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Inference in Binary Pair-wise Markov Random
Fields through Self-Avoiding Walks

Kyomin Jung and Devavrat Shah

Abstract

In a recent result, Weitz [31] established equivalence betwthe marginal distribution of a node, sayin any
binary pair-wise Markov Random Field (MRF), s&¥ with the marginal distribution of the root node in the self-
avoid walk tree of the> starting atv. In this paper, we exploit this remarkable connection tawbinsights in the
performance of the widely popular Belief Propagation h&igifor computing marginal distribution (sum-product)
and max-marginal distribution (max-product).

We obtain a tight characterization of the size of self-avmdwvalk tree for any connected graph as a function
of number of edges. This may be of interest in its own right.

. INTRODUCTION

Markov Random Fields (MRFs) [21] have been extremely usefahodeling across various disciplines. A pair-
wise MRF is ann-vector of random variableX = {X;, X»,..., X,,} whose dependency structure is described
by a graphG = (V, E) with verticesV = {1,...,n} and edge seE. Here vertex; € V' corresponds to random
variable X;. Let eachX; € . Then the joint distribution ofX’ = (X3,..., X,,) is given by

PX =a] o [[eulx) [ i), 1)

eV (i,5)€E

for x € X" Here¢; : ¥ — RT 2 {r € R:z >0}, andy;; : £ — RT are some non-negative (real-valued)
functions. We will use notation thap;;(a,b) = (b, a). For the distribution ofX to be well-defined, it should
be the case tha];cy ¢i(zi) [1; jyep Vij(zi ;) # 0 for at least oner € ¥". In this setting, the followings are
two questions of interest:

1. Compute a Maximum a-posteriori (MAP) assignment where

x* = arg mmax PX = o].

2. Compute marginal distributions of variables, i.e.
P[X, = 0y); foro, € ¥ andv e V.

Computing MAP is equivalent to computing a minimal energgigisment (or ground state) where ener§yr),
of statex € >" is defined as

E(x)=— Zlog ¢i(z;) — Z log 1i;(x, x ;) + Constant.
% (i,5)EE
Similarly, algorithm for computing marginal distributiaran lead to (with self-reduction technique cf. [7]) compu-
tation of log-partition function defined as

log Z = log Z H¢z(xz) H Vij (i, ;)

zeX" i€V (i,4)eE

The question of finding MAP (or ground state) comes up in mamyartant application areas such as coding theory
[4], [18], [22], discrete optimization [11], [25], image deising [6]. Similarly, computing marginal distributiors a
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well as log-partition function have varied applicationslirding counting combinatorial objects as well as loss-
probability in computer networks (see for example, [9])idtwell known that the problem of finding MAP in
general is NP-hard and hard to approximate even within eons$actor (for example, see implication of results in
[15]). Hence, it is important to identify useful heuristitd MAP and marginal probability computation. It is also
important to identify graph structures that yield simplgaalthms for these problems, since in many cases (such
as codes) a designer can opt for simple structures (such BELdddes).

A. Previous Work

The above goals have motivated a lot of interesting resemeaiss communities. Here we discuss a few notable
results that are most relevant to our work.

Most work has focussed on the design of simple, efficientisges for finding MAP and marginal distributions.
The most prominent attempts have been simulated annedld]g raph cuts (see for example, [3]), generalized
belief propagation (BP) [32] and tree-reweighted algonitiTRW) [26]. Among these the MP, BP and TRW
have received a lot of recent interest. The MP algorithm seesally distributed iterative implementation of
dynamic programming on a graph assuming it to have treetateicSimilarly, BP is exact for trees and provides
an approximation for other graphs. Their success in mangtiped situations have fueled a lot of interest in
understanding when these algorithms work (convergencecamnrdctness), the error they induce when they do not
work and whether there are natural corrections to improeé herformance.

As a first step towards understanding these algorithmsareisers have found characterizations of their fixed
points [12], [13], [27]-[30], [32]. However, this does nabpide explicit error bounds. While general set of suffitien
conditions for convergence have been derived [24], in géneiith exception of few cases (e.g. [1], [2], [5], [8].
[16], [17], [20], [23]) the convergence and correctnessppraes of these algorithms are not well understood.

It is well understood that if MRF graph structure is localled-like and there is some form abrrelation
decay then algorithms MP and BP find almost correct estimatesli@gaqon of [24]). However, cycles or loops
become a big issue. To improve upon this status one of the imesesting approach was presented by Wainwright,
Jaakkola and Willsky [26], [27] in terms of a tree re-weighta@lgorithm. Intuitively, this algorithm attempts to
run MP or BP on multiple trees of a given graph simultaneowsgty the hope that the algorithm will converge
to a good approximation. This is supported by an insight tase the linear programming relaxation of the
energy minimization problem by using the spanning treeshiefNMIRF graph for the MAP problem (similar is true
for computation of log partition function). Thus, if the alithm solved this linear program exactly then it will
provide a maximum lower bound on minimum energy based onsiésific relaxation. They established that the
fixed point of the algorithm is an exact MAP solution if the plem satisfies certaitree agreementonditions.
Recently, Kolmogorov [12] proposed a modification of thigalthm and established that under a certain weaker
form of tree agreementonditions it achieves “local” maxima of the desired loweauhbd. Finally, Kolmogorov
and Wainwright [13] improved the guarantees for the gooslidsfixed point of this algorithm by showing that
for any pair-wise binary MRF the algorithm fixed point is a lghd maxima for linear programming relaxation
under wealtree agreementonditions. The question of sufficient conditions for TRWidadts variant) to converge
remains unresolved. All the above tree re-weighted algorit have provided better answers compared to MP for
represenstative experimental results that are presenotlttovely in the above papers.

B. Relevant Previous Work

The starting point of this paper is a recent result by Weit] fbat establishes the following non-intuitive and
remarkable connection: the marginal distribution for ange, say in MRF G, is equal to the marginal distribution
of v in the MRF induced on the self-avoiding walk tree obtained-ostarting fromw. We recall the formal statement
of this result later in the paper. The important insight hisrthe possibility of computing the marginal of a node in
G by means of constructing self-avoiding walk tree. As we Iste, this self-avoiding walk tree, by definition is a
sub-tree of the breadth-first search tree and this fact leatimessage-passing” implementation of the algorithm.

C. Contribution

The result of Weitz [31] about the surprising equality betwemarginal distribution of node in MRF G and
that in self-avoiding walk tree carries over in the contextmax-marginal for computing MAP as well. Essentially,



this is due to the fact that the summation and product omersittommute in the same way as the maximum and
product.

In this paper, our aim is to build upon these results to makate@mpt at answering the following questions: (1)
When the MRFG has loops, is it possible to identify precise error (pogshdrd to compute) in the computation
of BP (and MP) in terms of the structure of MRF ? Does this mevsome simple error bounds ? (2) In case of
error, are there possibly simple corrections for BP and Mipresence ofew cycles ? If so, how much do they
cost in terms of operations ? (3) More generally, is it pdssib come up withbetterheuristics compared to TRW
for graphs with many loops.

12 E

Tsaw(G,1) Tcomp(G,1)

Fig. 1. A graphG of 4 nodes with one loop is given. On left, we have the self-avgjdvalk tree ofG for nodel, i.e. Tsaw (G, 1) with
green and red being special nodes. On right, we have congutaeeZcoar p(G,1) for node1's computation under Belief Propagation
(or Max-Product) algorithm. The grey nodes Bfoarp(G, 1) correspond to green and red nodeTafaw (G, 1) on the left.

In what follows, we provide an example in which we identifyagrin BP (or MP) building upon result of [31].
The precise formal statements will follow later in the pag&onsider a pair-wise MRE of 4 nodes as shown in
the Figure 1. Thisz has one loop. Now consider nodeof GG. The self-avoiding walk treé’s 411y of nodel (with
corresponding MRF) is shown on the bottom left while the catapon treeTcoyp (for MP and BP) of node
1 is shown on bottom right. The self-avoiding walk tree is esisdly the breadth-first search walk ¢f starting
from 1 while avoiding excursion in a direction beyond cycle contiple



The important thing to notice is thdils 41y can be obtained by chopping dft-oa/p at the two leaf nodes (grey
leaf nodes) which are replica of nodeas shown in the figure. ThEs 41 fixes the values of these special nodes
as follows: green node to value(i.e. modify ¢ for this node so tha®(0) = 0, ¢(1) = 1) and red node to value
(i.e. modify ¢ for this node so that(0) = 1, ¢(1) = 0) respectively. (More precise definition of green node and
red node is given in Definition 1.) In contrast, frorp We will have messagesoming from bottom trees to
these grey nodes when BP is executed on the original MREhus modifying their node potentials).

Weitz’s result implies that marginal probability of noden G is exactly the same as that of the root node of
Tsaw (Theorem 1). Direct adaptation of Theorem 1 for max-maigimplies that the max-marginal of nodein
G is exactly the same as max-marginal of root nod€iny, (Theorem 3).

The following are important implications of these result@}) If we run BP (resp. MP) offs 4 then at the
root of Ts4w it will converge to the correct marginal (resp. max-mard)iref node 1 in G. Thus, BP or MP
algorithm can be corrected by setting messagesado 1 at grey nodes (corresponding to green or red nodes) in a
deterministic manner (see algorithr@81P andCBP in Sections IlI-A and IV-A). In our example, the original
BP can becorrectedin the following simple manner: node should always send message to n@das if it has
(1) =1,¢(0) = 0 and always send message to nadas if it has¢(1) = 0,¢(0) = 1; everything else should be
the same as original BP. (b) To evaluate complexity of thégerithms, we need to evaluate size of the self-avoiding
walk tree for a given graph. While study of self-avoiding k&have been of great interest (see book by Madras and
Slade [19]), to the best of our knowledge, we have not seeracteization of size of self-avoiding walk tree for
arbitrary connected graph. We show that the size of selidawp walk tree for connected graph with+ k& edges
is essentiallyn2* (Theorem 5). (c) The algorithms for exact computation radlyigive rise to simple, distributed
heuristic that allow for many corrections in MP and BP. Thase described in Sections IlI-C and IV-C. The
experimental results validate the excellent performarfceuo heuristic algorithm based cBMP as explained in
Section V. It outperforms the known Tree re-weighted altponi on many of the interesting setup. These heuristics
provide a single tunable parameter that allows for tradifigcomputation power with accuracy in answers. (d)
Finally, connection between computation tree of BP andaadiding walk tree allow for identification of error in
the BP heuristic in terms of structural property @f For example, in the Figure 1 is essentially due to the effect
of messages coming to grey nodesefo,p onto the marginal probability (resp. max-marginal) of roBased
on this, conditions for correctness and error bound for B lwa obtained (Section IV-D).

[I. EQUIVALENCE: MRF AND SELF-AVOIDING WALK TREE
In this section, we describe the equality relation betwéenmarginal probability or max-marginal of a node

in MRF G and the marginal probability or max-marginal of root nodesétf-avoiding walk tree MRF obtained for
vin G.

A. Preliminaries

We are interested in pair-wise binary MRF given by graph afodesG = (V, E') with given edge-compatibility
functions ¢, (+, ), (u,v) € E and node-potential®,(-),v € V. Let Pg(-) denote the probability distribution
induced by this MRF on boolean culd®,1}™ as per pair-wise Markvoian relation given by (1). We will be
primarily interested in the following two values: for eacbdev € V,
(1) The marginal distribution of, i.e.

p(l)= > Pglo), andp,(0)= > Pglo).
oef{0,1}:0,=1 0e{0,1}":0,=0

(2) The max-marginal for node or equivalently

(1) = P andp;(0) = P :
Pu(1) UE{OT?}%‘):(UvZI al@), ru(0) UG{OI,?}E}"}:(U,J:O a(o)

Definition 1 (Self-Avoiding Walk TreeXConsider graphG = (V, E) of pair-wise binary MRF. Fow € V, we
define the self avoiding walk treéBs 417 (G, v) as follows. First, for eacl € V, give an ordering of its neighbors
N (u). This ordering can be arbitrary but remains fixed forevere®ithis, Tsaw (G, v) is constructed by the
breadth first search of nodes 6f starting fromv without backtracking. Then stop the bread-first searchgabon



direction when an already visited vertex is encounteredli(itiude it in7s 41 (G, v) as a leaf). Say one such leaf
be w of Tsaw (G,v) and let it be a copy of a node in G. We call such a leaf node &fs 4w (G, v) asMarked

A marked leaf node is assigned colBedor Greenaccording to the following condition: The leaf is marked
since we encountered node of GG twice along our bread-first search excursion. Let the (thecpath between
these two encounters af in G be given by(w, vy, ..., vk, w). Naturally, vy, v, € N(w) in G. We mark the leaf
nodew asGreenif according to the ordering done by nodein G of its neighbors, ifv; is given smaller number
than that ofv,. Else, we mark it aRed Let V,, andE, denote the set of nodes and vertices of tfeay (G, v).
With little abuse of notation, we will call root df's 4 (G, v) aswv.

Given aTsaw (G, v) for a nodev € V in G, an MRF is naturally induced on it as follows: all edges ifther
the pair-wise compatibility function (i.ep..(-,-)) and all nodes inherit node-potentials (i(-)) from those of
MRF G in a natural manner. The only distinction is the modificatairthe node-potential omarkedleaf nodes
of Tsaw (G, v) as follows. A marked leaf node, say of Tsaw (G, v) modifies its potentials as follows: if it is
Greenthan it setsp,; (1) = ¢, (1), ¢ (0) = 0 but if it is Redleaf node then it set®;(0) = ¢.,(0), ¢ (1) = 0.

Example 1 (Self-avoiding walk treeonsider4 node binary pair-wise MRFE7 in Figure 1. Let nodel gives
numbera to node2, numberb to node3 so thata > b. Given this numbering, the bottom left of Figure 1 represent
Tsaw (G, 1). The Green leaf node essentially means that we set its vaitmgmently tol.

With above description7s 4 (G, v) gives rise to a pair-wise binary MRF. Léb; , denote the probability
distribution induced by this MRF on boolean cuf 1}/V+I. Our interest will be primarily in two values:

(1) The marginal distribution of roat, i.e.

QU(l) = Z QG,U(J)> and QU(O) = Z QG,U(U)'

ce{0,1}IVvlig,=1 ce{0,1}Vvl:o,=0

(2) The max-marginal for root or equivalently

q,(1) = max Qg (o), andg,(0) = max Q¢ (o).

ce{0,1}IVvlig,=1 ce{0,1}IVvl:g,=0

B. Equivalence I: Marginal Distribution

The following is a result of Weitz [31]. We present the proadrh [31] for completeness.

Theorem 1:Consider any binary pair-wise MRE = (V, E). For anyv € V, letp,(-) be its marginal probability
under distributionP¢. Let Tsaw (G, v) be the self-avoiding walk tree MRF and lgt(-) marginal probability of
root node ofl's 4w (G, v) with respect taQ¢ .. Then,

pu(1) = g¢,(1) and p,(0) = q,(0). (2)
Proof: The proof of Theorem 1 follows by mathematical induction rotree number ofunfixednodes of the
graphG.

Initial condition. Trivially the desired statement holds for any graph withalyaone unfixedvertex, by definition
of MRF, i.e. (1). The reason is that for such a graph, due tbwllone node being fixed, the marginal probability
of each node is purely determined by its immediate neighoesto Markovian nature of MRF and the immediate
neighborhood ob in Tsaw (G, v) andG is the same.

HypothesisAssume that the statement is true for any graph with less dhagual tom € N unfixednodes.
Induction step Without loss of generality, suppose that our graph of irsgr@, hasm + 1 unfixedvertices. If
v is fixed vertex, then (2) holds trivially. Let € V' be a unfixed vertex ofz. Then we will show via inductive

hypothesis that
(1) _ po(1)

0(0) N pu(0)
Let d be the degree ob; vq,v9,...,vy be the neighbors of where the order of neighbors is the same as that
used in definition ofTsaw (G,v). Let T, be the/th subtree ofl'saw (G,i) havingv, as its root andy (¢) be
the binary pair-wise MRF induced dfy by restriction ofTsaw (G,v). Let ¢;(o) be the marginal probability of




vertex v, taking values € ¥ = {0,1} with respect toY (¢). Note that wheril; consists of a single vertex, then
qe(0) x ¢y, (0). Let A\, = mg g Then from definition of pair-wise MRF and tree-structure,

QU 1 UEZ T;Z)vz, 1)(]€(U)
— )\, . 3)
v (0) H ZOEE Yu,,0(0,0)qe(0)
Now to calculate% we define a new grapf’ and the corresponding pair-wise MRF as follows. LetG’ be
the same as/ except that is replaced byd verticesv), v, ..., v); eachv; is connected only tay, 1 < ¢ < d.
The X' is defined same aX except thaip,, (1) = quﬁv( 1), ¢, (0) = ¢, (0) andpy,,, = 1u,,. Then,
Z ’ ’ ’ ]P)G/ (X )
po(1) B {X/:Xv,lzl,Xv,z:1,...,Xué:1} ﬁ (1) @
= 7
Py (0) Z{qu;,:o,xg, —0,.., X", :o} Por (X7) =1 «(0)’
where defineu (o) = Z{X/ _oy PIX[ X3, =0, Xl(f , =0 X’(HU =1,. "’le)g = 1]. The second equality
in (4) follows by standard trick of Telescopmg multlphmm and Lemma 2.
Now for 1 < ¢ < d, consider MREX"(¢) induced onG’(¢) = G’ — {v,} by fixing {v},... v} —{v;} as follows:

let (¢ (0) = 1,0y (1) = 0);...5(dw;_,(0) = 1,0 (1) = 0);(%;“(0) = 0,0, (1) = 1);...5(¢w, (0) =
0, ¢, (1) = 1). Then letyy(o),0 € X denote the max-marginal af; for taking valueo with respect toX’(¢).
Given this, by definition of MREX’ as well X’(¢) and noting that, is a leaf (only connected to,) with respect
to graphG’, we have

(1) _ /\1/d dez T/JUe,v,;(Ua Dve(o) (5)
IU’Z(O) ZJEE ¢Ue7v[ (07 O)Vf (J) ‘
From (3), (4) and (5) it is sufficient to show that
ve(1) qe(1)
w0 ~ gy 1SSt ©
Now, note thatl; is the same a$s4w (G(¢)) with respect toX'(¢). Because for each=1,...d, G'(¢) has one
lessunfixednode thanGG, the desired result (11) follows by induction hypothesis. [ |
Lemma 2:Consider a distribution oX = (X1, ..., X,,) whereX; are binary variables. Lat; = P[X = s], s €

X" Let pyja,,..a0 = PIX = s[Xo = az,..., Xy = ag for anyd > 1. Let S(aq,...,aq) = {s = (s1,...,50) €
Xhisi=a1,...,8 = ad}. Then,

ZSES(al,aQ...,ad) Ps . ZSES(al,ag...,ad) ps\ag,...,ad

ZsES(dl A2y Gd) Ps ZsES(dl A2y ) ps\a27---7ad

Proof: Letq = P(X3 = ag, ..., X4 = aq). Then, by definition of conditional probability fare S(ay,as, ..., aq)U
S(a1,az,...,a4), Ps = Dglay,....a,q- From this, Lemma follows immediately. [ |

C. Equivalence II: MAP

Here we present similar equivalence result about max-makgWhile this is not stated in [31], the Theorem 3
follows from arguments exactly the same as those used inr€hed with "summation” replaced by "maximum”.
We will present proof for completeness.

Theorem 3:Consider any binary pair-wise MRE = (V, E). For anyv € V, let p}(-) be as defined above with
respect tdPq. Let Tsaw (G, v) be the self-avoiding walk tree MRF and Ig1(-) be as defined above for root node
of Ts aw (G, v) with respect toQ¢ .. Then,

p() )
20 g0 ()

Here we allow ratio to b@, cc.
Proof: The proof follows by induction. As a part of the proof, we widbme across graphs with some
fixed vertices, where a vertex is said to be fixed td (resp.1) if ¢,(0) > 0, ¢,(1) = 0 (resp.¢,(1) > 0,



¢,(0) = 0). The induction is on the number oihfixedvertices ofG. We essentially prove the following, which
implies the statement of Lemma: given any pair-wise MRF onraplg G (with possibly somefixed vertices),
construct correspondings (G, v) MRF for some node. If the number ofunfixedvertex of G is at mostm,
then the (7) holds. Next, inductive proof.

Initial condition. Trivially the desired statement holds for any graph withaaone unfixedvertex, by definition
of MRF, i.e. (1). The reason is that for such a graph, due tdatlone node being fixed, the max-marginal of
each node is purely determined by its immediate neighboestduMarkovian nature of MRF. The immediate
neighborhood ob in Tsaw (G, v) andG is the same.

HypothesisAssume that the statement is true for any graph with less dhagual tom € N unfixednodes.
Induction stepWithout loss of generality, suppose that our graph of ir#ei@, hasm + 1 unfixedvertices. Ifv
is afixedvertex, then (7) holds trivially. Let € V' be an unfixed vertex ofs. Then we will show via inductive

hypothesis that
(1) _ py(1)

¢;(0)  py(0)

Let d be the degree af; vy, v9,. .., v4 be the neighbors af where the order of neighbors is the same as that used
in definition of Tsaw (G, v). Let Ty be thelth subtree ofl's oy (G, i) havingv, as its root and’(¢) be the binary
pair-wise MRF induced oif}; by restriction of 7541 (G, v). Let g; (o) be the max-marginal of vertex, taking
values € ¥ = {0,1} with respect toY (¢). Note that wheril; consists of a single vertex, thegi(c) o ¢,, (o).

Let \, = izgég. Then from definition of pair-wise MRF and tree-structure,

d
. 1 g Ve,V Y 1 /
qz( ) — /\U H max 621/} i (U )Qi(a) (8)
qu(o) =1 maXgsex ¢W,v(0-7 0)(]5 (U)
Now to calculate’%, we define a new grap&’ and the corresponding pair-wise MRF as follows. LetG’ be
the same ag/ excvept thatv is replaced byl verticesv, v5, ..., v); eachu, is connected only tay, 1 < ¢ < d.
The X' is defined same aX except thaip,, (1) = quﬁv( 1), ¢, (0) = ¢,(0) andpy, ., = 1u,,. Then,
max Pe (X')
pi(1) B {X/;X;,l:1,X;é:1,...,X;:i:1} ﬁ (1) o)
* - , /
pi(0) maX{X’:X’,:O,X’,:0,...,X’,:0} P (X7) =1 «(0)°
where defineu, (o) = maxx.x/, =0} PIX'| X}, =0,. X’M , =0 X’(HU = 1,...,X], = 1]. The second
equality in (9) follows by standard trick of Telescoplng rhrmllcatlon and Lemma 4.
Now for 1 < ¢ < d, consider MREX"(¢) induced onG’(¢) = G’ — {v}} by fixing {v},... v/} —{v;} as follows:

let (¢y(0) = 1,0y (1) = 0);...5(dw;_,(0) = 1,0 (1) = 0);(%;“(0) = 0,0, (1) = 1);...5(¢w,(0) =
0, ¢y, (1) = 1). Then letyy(0),0 € X denote the max-marginal af; for taking valueo with respect toX’(¢).
Given this, by definition of MREX" as well X'(¢) and noting thawy is a leaf (only connected toy) with respect
to graphG’, we have

pel)  _1jamaXoes Yo (0, Dre(o) (10)
1e(0) maXges Yy, v, (0, 0)ve(0)
From (8), (9) and (10) it is sufficient to show that
ve(0) q;(0)
Now, note thatl} is the same a%say (G(¢)) with respect toX’(¢). Because for each=1,...d, G'(¢) has one
lessunfixednode thanGG, the desired result (11) follows by induction hypothesis. [ |

Lemma 4:Consider a distribution oiX = (Xj,..., X,,) whereX; are binary variables. Let; = P[X = s|,s €
X Let pya,,. a0 = PIX = 8[Xo = ag,..., Xq = ag] for anyd > 1. Let S(a1,...,aq) = {s = (s1,...,5n) €
¥":s1 =aq,...,84 = aq}. Then,

maXsES(al,ag...,ad) Ps o maXsES(al,ag...,ad) ps\ag,...,ad

maXSES(&l,ag,...,ad) Ps maXSGS(&l 442,50 Ql) ps|a2,...,ad




Proof: Letq = P(X3 = ag,..., X4 = aq). Then, by definition of conditional probability fare S(aq, as, ..., aq)U
S(a1,az,...,a4d), Ps = Dg|ay,....a,q- From this, Lemma follows immediately. |

[11. ALGORITHM: MAP
A. Exact MAP

Theorem 3 suggests the following algoritt@orrection of Max-Produc(CMP) for exact MAP estimate in binary
pair-wise MRF. The distributed message-passing impleatiemnt of this algorithm is presented in Section IlI-D.
But here we present the basic idea behind it for ease of thainga

CMP

(1) Let nodesV be numbered, ..., n. Initially, none of the nodes is set to have its assignmehtevaStarting
from v = 1, iteratively set values of nodes as follows:

(2) GivenG with values of nodes, ..., v—1 are set, obtain the corresponding self-avoiding walk Tregy (G, v).

3) Computegg—% by running standard max-product algorithm @g4y (G, v). Set value ofv to 1 if the above
ration is> 1, else set value of to 0.

(4) Incrementv < v + 1 and repeat (2)-(3) tilb = n (i.e. values of all nodes are set).

(5) The resulting assignment of all nodes is a MAP assignrfrent Theorem 3.

B. Complexity ofCMP

Consider the self-avoiding walk tréBs 41y (G, v) = (V,, E,). SinceTsaw (G,v) is a connected tree, we have
V| = |E,| + 1. We will denote by size off's4 (G, v) as|E,|. Now, above described algorith@MP (in its
distributed implementation described in Section Ill-Dida totalO(|T's aw (G, v)|) distributed operations to find the
Tsaw (G, v) as well asO(|Tsaw (G, v)|) for fixing value of nodev using max-product. Thus, the total complexity
of algorithm isO(n max,cy |Tsaw (G, v)|) distributed operations (or message exchanges). When grapliree,
this is essentially the same as the complexity of max-prodigorithm. For graphs with loops, we know that
max-product may not find exact solution and not even terrain@ur algorithm will always terminate but may take
a lot longer than the running time for tree graph. Next, wengifiahow long it takes for a graph with cycles.

The notion of number of cycles in a graph is hard to define ebudt we look at connected graphs with edges
n— 1+ k for k > 0. We state the precise statement as follows.

Theorem 5:Consider a connected gragh = (V, E) with |V| = n nodes andE| = n — 1 + k edgesk > 0.
Then for anyv € V,

’TSAw(G,’U)‘ < (n + k- 1)2k+1.

Further, there exists a graph with— 1 + k& edges withk < n/2 so that for any node € V/,

‘TSAw(G,’U)‘ > n2k=2,

Proof: The proof is divided into two parts. We first provide the pradfiower bound. Consider a line graph
of n nodes (withn — 1 edges). Now add: < n/2 edges as follows. Add an edge betweleand n. Remaining
k—1 edges are added between node pditsi), (4,6),...,(2(k—2),2(k—1)),(2(k—1),2k). Consider any node,
saywv. It is easy to see that there are at lezlst? different ways in which one can start walking on the grapimfro
nodewv towards nodel, cross froml to n via edge(1,n) and then come back to node Each of these different
loops, starting fromv and ending ab creates2 distinct paths in the self-avoiding walk tree of length addg.
Thus, the size of self-avoiding walk tree of each node is astle2”—2 for each node. This completes the proof of
lower bound.

Now, we prove the upper bound @R*+! on the size of self-avoiding walk tree for each nade V. Given
that G is connected, we can divide the edge Be& Er U Ej, whereEjy, = {ey,...,ex} andT = (V, Er) forms
a spanning tree ofy. Let S be the set of all subsets @}, = {e1,..., e} (there are2® of them including empty
set). Now fix a vertexw» € V' and we will concentrate offis 43 (G, v). Consider any, € V' (can bev) and S € S.
Next, we wish to count number of pathsTiy 4y (G, v) that end at (a copy ofy (however,u need not be a leaf),
contain all edges it but none fromE;\S. We claim the following.
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Fig. 2. Given graplG of 4 in Figure 1, the above describ&@¥,,,-(G, 1) for D = 1,2 and3.

Claim. There can be at most one pathBf 4y (G, v) from v to (a copy of)u and containing all edges from

S but none fromEj\S.
Proof: To prove the above claim, suppose it is not true. Then thexagleast two distinct paths fromto u

that contain all edges i§ (but none fromFE}\S). Consider the symmetric difference of these two pathsgims
of edges). This symmetric difference must be a non-emptgetutilf £ and also contain a loop (as the two paths
have same starting and ending point). But this is not passbll’ = (V, Er) is a tree and it does not contain a
loop. This contradicts our assumption and proves the claim. |

Given the above claim, for any node clearly the number of distinct paths from nodeto (a copy of)u
in Tsaw (G,v) are at most2*. Now each edge has two end points. For each appearance ofganoéd: in
Tsaw (G, v), a distinct path fromv to one of its end point must appear Ty 41 (G, v). From above claim, this
can happen at mogt x 28 = 2¥+1 There aren + k — 1 edges ofG in total. Thus, net number of edges that can
appear inTsaw (G, v) is at most(n + k — 1)2¥+1, This completes the proof of upper bound for Theorem

Remark. We note that for any connected graph, the sizeTofiy (G, v) can not be larger than the number
of different permutations of. = |V| since each distinct path ifisaw (G,v) can be identified with a distinct
permutation ofn numbers. That is, for any connected graghby Stirling’s approximation)

|Tsaw (G,v)] < n! = O(2nlog2n).

C. Heuristic

The algorithmCMP obtains exact MAP. However, it may take too long for graphthwnany loops. In such
situations, we will need heuristic. The primary reason @VIP to take too long is the size dfsaw (G, v) for
v € V. Hence a natural way to obtain heuristic is to reduce thediZ& 41 (G, v) for v € V. To this end, consider
the following definition.

Definition 2 (D-truncated Self-Avoiding Walk Treelziven graphG = (V, E') of pair-wise binary MRF, theD-
truncated self-avoiding walk treEL,,,, (G, v) is obtained by removing all nodes (and edges incident on Xhleat
are at distance more than from rootv of Tsaw (G, v) In Tsaw (G, v).

The Figure 2 presentﬁgAW(G,v) for 4 node graph considered earlier in Figure 1. Naturally, for graphG,
by taking D = n (or any D larger or equal to the graph diameter), we obtain tat,, (G,v) = Tsaw (G, v) for
all v € V. Based onl'?,,,,(G,v), we obtain the following heuristic which is a direct adaptiof CMP .

CMP (D)

(1) Let nodesV be numbered,...,n. Initially, none of the nodes is set to have its assignmehtevaStarting
from v = 1, iteratively set values of nodes as follows:
(2) GivenG with values of nodes, ..., v—1 are set, obtain the corresponding self-avoiding Walkfi’r‘ggw(G, v).
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3) Co_mpl_JteZ::—((l)) by running standard max-product algorithm B&,,,-(G,v). Set value ofv to 1 if the above
ration is> 1, else set value of to 0.

(4) Incrementv < v + 1 and repeat (2)-(3) tilb = n (i.e. values of all nodes are set).

(5) The resulting assignment of all nodes is an estimate oPM&signment.

D. Distributed Message-Passing Implementation

The following is a pseudo-code of a distributed messageimmasdgorithm for CMP . The CMP finds exact
MAP, by Theorem 3. This section is of interest primarily farotreasons: (1) It proves the possibility of distributed
message-passing algorithm for MAP, and (2) Guide-linesrfgglementation for an interested reader. However, a
reader may skip this section on the first read.

To describe the pseudo-code, we need some notation. EachunedV, let N(v) denote the set of all its
neighbors, i.eN(v) = {u € V : (u,v) € E}. Nodewv assigns an arbitrary fixed order to all nodesNitv). For
example, ifv has neighbors, w andz then it can numbeur as the first neighboty as second neighbor ands third
neighbor. The ordering chosen by each node is independasttadées of all other nodes. The algorithm operates
in two phases. In the first phase, algorithm explores logadltmgy for each node via sending “path sequences”. By
“path sequence” we mean a finite sequence of veriegan, ..., v;), where(vg,vp1) € Efor1 <{<k—1.1In
the second phase, algorithm uses the path sequences teivelyucalculate “computation sequence” which in turn
leads to calculation of;;(-) at nodes. A “computation sequence” is of the fofm, v, ..., vk, My, (0),my, (1)),
wherem,, () are certain real-numbers (which have interpretation ofsags). As we shall see, the structure of
recursive calculation to obtain “computation sequencah& same as that of max-product algorithm. Thus, there
is very strong connection between MP a@WP . For ease of exposition, the algorithm is described to cdampu
the ratiog;(1)/q;(0) for all v € V.

CMP
(0) Initially, each vertexo sends a path sequenge to each of its neighbors.
(1) When nodeu receives a path sequengg,vs, ..., v;) from its neighbor, (note that, by construction given
later, v, = v) it does the following:
o If wis aleaf (i.ex is connected only to), u sends back a computation sequegevs, . . ., vk, u, M4, (0), M, (1))
to v, where

My (o) o max (0w, 7)gu(ow) and g;z mu(oy) = 1.
o If u is not a leaf, check whether appears among,, 1 < ¢ < k:
x (x}) If NO, u sends a path sequents, ..., v, u) to each ofu’s neighbors but.
x If YES, then letvy = u,1 < { < k.

— If, with respect to the ordering given by nodeto its neighbors, the rank (order) of nodg,; is
larger thenv, thenwu sends back (ta)) a computation sequende;, ve, . . ., vk, u, My, (0), m, (1)),
wherem, (1) = 1 andm,(0) = 0.

— Otherwise (i.e. the rank of node; is smaller tharv), v sends back (t@) computation sequence
(v1,v2, ..., Uk, u, My (0),my (1)), wherem,(0) = 1 andm,(1) = 0.

(2) Once a node: receives a computation sequernee, . .., v, m,, (0),m,, (1)) from its neighborv, (note that,
by constructiorw, = v andwv,_; = u). Store this computation sequenceus memory and do the following:
o If k > 2, check whether has stored computation sequences of the farm. .., vx_1, w, My, (0), My, (1))
for all w € N(u) —{vk—2}. If SO, u sends a computation sequenee, ..., vi_1(= u),m,(0),m,(1)) to

vi_o Where

my(0) ¢ | max ¢y, , (0w, 0)du(0w) H my(oy) |, and Z my(oy) = 1.

oLEXD
wEN (u)—{vp_2} LAY

1The symbolx is a marker. It is to indicated that it is the only clause ofosithm that will be changed foEMP (D).



11

Delete computation sequencés, ..., vg_1,w,my(0),my(1)) for all w € N(j) — {ix_2} from u’s
memory.

o If k = 2, then check whether for all € N(j), v has stored computation sequengasw, m.,(0), m,(1)).
If so, compute the (estimate of) max-belief wfas

o) X ¢u(o H my (o), and ZqZ(U):l.

weN (u) o€y

(3) When all nodes have computed their max-beliefs, deglare) /¢;;(0) as an estimate qf}(1)/p;(0) Vv € V.

We make a note here that the pseudo-code(dP given above can be maodified easily by concentrating on
path-sequences of length at mdstto obtainCMP (D). The modification need to be applied to the part marked
by (x) in the above code.

V. ALGORITHM: MARGINAL DISTRIBUTION
A. Exact Marginal Distribution

Theorem 1 suggests, just like exact MAP computation, we @migd algorithm for computing exact marginal
distribution based on the self-avoiding walk tree of grayle describe the algorithnGorrection of BR CBP as
follows.

CBP

(1) Let nodesV be numbered,...,n. Initially, none of the nodes is set to have its value.

(2) For each node € V, compute the self-avoiding walk tré&; 4y (G, v).

(3) Compute the marginal probabilities(0), ¢, (1) for the root nodes of T's 4w (G, v) by running standard sum-
product (belief propagation) algorithm day A (G, v).

(4) The resulting marginal probability estimatgg0), ¢, (1) are exact for all nodes € V' from Theorem 1.

The algorithmCBP , like CMP can be implemented in a distributed manner. The pseudo-€btie described in
Section 1lI-D suggests ho@BP can be implemented in a distributed message-passing mafeeto not describe
this algorithm as it essentially follows from the descptiof CMP by replacing “max” operation by “summation”.

B. Complexity ofCBP

Like CMP , the above described algorith@BP (in its distributed implemenation) takes tota(n max,cy |Tsaw (G, v)|)
distributed operations. As stated in Theorem 5, the algoritakes at most (n -+ k)2¢+2 distributed operations for
any connected grapd with n + k edges. Thus, for smakl our algorithm is essentially as efficient as the standard
sum-product algorithm and always finds the correct solution

C. Heuristic

As explained for algorithmCMP , a heuristic can be designed for computing marginal distidln based on
CBP . This is done by computing marginal distribution basedio#iruncated self-avoiding walk tree just as in
Section IlI-C. For completeness, we describe the algorithimilar to CMP (D)) as follows.

CBP (D)

(1) Let nodesV be numbered,...,n

(2) For each node € V, obtain the self-avoiding walk tre€2, (G, v).

3) Computeq“g g by running standard sum-product algorithm ﬁﬁAW G,v).
(4) The resulting estimates are exactif= n.
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D. Error in BP

In this section, we use relation between the self-avoidiadkviree and computation tree to obtain a handle on
error incurred in the estimation of BP depending on the Ugihey graph topology. Specifically, we will attempt to
qguantify the error in BP as well as condition under which BH & correct even in presence of loops. To avoid
cumbersome notations and formulas, we consider examplegurd-1 to exemplify our approach. It will be clear
to any (may be familiar enough) reader how this can be geamedafor any graph with loops (with the help of
cumbersome extra notations).

Example 2 (Graph with Loops: Correctness of BR)onsider the specifie node graphG shown in Figure 1
with cycle. The figure also shows its self-avoiding walk tfBgsy (G, 1) for node1 and the computation tree
Tcomp(G,1) for nodel. Clearly, theTsaw (G, 1) can be obtained from o p(G,1) by first truncating it at
grey nodes and then making ledrey nodegreen(i.e. set to valuel) and rightgrey nodered (i.e. set to valug).
With abuse of notation, we will call the left grey node Taor p(G, 1) as well as green node figaw (G, 1) as
1,; we will call the right grey node ifcon p(G,1) as well as red node ifts 41 (G, 1) as1..

From Theorem 1 and property of BP being correct for any treplyrwhen we run BP offis 41w (G, 1) we get
the exact answer for marginal probability of the root nad©n the other hand, while running BP 6hthe answer
corresponds to exact answemn Tconp(G,1). Clearly, the only difference is due to the difference ineeffof
the grey nodes andyreen red nodes on the computation of probability at the root. Thugren BP onG can be
guantified by concentrating on this difference caused bgetspecial leaf nodes. We will do this next. Note that,
such will be the case faany graph.

To this end, first consider BP running 6h Consider algorithm at the end of a large enough iteratieng(h 4).
The computation tree corresponding to this will have all tlegles up to deptB including grey nodes. Suppose
the normalized message coming to the ity nodel, (corresponding tgreennode of s 4w (G, 1)) be « and
1—a, a€|0,1] (i.e. « is message for node taking valteand 1 — o for node taking valu®). Similarly, for the
right-hand sidegrey node 1., the message bg and1 — 3, 3 € [0,1]. For the BP operating offs i (G, 1), we
have setl, to 1 while 1. to 0. That is, effectively we can think of normalized messdge to nodel, and0, 1
to nodel.. Now, to bound the difference between computation of théabdities at roots iffconrp(G, 1) and
Tsaw (G, 1) we need to quantify the effect of messages at nddes. on the root.

Consider the following definitions. To quantify the effedtrmde 1, on the root (inTsaw (G, 1) as well as in
Tcomp(G,1)), consider the following: for, y € {0,1},

Az,y) = > (V12(y, b2)h23 (b2, b3) 34 (b3, ba) 131 (b3, 7)) P2 (b2)P3(b3)Pa(ba). (12)

(b2,b3,b4)€{0,1}3
Similarly, consider the following for quantifying effecf d.: for =,y € {0, 1},

B(xz,y) = > (V13(y, b3)h23 (b2, b3)¥34 (b3, ba) 21 (b2, 7)) d2(b2)P3(b3)Pa(ba). (13)
(b2,b3,b4)€{0,1}3

Recall that by definition);; (a, b) = (b, a). It is easy to check, that the definition implies for gayy) € {0,1}2,

Alz,y) = Bly,z). (14)

Now, let p;(b),b € {0,1} be correct marginal probability of nodeaccording to MRFG andpP¥(b),b € {0,1}

be estimate of marginal probability of nodeobtained by BP algorithm at the end of iteration of our inser@&y
Theorem 1, we have

m() . A(L,1)B(0,1)

pi(0) /\IA(l,O)B(O,O)’ (15)
pPP) ) (@ALD) + (1 - a)AQ,D)(BB(L 1) + (1~ H)B(O, 1)) 16)
pPF(0) "(@A(1,0) + (1 — @)A(0,0))(8B(1,0) + (1 — 8)B(0,0))’

2For a reader not familiar with BP, we suggest reading liteeaf21], [25], [32] to understand relation between BP anchpotation tree.
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where)\; = ¢1E(1J)' Now, it is not hard to argue, based on the fact that the fanst..(-, ), ¢.(-) are non-negative,

(14) and (16), that the following bounds hold:

S

pPP (1) A(1,1) A(0,1) A(1,1) A(1,0)
PPy S { A(1,0) 4(0,0) } : max{A(O, 1)’ 40,0) } ’ ()
pPr (1) A(1,1) A(0,1) . [A(1,1) A(1,0)
o) m{A(LorA(o,m}Xmm{A(O,n’A(o,m}' (18)

Then (14), (15), (17) and (18) imply that the BP is always ecirif the following condition hold:
A(0,0)A(1,1) = A(1,0)A(0,1). (19)

More generally, when the above condition does not hold,-(18) imply the error bounds on computation of BP

as follows:
prr(1)
P{BP(O) < A(07O) A(07 1) A(an) A(l,O)
e maX{A(1,0)’A(1,1) M A(0,1) AL 1)
p1
prr(1)
B L [A0.0) AQD) . [A(0,0) A(L0) "
bl = mm{A(l,O)’A(l,l) I A0,1) A1) [ (20)
p1

The results of above example, specifically condition (19)dorrectness of BP and (20) for error in BP, can be
easily generalized to graphs with more loops in termeftéctof the special cycle breakinggaf nodes as part of
computation tree. This can also help in providing error wbon computation of BP in graphs with more loops.
We make a note of the fact that the existenceafrelation decay(such as satisfaction of generalized Dobrushin’s
condition) will imply that the above errors are small if ghapas locally tree-like structure. We finally note that
the above approach can be naturally extended for obtainiog kound on computation &BP (D) algorithm as
well. In summary, we believe that this frame-work to quansfror in BP can be extremely useful in general.

V. EXPERIMENTS

In this section we present experimental result<CMP (D) on two models. The first model is a random lIsing
model and the second is a Gaussian model on which we compaadgmrithm with TRW [13].

Random Ising ModelThe MRF is defined on 2-dimensiaN x N regular grid ofn = N? nodes withV, E be
its vertex and edge set respectively. Then, probabilityridigtion is given by

PX =z] « exp Zeﬂri‘ Z Oijzix;| ,
eV (i,7)eF

for z € {—1,1}". In each trial of our experiment the single node potentiadéserchosen at random with uniform
distribution over[—1,1] denoted a®d; ~ U[—1,1], whereas the edge potentiats; were chosen randomly as
0;; ~ U[-3, 5], wherer is the edge strength. In the experiment, for each fixééndr we generated random
MRFs according to this random model for 20 times and for edathioed MRFs we executedMP (D) for each
depthD = 1,...,9. Then we reported the average valueksfor(D) for each setup, wherError(D) is defined
as follows: Letz” be the assignment that is obtained ®yIP (D). ThenError(D) is the percentage of vertices

having different values in the assignment@¥P (D) from that of CMP (9), i.e.

B dg (2P, 2%)
N2

wheredy (-, ) is the Hamming distance. Panels (a-1) to (a-3) of Figure 3péots showingError versusD for
the random Ising model withV" = 10, 20,30 resp. Different curves in each panel correspond to edgegitre
r € {0.5,1,1.5,2}.

Interestingly the result suggests thét converges rapidly a® increases, especially when edge strength 1.
Whenr < 1, in most of the samples we generateé}’, became the same fdp > 6. Hence this result suggests that
when edge strength is small, the truncat@®P even with small constant depth finds a MAP assignment or an

Error(D) x 100,
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Fig. 3. (a-1) to a(a-3): Plots showirigrror(D) versus depthD for random Ising model oV x N Grids with N = 10, 20, 30 resp.
Different curves in each panel correspond to edge strengt0.5, 1, 1.5, 2}. (b-1) to (b-3): Similar plots for Gaussian model 82 x 32
grids with mixing parametetx = 0.5, 0.75, 1 resp. Different curves in each panel correspond to pofesttiengtho € {0.5, 1, 1.5, 2}. (c-1)
to (c-3): Same setup for Gaussian model as (b-1) to (b-3),yaaxis represents the ratio tég[P(z”)] to log[P(z")].

assignment that is very close to a MAP assignment. In sumrfary < 1 the algorithm finds correct assignment
for all nodes within smallD, while for » > 1 it finds an assignment which is close to MAP in terms of "enérgy
Thus, our algorithm is good overall approximation.

Gaussian Model.Here graph is the same 2-dimensional gridnof N2 nodes with

P[X =2 o« exp ZQ%(%)-F Z szij(xzﬁxj) )

eV (i,))eE

where node potentials are given as Gaussigii), ¢;(1) ~ A(0,1) and edge potentialg’s are defined by
$i;(0,1) = 4;5(1,0) = 0 and ;;(0,0) = ;;(1,1) = Aij, where \;; ~ |N(0,0%)| with probability o and
Aij ~ —|N(0,0?%)| with probability 1 — a. Herea € [0,1] is a mixing parameter. We generated this model to
compare performance @&MP (D) with that of TRW algorithms described in [13] fa¥ = 32.

For each fixedv ando, we generated random MRFs according to this model for 20stiamal for each obtained
MRFs we execute€MP (D) for each depthD = 1,...,9. Then we reported the average valueksfor(D) for
each setup. Panels (b-1) to (b-3) of Figure 3 represent @saobError(D) according toD for a = 0.5,0.75,1
respectively. Notice that whem = 0.5, if ¢ < 1 thenCMP (D) converges forD > 7. Fora = 0.75 or a = 1, if
o < 0.5 CMP (D) converges forD > 6. Hence for these cases, the result suggest that the assigobtained by
CMP (D) for D > 7 would be equal to a MAP assignment. This is in contrast witbrgmerformance of TRW in
this range [13].

Now, Panels (c-1) to (c-3) of Figure 3 shows the ratidogfP(z”)] to log[P(x?)] for a = 0.5,0.75, 1 respectively.
Surprisingly in most of the cases, the[P(z”)] value converges very rapidly from aroufti= 6. Hence it implies
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that even whenr is large, log[P(z”)] value would be very close to the maximum valuel@f[MAP] for small
constantD even though exact assignment may be very different from Médhany nodes.

Now, compare the above stated our results to the followipgntethat is taken verbatim from [13] for TRW for
Gaussian model: fo0.5 < o < 0.75 ando = 1, TRW algorithm output less thags% (empirical observation)
of the variable assignment values (which are guaranteeck toobrect), but give no information about the other
variable values. And whef.5 < o < 0.75 ando > 1.5, the output percentage of TRW becomes less thi#h
[13].

In summary, the above comparison shows that there is a lamygerwhere our algorithm outperforms TRW
algorithm. The primary reason is the correction of erroraadby our algorithms for small cycles.

VI. FUTURE WORK

For future work, we plan to combine ideas behind tree re-hteid) algorithm and the above described heuristic
to obtain a better inference algorithm.
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