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The Perron-Frobenius Theorem says that if A is a nonnegative square matrix some power of
which is positive, ihen there exî sts an .v,, such thai A ".\/\\A "x\\ converges to x,j for all .v > 0,
There are many classical proofs of this theorem, all depending on a connection between
positivily of a matrix and properties of ils eigenvalues. A more modern proof, due to Garrett
Birkhoff. is based on the observation that every linear transfornKition with a positive matrix
may be viewed as a contraction mapping on the nonnegative orthanl. This observation turns
the Perron-Fro ben ills theorem into a special case of the Banach contraction mapping theorem.
Furthermore, it applies equally to linear transformations which are positive in a much more
general sense.

The metric which Birkhoff used to show thai positive linear transformations correspond to
contraction mappings is known as Hilbert's projective metric. The definition of this metric is
ralher complicated. It is therefore natural to try to define another, less complicated metric,
which would also turn positive matrices into contractions. The main result of this paper is that,
essentially, ihis is impossible.

The paper also gives some other results of possible interest in themselves, as well as enough
background to make the presentation self-contained.

1. Introduction. The famous Perron Theorem may be viewed as saying that if A is
a positive linear tranformation on /?'", then there exists an XQ > 0 such that'

for all X > 0, A"x converges in direction to x^, (1.1)

i.e.,

A"x . ^0

The Banach contraction mapping theorem says that \\ A is a contraction on a
complete metric space {X.D\ that is,

A maps X into X (1.2)

and

for some/: < 1, D{Ax.Ay) < A-£>(x. >') for all .v, / e X, (1.3)

then there exists an Xf, G A' such that A "x -^ XQ for all x e X.
It is curious that the condition for (1.1) is positivity but the conclusion is essentially

that of the contraction mapping theorem. Birkhoff (1957) has shown that this is no
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coincidence, and in fact that the Perron Theorem can be considered a special case of
the contraction mapping theorem. Specifically, if a positive linear transformation A is
viewed as a transformation on the set X of rays in the nonnegative orthant of R"\ it
satisfies (1.2). Birkhoff's key observation was that there is a metric D on X such that
all positive linear transformations A also satisfy (1.3). Applying the contraction
mapping theorem then gives the Perron Theorem, since convergence of rays is
convergence in direction. This natural proof circumvents clever but ad hoc arguments
usually used to prove (1.1) by relating positivity to conditions on eigenvalues (e.g.,
Karlin and Taylor (1975)).^ More importantly, Birkhoff's approach simplifies and
unifies several kinds of generalization of Perron's Theorem. First, it provides an
immediate proof of Frobenius's extension from positive matrices to nonnegative
matrices some power of which is positive, because the contraction mapping theorem
extends trivially to mappings some power of which is a contraction. Second, for a
sequence of different positive linear transformations A,, with contraction constants /c,,
in (1.3), it allows us to conclude that nr^^^^ ^"^ nr^^^.y t)ecome close in direction for
all x,y>Oif H'^k^ = 0.^ Third, Birkhoff's approach is geometric and applies to linear
transformations in an arbitrary linear space which map a quite general convex cone K
into itself. Thus it allows a reinterpretation of the Perron-Frobenius theory in which
x^O means x ^ K and A nonnegative means .4 Â  C K.

The metric used by Birkhoff was invented by Hilbert for different purposes in
non-Euclidean geometry. In the case of R'^ Hilbert's metric is

max,(x,/v:)
^( ) l 7 '7' •- ( 1 . 4 )

where x, denotes the ith coordinate of x. We can view d{x,y) as a metric on rays
because diXx, (ly) = d(x, y) for X, p.> 0.

The formula for Hilbert's metric is surprisingly complicated. One wonders whether
there might be a "simpler" metric which could be used to carry out Birkhoff's
program. The answer turns out to be "No." Our main result shows that Hilbert's is
essentially the only metric that will serve the purpose.

The paper is organized as follows. §2 indicates how Hilbert's metric arises from the
problem, in R + . §3 gives the general definition and some basic properties of Hilbert's
metric. §4 presents our main result for positive linear transformations in finite-
dimensional spaces. Infinite-dimensional spaces and more general nonnegative trans-
formations are considered in §5. §6 explains in more detail how theorems of the
Perron-Frobenius type can be derived using Hilbert's metric and the contraction
mapping theorem.

2. Discovering Hilbert's metric in /?"'• This section is motivational and may be
skipped, Tts purpose is to indicate how one might discover Hilbert's metric when
looking for a metric on rays which contracts under positive linear transformations. To
simplify the exposition, we consider instead the related problem of finding a metric
which contracts weakly under nonnegative linear transformations. Also, we restrict
attention to /?"'. Accordingly, we first seek a function D on /?+ X R'^ such that

D(Ax,Ay) < D{x,y) for all JC, / > 0 and alM > 0. (2.1)

llial fixed-point arguments (e.g.. Debrcu and Hersteiii, 1953) yield only the exislence of a posilive
eigenvector .v ,̂ not convergence in direction to x^, as at (1.1), For the latter, one still needs to show how
positivity implies that the eigenvalue associated with XQ dominates all ochcr eigenvalues,

•'Theorems of this type are called '"weak ergodic" theorems. The usual proofs by eigenvalue techniques are
often very ditficult (e.g., Furstenberg and Kesten (I960)).
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Since we want D{x, y) to depend only on the rays through x and7, D must also satisfy

D{Xx, iiy)= D{x,y) for all A, (i > 0 atid all ;c, j ^ > 0. (2.2)

In view of these conditions, we start by asking whether, given two pairs of points
X, y and x', y' in R'^, there is a nonnegative linear transformation A such that Ax = x'
and Ay = ay' for some a > 0. Of course, for any particular a, the requirements
Ax = x' and Ay = ay' determine A on Sp{x,y), the two-dimensional subspace
spanned by x and y. The restriction to Sp{x, ^} of the nonnegativity requirement
Ax^Ois

A{x-\y) = x'-Xay'^O whenever x-Xy^O; (2.3)

A(Xy - x) = Xay' ~ x' ^0 whenever \y - x^O. (2.4)

This is the same as requiring that ma < m' and Ma > M', where

m = m{x,y) = sup{A > 0 : A* - A_>' ^ 0} = m\n,{x-/y-], (2.5)

M = M{x,y) = inf{A > 0 l A / - x ^ O } = max.jx.//.}, (2.6)

m'= m{x\ y'), and M'=M{x\y'). In other words, a must satisfy M'/ M <, a
< m'/m. The choice of such an a is possible'* if and only if M'/m' < MJm. We will
shortly prove (Lemma 2.12) that a nonnegative linear transformation on Spjx, /} can
always be extended to a nonnegative linear transformation on all of R'". It follows that

THEOREM 2.7. Gi^en x,y,x',y' > 0, there exists a nonnegative linear transformation
A such that Ax = x' and Ay = ay' for some a > 0 if and only if c{x', y') < c(x, y),
where

M{x,y) max{Vy,)

'^^^'•^' m{x,y)

THEOREM 2.9. D satisfies (2.1) and (2.2) if and only if D is a monotone nondecreas-
ing function of c.

PROOE. If D satisfies (2.1) and (2.2), then by Theorem 2.7,

e(x',y'){ I }c{x,y) implies D{x',y'){ | ]D(x,y). (2.10)

It follows that /) is a monotonic function of c. Conversely, any monotonic function of
c obviously satisfies (2.1) and (2.2) if c itself does. But for c, by straightforward
application of the definitions (2.5), (2.6), and (2.8), we have, first, if -̂  > 0, then
M{Ax.Ay) < M{x, y) and m(Ax,Ay) > m(x, y) whence c{Ax,Ay) < c{x, y). Second,

m(Kx, liy) = — m(x,y) and M(Xx, jiy) = — M(x,y),

whence c(\x, ixy) = c{x, y). I
The question remaining is what functions of c are metrics on rays in R'^. It is easy

to verify (see also §3) that c is symmetric, that c{x,y) < c{x,z)c(z, y) for all x,y,z
> 0, and that c(x, y) > I with equality if and only if x and y lie on the same ray. Thus,
if we set

max,, {x,/_>',)
d{x, y) = \ozc(x, y) = \og^^-—y-— , (2.11)

""The cases m = 0 and M = ao can be handled by special conventions (Kohlberg and Prall (1979)) but wili
be ignored since our purpose here is motivalional.
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we obtain a function that satisfies all the requirements of a metric except that
dix, ^) = 0 if and only if x = Xy for some A > 0 (not, as usual, if and only if x = / ) .
The function d is called Hilbert's projective metric on R"^.

In developing Theorem 2.7 we used

LEMMA 2.12. Let E be a two-dimensional subspace of R"" and let A : E-> R"' be a
linear transformation such that Ax > 0 whenever x G £ and x > 0. Then there exists a
nonnegative linear transformation A, defined on all of R'". such that A = A on E.

PROOF. Consider the intersection of E with R^. This is a two-dimensional cone.
Let a and b lie on the two sides of this cone. Each must satisfy a boundary constraint
not satisfied by the other; that is, for some indices / and y, a-, > 0, b- = 0, and a = 0,
bj > 0. If we let

• • A A ^Ab

then Aa = Aa and Ab = Ab; hence A = A on E. Also note that, if x > 0, then Ax is a
nonnegative linear combination of Aa and Ab, and therefore Ax > 0. Thus, A is
nonnegative. I

3. Definition and properties of Hilbert's metric. In this section we describe Hil-
bert's metric and its properties. Much of the development follows Bushell (1973) and
Birkhoff (1967) but we have removed some unnecessary conditions. In addition, we
give some new results (e.g.. Theorem 3.17).

Let K he a convex cone in a real vector space X. That is, if x, ^ G Â  and X, {x are
nonnegative real numbers, then Xx + fiy G K. Define the ordering induced by K in the
usual way: / ^ x if and only if / - x e A" and y > x if and only if / - x G A: but

y - x^O. Clearly, K = {x G X :x^0).
We will restrict attention to cones satisfying the following conditions:

. . K n -K= {0}, (3.1)

and

the intersection of K with every straight line is closed. (3.2)

Cones satisfying (3.1) are ca.\\ed pointed. In finite-dimensional spaces, cones satisfying
(3.2) are closed.

Conditions (3.1) and (3.2) may easily be rephrased as conditions on the ordering
induced by K.

X g 0 and x ̂  0 imply x = 0. (3.1')

. x>0 and Ax -I-v > 0 for all A > 0 imply >' > 0. (3.2')

Condition (3.2') is usually referred to as the Archimedian axiom.
A function D : K X K^ R U {co} is a projective metric on K if, for all x,y,z^ 0,

Dix,y)=D{y,x). (3.3)

Dix,y)^ Dix,z) + Diz,y), • (3.4)

D{x,y)>0, . (3.5)

Dix, y) = 0 if and only if x=Xy for some A > 0. (3.6)

It follows easily that Dix, y) is constant on rays, that is,

D{Xx,iiy)=D{x,y) for A, |ii > 0. .- (3.7)
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We now define Hilbert's {projective) metric, d, as follows:'̂  <y(0,0) = 0; wheti
x,y>{), d{x, 0) = £/(0, / ) = 00 and

M{x,y)
d{x, y) = log — (3.8)

where

M{x,y) = m\{\ >^:x^\y] and m{x, y) = %\x^[\ >^:x'^\y\. (3.9)

Clearly,

It is straightforward to verify that i/ is a projective tnetric. By (3.10), d{x.,y')
= log[M(x, v)A/(/,x)] and by (3.9), A/ (x ,^)< M{xa)M{z,x'). These prove condi-
tions (3.3) and (3.4). Furthertnore, by (3.2), the intersection of the line \-x-\-\y:
0 < A < GO 1 with K is closed and therefore, if A/ = M{x, j ' ) < oo then My - x g 0.
Also by (3.2). :c - my ^ 0. It follows that

if Â  < 00 then my^x^ My. (3.11)

Hence, by (3.1'), m < M with equality if and only if x = my. This establishes (3.5) and
(3.6).

Note that m = 0 if and only if x - Xy ^ K for al! X> 0. Since ^ is a cone, this is the
same as saying that the line from y to x leaves K at x. Thus we have

d(x, ^) < 00 if and only if x and y are interior to
the intersection of the line through
them with K. (3.12)

The main property of Hilbert's metric in studying convergence in direction is that it
contracts under a wide class of hnear transformations, as explained below. A mapping
A : X —> X IS called nonnegative if Ax^O for all x S 0. If /) is a projective metric, we
define the contraction ratio of A with respect to D as

kD{A) = infjA: :D{Ax,Ay) < kD{x, y) Vx, / > 0}

{ D(Ax,Ay) ]
= sup —̂^ -4^ : £ ) ( x , y ) > 0 , (3.13)

^[ D{x,y) ^ ^ ^ J ^ '
with the conventions (oo/oo) = 1 and oo < koo if and only if /: > 1. If k^iA) < I we
say that ^ is a contraction with respect to D. For Hilbert's metric d, we have

PROPOSITION 3.14. (BIRKHOFF, 1957). A nonnegative linear transformation A is a
contraction with respeet to Hilbert^s metric d if and only if the diameter

A = sup{d{Ax,Ay) :x,y>0]

is finite. More specifically.

dtfiniiion of d depends on the cone K under discussion, bul we suppress ihis in ihe notation.
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X — my

FIGURE I

where
M(Ax,Ay)

; . , ' •.x.y>
m{Ax,Ay)

Geometrically, m, M, and d may be depicted as follows. Replacing x by \x for a
suitable A > 0, if necessary, will insure that the line through x and y leaves K at two
points, a and b, in the two-dimensional subspace spanned by x and y, as shown in
Figure 1. By (3.9), the point x - my is obtained by moving from x in the —y direction
until the nonnegativity constraint is violated. By similar triangles, we see that
m =ax/ay and that M =xb/yb. Thus

M(x, y) 'av'xb
d(x,y) = \og-^-^ = l o g ^ ^ , (3.15)

"• ^ ' '='m{x,y) We yb

i.e., d is the logarithm of what is known in projective geometry as the cross ratio^ of
(a,x, y,b).

An important property of Hilbert's metric which we shall have occasion to use is
that it is additive on straight lines, that is.

LEMMA 3.16. If z is a positive combination of x and y, then d(x, y) = d(x,z) +
d(z,x).

PROOF. By (3.7), it suffices to consider convex combinations, for which, by (3.15),

ax zb az yb j \ ax yb

In passing, we mention that the converse of Lemma 3.16 holds for K strictly convex,
but not for other K. Necessary and sufficient conditions for additivity are given by the
following

THEOREM 3.!7. Let x, y,z > 0. Then d{x, y) = d{x,z) + d{z, y) if and only if both
a(x, y),a{x,z),a{z, y) are coplanar and b(x, y),b(x,z),b{z, y) are coplanar, where for
any x, y > 0, a(x,y), b(x, y) are the boundary rays of the cone Sp{x,^} n K (labelled
so that X is between a and y).

cross ratio of any four points a. x,y, b lying in thai order on a straight line in any linear space is
defined as R{a, x, y, b) =^xb/"axyb, where ay, xb, etc., are distances along this line. More precisely,
R(a.x, y,b) = /,,(! - r,-)/l^{\ — f,,). where x = a •¥ l^{b — a) and^v = a + l^.{b -a). The fundamental prop-
erty of the cross ratio is that it is invariant under projections (distances, and even ratios of distances, are
not), that is, R{a', x\ y\ b') = R(a. x, y, b) whenever a', x', y\ b' are the intersections of a straight line with
the rays through a, x, y, and fe, respectively. One proof of this invariance is (hat Hilbert's metric satisfies
(3.7).
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• \h

FIGURE 2

To illustrate the theorem, consider the intersection of a cone in R^ with an
appropriate plane, as shown in Figure 2. Then (/(x, y) = d{x,z) + d(z,x) if and only if
z lies in the shaded region.

PROOF. The definitions (3.9) of M(x,y) and m(x, y) imply that a(x, y) and
b{x,y) are the rays through x - m(x, y)y and M(x,y)y - x, respectively. Thus if we
choose the vectors x,y,z as the basis of a coordinate system, the condition of the
theorem is simply that both the vectors (1, - m ( x , / ) , 0 ) , (1,0, -m(x ,z ) ) , (0, -m(z, y),
1) and the vectors (-l,yW(x,>'),0), (-l ,O,A/(x,z)), (O,M(z, y),-i) are linearly
dependent. It is easily seen that this is equivalent to m ( x , / ) = m(x,z)m(z,y) and
M(x,y)= M{x,z)M{z,y), and that this in turn is equivalent to d(x,y)= d(x,z) +
d(z,y). I

REMARK 3.18. Note that the conditions on AT assumed in defining Hilbert's metric.
(3.1) and (3.2), do not require either a topology on X or that K have a nonempty radial
kernel.'' In fact, a necessary and sufficient condition on K for the d defined by (3.8) to
be a projective metric is that K contain no lines, i.e., for all x, / > 0, the boundary rays
of Sptx,; '} n K make an angle less than 180°. (If the angle is 180°, m(x,y) = M{x,
y) and d{x, / ) = 0 even though x a n d / lie on different rays.)

4. The main theorem. We now give our main result in finite-ditnensional space,
indicating later how it can be generalized. In stating this result, we use the following
natural definition of positivity in finite-dimensional space: x > 0 if x is in the relative
interior of the nonnegative cone K and a tnapping A is positive if ^ x > 0 for all x > 0.

THEOREM 4.1. Let > be the ordering induced by a closed pointed cone K in R"" and
let d be Hilhert\s metric on K. Then every positive linear transformation is a contraction
with respect to d. Conversely, if D is a projective metric on K such that every positive
linear transformation is a contraction with respect to D, then there exists a continuous
strictly increasing function f: R ̂  ^ R ^ such that D{x, y) = f(d(x, y)) for all x, y > 0.
Furthermore, the contraction ratios satisfy k^(A) < kp(A) for all positive A.

' A point z e Â  is in the radial kernel if, for every x £ A", 3^ > 0 such that z + ex ^ K. The assumption
that such a point z exists would rule out many interesting examples, such as the cone of nonnegative
functions in an f space (1 < p < ao) and the cone of nonnegative functions in the space of Lebesguc
measurable functions.
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PROOF. If A is positive, then by (3.12), diAx,Ay) < oo for all x,y >0, and hence
by a simple compactness argument, s\ip{diAx,Ay): x, y > 0} < co. It follows, by
Proposition 3.14, that -4 is a contraction with respect to d.

We give the proof of the rest of the theorem in the form of a series of lemmas.
Whenever D is mentioned, it is assumed to be a projective metric that contracts under
positive linear transformations.

LEMMA 4.2. / / x\ y' >0 and dix', y') < d{x, y), then there exists a positive linear
transformation A such that Ax = x' and Ay = ay' for some a > 0.

PROOF. Let M = M(x, y), m = mix, y), M' = Mix', y'), and m' = mix', y') be as

defined in (3.9). Since dix',y') < dix, y) we may assume, replacing ay' by y' for a
suitable a > 0, that

M' < M and m' > m. • (4.3)

Define a linear transformation A on Sp(x,^} by Ax=x', Ay=y'. The points
u = M'y — X and v = x — m'y, which [by (4.3)] lie outside K in the x a n d / directions
respectively, are mapped into Au = M'y' — x' and Av = x' - m'y' which lie on the
two boundary rays of Sp{x',y'] n K.

To keep track of the notation the reader may find Figure 3 helpful. In this figure, x
a n d / designate the intersections of the rays through x andy with the line through w
and V and similarly for x',y', Au, and Av.

We can extend the definition of A so as to obtain a positive linear transformation on
all of R"' as follows. A standard separation argument shows that there exist linear
functional g and h such that

giu) < 0 < g{z) and h{v) < 0 < h{z) for all z > 0. (4.4)

Define UQ and t;o as the points on the line segment (M,U) such that ^(MQ) = ^(^o) ~ ^•
Clearly UQ is between u and K and hence on the opposite side of K from v. Therefore
/I(MO) > ^- Also AUQ > 0 since AUQ is a positive combination of Au > 0 and x' > 0.
Similarly g(uo) > ^ and AVQ > 0. _

Define a linear transformation 4̂ on all of /?'" by

Az = (4.5)

Then A is an extension of A since it coincides with A at UQ and v^ and Sp{wo,Oo}
= Sp{x , / } . Furthermore, A is positive since, by (4.4), for every z > 0, Az is a. positive
combination of the positive points AUQ and AVQ. I

negative positive
h h

positive negative

Au AUfif x' y AVQ Av

FIGURE 3

Arrows indicate mapping A. Ratios of distances are preserved. [ , j indicate points where Hnes leave the
cone AT.
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COROLLARY 4.6. / / x', y' > 0 and d(x', y') < d(x, y% then D(x', y') < D(x, v).

PROOF. Define A as in Lemma 4.2. Since A is positive, it is a conlraction with
respect to D. It follows that D{x', v') = D(Ax,Ay)< Dix, y). I

LEMMA 4.7. If x.y > 0, then D(x,x +y/n)^O as n^oo.

PROOF. Let x,, = x+y/n. It follows easily from (3.9) that \\md{x,x,,) = ^). If
/ = limsupZ)(x,.v^) > 0. let/) be a positive linear transformation that maps x 'dndy to
different rays. Then, for every N, d{Ax,Ax^.) > 0 = lim^(.x:,.;c,,). Therefore, by Corol-
lary 4.6. DiAx.Ax^) > limsup/)(.v,;t,,) = /, whence

DiAx,Ax^) ,
lim sup > i- =

D{x,x,,) I

This contradicts the assumption that every positive linear transformation is a contrac-
tion with respect to D. i

LEMMA 4.8. / / x, y, x', y' >0 and d(x, y) = d(x', y'), then D{x, y) = D(x'. y').

P R O O F . S i n c e dix + y / n , y ) < d(x,y)= d ( x ' , y ' ) . w e h a v e b y C o r o l l a r y 4 . 6
Dix + y/n,y)< D(x',y'). It follows that D{x, y) < D{x,x + y/n)-h Dix', y').
Therefore D(x. y) < D(x'. /) by Lemma 4.7. i

LEMMA 4.9. D{x, y) = f(d{x, y)) for all x, y > 0, where f: R^ ^ R^, f(0) = 0, and
f is strictly increasing, continuous, and subadditive, that is.

f{s+t) < f(s)+f{t) forallsj>0. (4.10)

PROOF. The existence and strict monotonicity of 7 follow from Corollary 4.6 and
Lemma 4.8, while /(O) ^ 0 because both D and d vanish when x = >>. To prove the
subadditivity, let x, y, z >0 lie on a straight line and satisfy d(x,z)= s and d(z, y)
= t. By Lemma 3.16, dix,y)= s+ t. It follows that/(^ + t) = D{x. y) < D{x.z) +
^i^^y) = fis)+ fit)- Continuity at 0 follows from Lemma 4.7. Continuity elsewhere
then follows from subadditivity and monotonicity by

/ ( • ^ ) - / ( t ) < / ( ^ ^ - t ) < / ( . 0 < / ( ^ + e ) < / ( 5 ) + / ( e ) fo re>0 . I

The following lemma says that for Hilbert's metric, the small distances dix, y) are
those which contract least.

LEMMA 4.11. For all ^ > 0 and all positive A.

( d{Ax,Ay)
k^{A) = sup I —J——-- : x,y>0 and 0 < d(x. y) < e

PROOF. The case d(x,y) =co can be ignored because d(Ax,Ay)< ao for A
positive. A simple continuity argument shows that adding the condition x. y > 0 has
no effect on the supremum in the definition (3.13) of k^j(A). To show that adding the
condition d(x, y) < c also has no effect, let z lie on the line segment between x and y.
Since Hilbert's metric i.s additive on straight lines, d(x, y) = d{x.z) + d(z, y). Thus

d{Ax,Ay) d(Ax,Az) + d{Az,Ay)

d{x,y) d(x.z) + d{z,y)

d{Ax,Az) d(Az,Ay)
< max

d(x.z) ' d{z,y)

Since 2 can be chosen so tha to ! (x ,2 )= d{z,y)= \d{x,y)< co, the lemma follows.



CONTRACTION MAPPING APPROACIT TO PERRON-FROBENIUS THEORY 207

Since D = f{d) as in Lemma 4.9, Lemma 4.11 implies that, for positive A,

f(d(Ax,Ay))
~ 7 ^ •^^y>^ ^"^ d{x,y)>0

f{kAA)t) :• V,,
> l i n i . s u p - ^ - - ^ . . . (4.12)

kp(A) > kJA) now follows from

LEMMA 4.13. ff f is a positive, nondecreasing, subadditive function on (0, oo), then
\ims\ip,^Q^(f(kt)/f{t)) > k for all k < 1.

PROOF. If not, then 35 > 0, /i < A; < 1 such that f{kt) < hf(t) for all / < 5. Let
0 < / < 5. For some integer m, k'"8 < / < k'"~^8. By our assumption and the mono-
tonicity of/

As /-^O, m ^ 00 so that lim sup,_̂ (,_̂  (/(/)//) = 0.
Let 5 > 0. Since/ is positive and subadditive,

0<f(s) < nf(^] = s " for all «.
. ^ \ n / s/n

Hence

a contradiction.

/(O
s • lim sup ^ - ^ = 0,

5. Extensions of the main theorem. In infinite-dimensional space, defining x > 0
to mean x E relintAT may make no sense because relintA^ may be empty. Even when
relintX is not empty, the naive generalization of the Perron-Frobenius theorem, in
which A >0 is interpreted as ^x > 0 whenever x > 0, is not true. Thus we cannot
usefully generalize the definition of ^ > 0 to infinite-dimensional spaces by consider-
ing the images of single points. The condition that Ax and Ay belong to the relative
interior of Sp{Ax,Ay} H K whenever x, ^ > 0, which holds for ^ > 0 in R"", can be
used in infinite-dimensional spaces as well, however. It is equivalent, by (3.12), to
d{Ax,Ay) < 00 for all x, y > 0. To obtain the contraction property, we need this
uniformly. Accordingly, we define A to be d-positive if ^ > 0 and sup{d{Ax,Ay):
x,y > 0) < cc. The following analogue of Theorem 4.1 implies that there is no
projective metric which contracts for more linear transformations than d.

THEOREM 5.1. In an arbitrary real vector space X, let > be the ordering induced by
a cone K satisfying:

(5.2) K is clo.'ied in some locally convex topology on X;
(5.3) there exists a linear functional w such that w{x) > 0 for all x > 0.
Let d be Hilbert's metric on K. Then every d-positive linear transformation is a

contraction with respeet to d. Conversely, if D is a projective metric on K sueh that every
d-positive linear transformation is a contraetion with respect to D, then there exists a
continuous, strictly increasing function f:R_^.->R^ sueh that D{x, y) = f(d(x, y)) when-
ever d(x,y) < 00. Furthermore, the contraction ratios satisfy k^(A) < k/^(A) for all
nonnegative A.
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We remark that (5.3) is equivalent to the existence of a hyperplane intersecting every
ray of K in exactly one point.^ We also note that, if relint K is not empty, then (5.2)
reduces to (3.2) (Kelley and Namioka, (1963, 5H)), and that, if X is normed and
separable, then (5.3) reduces to pointedness of K (Klee, (1955)). Indeed, (5.2) and (5.3)
hold for most of the interesting cones which satisfy (3.1) and (3.2).^

PROOF. The direct part is now merely a restatement of Proposition 3.14. The proof
of the converse part of Theorem 4.1 remains correct when positive is replaced by
(^-positive and x , ^ > 0 by d{x,y) < oo, but needs the following amplifications.

To establish (4.4), let <p he a linear functional such that <|>(«) < 0 < <f>(2) for all
z > 0.'" Let w be as in (5.3) and lei g = 4> + Xw where A > 0 is small. Then g{u) < 0
< g{z) for all z G K. Define k similarly.

To show that the linear transformation A defined by (4.5) iŝ  t^-positjve we observe
that d{AUf,,AvQ) < oo (see Figure 3) and, for every z, z' > 0, Az and Az' are positive
linear combinations of AUQ and AVQ. Hence d{Az,Az') < d(AuQ,AvQ) < oo.

This proves all of Theorem 5.1 except that it proves k^/lA) < kp{A) only for
(^-positive A. To extend the proof to nonnegative A, we need to replace Lemma 4.11 by

LEMMA 5.4. For all €.> 0 and all nonnegative A,

PROOF. The proof is the same as that of Lemma 4.11 except that the case
d{x, y) = 00 can no longer be ignored because d(Ax,Ay) might also be infinite. Using
(3.15), however, one can easily see that \{d{x,y)= d{AxMy)= oo, then

_ nx + y ^^^ _ ny -\- X

satisfy

d(x„,y„)<oo and ,, ^ ^ 1 = —
^ -^ ' dixy) COCO

To clarify Theorem 5.1, we note that in R"', ^/-positive is a weaker condition than
positive. Specifically, a linear transformation mapping the nonnegative cone into the
relative interior of one of its faces is ^/-positive but not positive. Theorem 5.1 therefore
does not specialize to Theorem 4.1 when X = R'".

Note also that Theorem 5.1 does not say that all transformations for which
convergence in direction (1.1) occurs are contractions with respect to Hilbert's metric,
nor does it preclude transformations which are contractions with respect to some

''When such a hyperpkne exists, or altertialively, when the space is normed. il is natural to normalize tlie
nonnegative vectors lo the hyperplane or the unit ball. It is then possible to discuss ordinary metrics on the
normaiized vectors instead of projective metrics. We did not adopt this approach in §3 because there are
interesting cones for which neither normalization is possible.

^For instance, for the first example mentioned in footnote 7. the cone of nonnegative fiinclions in an L''
space (\ < p < 00), condition (5.2) is obvious, and (5.3) holds with w{x) = j.xy where v is any positive
function in L'' ( ! / / ' + ' / ^ = ')• f̂ or ^^^ second example, however, the cone of nonnegative measurable
functions, neither (5.2) nor (5.3) holds. This follows from the fact that there exists no nonnegative functional
on this cone (Keiley and Namioka (1963, 1811)) and the separation theorem in footnote 10.

'"if K is a. closed convex cone in a locally convex space and u ^ K then there exists a linear functional <f>
such that 4>(x) > 0 for A\\ x ^ K and <(>(u) < 0. This is a standard application of the separating hyperplane
theorem.
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metric but not Hilbert's. For example, if K = Rl and

then A "x converges in direction to (^ for all x > 0. However, A carries the unit vectors
into points between which the Hilbert distance Is infinite. Hence, by Proposition 3.14,
A is not a contraction with respect to Hilbert's metric. On the other hand, ^ is a
contraction on /?^ with respect to the metric ^ (J f . / ) = 2 , ] - ^ / - / ; ! where Jc,-
= J^,/Sy^/- It is well known, in fact, that D contracts under all nonnegative matrices
having at least one row in which all entries are positive. (Such matrices are called
Markov matrices.) Thus, D can give us many convergence theorems which Hilbert's
metric cannot. Theorem 5.1 implies, however, that D cannot cover all situations
covered by Hilbert's metric.

6. Remarks on Birkhoffs program. We now discuss in more detail how conver-
gence in direction of A "x can be proved using Hilbert's metric. We consider only
normal cones in normed linear spaces. (A cone K is called normal if i e > 0 such that
\\x + y\\ > € whenever x , / G K and \\x\\ = \\y\\ = 1. In R'", a closed cone is normal if
and only if it is pointed.) On such cones it is easily verified that Hilbert's metric is
complete and that convergence in Hilbert's metric is the same as convergence in
direction (e.g., Kohlberg and Neyman, 1979). By Proposition 3.14 therefore

THEOREM 6.1. Let > be the ordering on a normed linear space induced by a closed
normal cone K and let d be Hilbert's metric on K. If A is a nonnegative linear
transformation and d(Ax,Ay) is bounded for x, y S K, then 3XQ > 0 such that

. A"x/\\A"x\\^Xo forallx>0.

For many purposes, it is useful to have a method of calculating the diameter
A = s\xp{d(Ax,Ay):x,y e Â ) in Proposition 3.14. In a finite dimensional situation, A
is obtained by maximizing d(Ax,Ay) when x and y range over the extreme rays of K.
This follows from

LEMMA 6.2. d(x, y) is quasi-convex in each of its arguments.

PROOF. By (3.11), (m(x, y) + m(z, y))y < x + z < (M(x, y) + Miz, y))y (when
the right-hand side is finite). Hence,

= d(x + z, y) < log

<logmax

m{x,y) + m(z,y)

M{x,y) M(z,y)
m(x,y)

M(z,y) ]
,—7 } =ma\{d(x,y),d(z,y)].

m(z, y) I i v ' y . / ' ». ' ^ M

In particular, when K = y?"', we have A = ma.Xjjdia^,aj), where a, is the image of the
/th unit vector, that is, the /th column of the matrix of A. so by Proposition 3.14

where I = max . (6.3)
+

For a sequence of positive matrices A,,, it follows that the condition YlT'k„ - 0
mentioned in the introduction holds if all elements of all ̂ 4,, lie between two positive
numbers (e.g., Golubitsky, Keeler, and Rothschild, 1975), or more generally if ST'^n
= CO where r,, is the ratio of the minimum to the maximum element of A„.
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