∈ S, Xv is independent of {Xw : w ∈ S \ (v ∪ Nv)} when conditioned on the values
{Xu : u ∈ Nv}.

Example. Ising model on 2-D torus Z2/nZ2. Here the Gibbs potential is given by the
following Hamiltonian:

H(σ) = −1

2

∑
u,v: u∼v

σ(u)σ(v) = −
∑

edges e=[u,v]

σ(u)σ(v)

and probability of a configuration σ ∈ ΛS = {−1, +1}S is

π(σ) =
e−βH(σ)

Z(β)
, where β =

1

T

and Z(β) =
∑

σ∈Λ e−βH(σ) is the normalizing factor. The HamiltonianH(σ) can be expressed
through local Hamiltonians: for each v ∈ S, we define the local Hamiltonian

Hlocal(σ, v) = −
∑

u: u∼v

σ(u)σ(v) .

Then

H(σ) =
1

2

∑
v∈S

Hlocal(σ, v) .

39
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Glauber dynamics: Each time we randomly pick a vertex v ∈ G, and erase the spin
σ(v) at v. Let σ+ (respectively σ−) be the configuration we get if we place σ(v) = +1
(respectively σ(v) = −1) spin at v. Then the probability of switching from σ to σ+ is given
by

Prob(σ → σ+) =
e−βH(σ+)

e−βH(σ−) + e−βH(σ+)
=

e−βHlocal(σ+,v)

e−βHlocal(σ−,v) + e−βHlocal(σ+,v)
.

So Glauber dynamics is a random walk on the space of all configurations ΛS such that the
probability measure π is stationary w.r.t. Glauber dynamics. Moreover, if tanh(β) < 1

4
,

the mixing time tmix = O(n log n). Thus the Glauber dynamics is a fast way to generate π.
Glauber dynamics is an important example of a Gibbs sampler.

The Ising model with external field has Hamiltonian defined as

H(σ) = −1

2

∑
u,v: u∼v

σ(u)σ(v)− h ·
∑

v

σ(v) = −
∑

edges e=[u,v]

σ(u)σ(v)− h ·
∑

v

σ(v)

Example. Ising model on 1-D torus S = Z/nZ. [Bremaud, Ch 7, Example 1.4], [Baxter]

Z(β) =
∑
σ∈ΛS

eβ
Pn

j=1 σ(j)σ(j+1) =
∑
σ∈ΛS

R(σ(1), σ(2))R(σ(2), σ(3)) . . . R(σ(n), σ(1)),

where R(x, y) = eβxy for all x, y ∈ Λ = {−1, +1}. The transformation matrix

R =

(
R(−1,−1) R(−1, +1)
R(+1,−1) R(+1, +1)

)
=

(
eβ e−β

e−β eβ

)
generates Z(β):

Z(β) =
∑

σ(1)∈Λ

Rn(σ(1), σ(1)) = Rn(−1,−1) + Rn(+1, +1) = Tr(Rn) = λn
R1 + λn

R2,

where λR1 = eβ + e−β and λR2 = eβ − e−β are the two eigenvalues of matrix R.

3.1.1 Gibbs-Markov equivalence.

Definition. A subset C ⊂ S is called a clique for all pairs of sites u, v ∈ C (u 6= v), u and
v must be neighbors.

Definition. The set of random variables σ = {Xv}v∈S is a Gibbs field if the joint distribution
function can be written as

π(σ) =
1

ZT

e−
1
T
E(σ) for some T > 0
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with the energy function E : ΛS → R ∪ {+∞} defined via the Gibbs potential functions
{VC(σ)}C⊂S in the following way:

E(x) =
∑
C⊂S

VC(σ) ,

where VC : ΛS → R ∪ {+∞} satisfy

• VC ≡ 0 if C is not a clique;

• VC(σ) depends entirely on values of σ at C, σ(C): if σ1, σ2 ∈ ΛS such that σ1(v) = σ2(v)
for all v ∈ C, then

VC(σ1) = VC(σ2) .

Theorem 11. Gibbs fields are Markov fields.

Assume a positivity condition. Then the following is true.

Theorem 12. Hammersley-Clifford Theorem. Markov fields are Gibbs fields.

Proof (Grimmett, 1973): Let 0 be one of the states in Λ. Denote by
−→
0 the combination

in ΛS with zero states at all sites, i.e.
−→
0 (v) = 0 for any v ∈ S. Also, for any subset B ⊂ S,

let σB ∈ ΛS denote the configuration such that σB ≡ σ on B and σB ≡ 0 on S \ B. Let us
define

VA(σ) =
∑
B⊂A

(−1)|A−B| log
π(
−→
0 )

π(σB)
.

Then, by the Möbius formula (see Brémaude, p.262),

log
π(
−→
0 )

π(σA)
=
∑
B⊂A

VB(σ) .

Thus, taking A = S, obtain the expression for the MRF distribution π:

π(σ) = π(
−→
0 )e−

P
B⊂S VB(σ) .

Now, since π is the distribution of a Markov random field, for any subset B ⊂ S and site
v 6∈ B,

π(σB) = π(σB(v)| σB(S \ v)) · π(σB(S \ v)) = π(σB(v)| σB(Nv)) · π(σB(S \ v))

and

π(σB+v) = π(σB+v(v)| σB+v(S\v)) ·π(σB+v(S\v)) = π(σB+v(v)| σB+v(Nv)) ·π(σB+v(S\v)) ,
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where π(σB+v(S \ v)) = π(σB(S \ v)) as σB+v(S \ v) = σB(S \ v). Thus for any B ⊂ S and
v 6∈ B,

π(σB+v)

π(σB)
=

π(σB+v(v)| σB+v(Nv))

π(σB(v)| σB(Nv))
(3.1)

Now, we need to show that VA ≡ 0 if A is not a clique. Suppose A is not a clique, then there
is a pair of sites u, v ∈ A that are not neighbors. Then

VA(σ) =
∑
B⊂A

(−1)|A−B| log
π(
−→
0 )

π(σB)

=
∑

B⊂A−u−v

(−1)|A−B| log
π(
−→
0 )

π(σB)
+

∑
B⊂A−u−v

(−1)|A−B−u| log
π(
−→
0 )

π(σB+u)

+
∑

B⊂A−u−v

(−1)|A−B−v| log
π(
−→
0 )

π(σB+v)
+

∑
B⊂A−u−v

(−1)|A−B−u−v| log
π(
−→
0 )

π(σB+u+v)

=
∑

B⊂A−u−v

(−1)|A−B| log
π(σB+u)π(σB+v)

π(σB)π(σB+u+v)

=
∑

B⊂A−u−v

(−1)|A−B| log
π(σB+u|σB+u(Nv)) π(σB+v|σB+v(Nv))

π(σB|σB(Nv)) π(σB+u+v|σB+u+v(Nv))
by eq. (3.1) above

= 0

for all σ ∈ ΛS as π(σB+u|σB+u(Nv)) = π(σB|σB(Nv)) and π(σB+u+v|σB+u+v(Nv)) = π(σB+v|σB+v(Nv))
since u 6∈ {v} ∪Nv.

Also, VA was defined so that VA(σ) depends entirely on values of σ at A, σ(A)

�

Example. Markov chain over [0, n] time interval. Gibbs sampler.
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3.2 Ising model and bond percolation.

3.2.1 Spin systems

3.2.2 Phase transition.

3.2.3 Criticality.

3.2.4 Two dimensional bond percolation: pc = 1
2.

3.3 Monte Carlo Markov Chain method, Metropolis

Algorithm and Gibbs sampler.

Bremaud + [N.Madras, “Lecture on Monte Carlo Methods”]
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