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Abstract

Let A € M, (C). Leto (A) denote the spectrum &f andF(A) the field of values oA. It
is shown that it (A) N (—oo, 0] = @, thenA has a unique square roBte M, (C) with o (B)
in the open right (complex) half plane. This result and Lyapunov’s theorem are then applied
to prove that ifF(A) N (—oo, 0] = ¥, thenA has a unique square root with positive definite
Hermitian part. We will also answer affirmatively an open question about the existence of a
real square rooB € M, (R) for A € M, (R) with F(A) N (—oo, 0] = @, where the field of
values ofB is in the open right half plane. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

If A e M,(C) has a square root (conditions for this are given in [5, Theorem
6.4.12]), typically it will have many square roots. However, if mild spectral condi-
tions are placed upon the square root, there will often be a “natural” unique one. For
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example, it is well known (and quite useful) that a positive (semi-) definite matrix
has a unique positive (semi-) definite square root [4, Theorem 7.2.6], and that this
classical fact may be extended to matrices with real and positive spectrum having a
unique square root of the same type [5, pp. 287, 488]. Typically, this natural square
root may be given via spectral methods, convergent power series, or an integral rep-
resentation. Our purpose here is to present greatly simplified proofs, extend known
unigueness statements, and to show that the extensions can be applied to answer an
open question. When a matrix in a given classlways has a square root ), it
is an interesting issue to understand for which uniqueness statement also holds.
Our results will be of this type.

We denote by (A) the set of eigenvalues of € M, (C) (where we agree to
list all eigenvalues in the set, including repetitions, e.d. i the 3x 3 identity
matrix we will write o (1) = {1, 1, 1}). By RHP, we mean the open right half of
the complex plane and bBRHP its closure (imaginary axis included). The Hermi-
tian part ofA € M,,(C) is H(A) = %(A + A*). The (classical) field of values of
A € M,(C) is defined byF(A) = {x*Ax: x*x = 1, x € C"}. Itis easy to show that
A has positive (semi-) definite Hermitian part if and onlyAfA) ¢ RHP (RHP).
Other general properties @f(A), such as compactness and convexity [5, Theorem
1.4.2], are discussed in [5].

It is known [2] that if A € M,,(C) ando (A) C RHP (or more generallys (A) N
(—o0, 0] = #), then there is a square rootAf AY/2 such that (AY2) ¢ RHP. The
region RHP may not be replaced BHP in this statement without additional know!-
edge about the Jordan canonical formApbecause some singular matrices have no
square roots. Similarly, it is known [7,8] that i € M, (C) and H(A) is positive
definite (or more generallyF'(A) N (—oo, 0] = ¥), then there is a square root of
A, AY2 such thatH (AY/?) is positive definite. There are uniqueness statements to
go along with both the spectral and field of value facts just mentioned. We provide
simplified proofs of these results.

In [6] the question is mentioned and left open as to whether M, (R), such
that H (A) is positive definite, has a square root? € M, (R) such that (AY/?) is
positive definite. We will show that the answer to this question is in the affirmative.

2. Preliminaries

Lemma 1 extends a result in [9, p. 254]. This extended result for three block
matricesA, B andC has a further obvious extension to block tridiagonal matrices
with multiple blocks in the appropriate form. We will usgto denote the vector with
a one in theth position and zeroes elsewhere.

Lemmal. LetA e M;(C), Be M,,(C), C e M,(C)ando (A) = {a1, a2, ..., a;},
o(B) ={B1, B2, .., Bn} ando (C) = {y1, y2, ..., yu}. Definea, b1, b, and c to
be eigenvectors as follows
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Aa = waa, Bb1 = pib,

A
D = | b1y*
0

has eigenvaluesy, a3,
the two eigenvalues of

a1 x*by
ya B

"'7alsﬁ21ﬁ31"

0
zc*

C

and the two eigenvalues of

,Bm b;ZZ
cwo oy |

Proof. There are unitary matricé$ € M;(C), V € M,,(C), W € M, (C) such that

o
U*AU = |
%
where
Ue = 2.
llall
where
1
Veir= ——
16l
Then we have
u* 0 0
o v* 0
0 0 w*
U*AU
= | V*b1y*U
0

0

S, wrew =

a1

W and V*BV =
15|l

A ax® 0 U
b1y* B zc* 0

wby  C 0

U*ax*V 0
V*BV
W*rwbi V. W*CW

V*ze*W

b;ZB = ,me;,kw

and lety € C!, x,z € C", w e C". Then the matrix

c*C = yuc*

L ﬁI’H7ls 7/11 7/27 e

53

, Yn—1, together with
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[y O 0 0 ]

x . 0 0
* ok o2 0
* % * a1 la||x*V
Ibally*U  p1 *  * % *
0 B * % *
= 0 0 % *
0 0 O0Bua * lcllV*z
0 0 0 O B

Yo 0 00
lbmIW*w % y,—1 0 O
0

* *

*
*
=

The two central Zx 2 blocks may be easily seen to be

- o lalisz] 1 ”ho” "oy x*bl} 1 0
= a
balifgs A O Tl Aul|0

B el ] [ O [ Ae bne] [
b i } [0 I ﬁw o e |- O
b 11531 Va el | Vn 2]

Corollary 2 [9]. LetA € M;(C), B € M,,,(C), witho(A) = {a1, a2, ..., o}, and
o(B) ={B1,B2,..., Bn}. Let a and b be right eigenvectorso thatAa = a1a,
Bb = B1b, while x € C"™ andy € C. Then the matrix

[ A ax*i|
by* B
has eigenvaluesy, a3, ..., o7, B2, B3, ..., Bm and the two eigenvalues of
[al x*bi|
yia B |’
Corollary 3. LetB € M,,(C), C € M, (C), and leto (B) = {B1, B2, ..., Bm}, and

o(C) ={y1,y2, ..., yu}. Letband c be left eigenvectoso thath*B = B,,b*, c*C
= yuc*, whilez € C" andw € C". Then the matrix

B zc*
wb* C

has eigenvaluegy, B2, ..., Bmn-1, ¥1, ¥2, .. ., ¥Yn—1 and the two eigenvalues of

Bm b*z
cfwo oy |

and
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Henceforth fora ¢ (—o0, 0], we define,/a to be the (unique) square root af
that lies in RHP. Then using Corollary 3, we prove the following:

Lemma 4. If A€ M, (C) is an upper triangular matrix such that(A) N (—oo, 0] =
¢, then there is a unique matrix B such that = A ando (B) c RHP. Moreover
this matrix B is upper triangular.

Proof. Let

all alz .« .. .« . aln
0 ax a2 e az

. s 0 ap—1n—-1 An—1n
o .. ... 0 Ann
wherea;; ¢ (—o0, 0] for 1 < i < n. By induction onn we demonstrate the unique-
ness and upper triangular part of the claim.
If n =1, thenB = ,/ay; is the claimed unique square rootAf Assume, then,
that the assertion is correct in the case 1. Let

Bi1 b1z
B= ,
[@1 bZZ}

with B11 € M,_1(C) and setB2 = A. Then
B2 B2, +bioby;  (Bi1+ b22D)b1z .
byi(Bi1+ba2l)  bibi2+ b3,
Since B2 = A, b3,(B11+ b22l) = 0. If B11 + b22l is nonsingular, thems; = 0.
Then,

| Bi1 b12
B = |: 0 b22:| ’

Now b2z = /a,,, and with the inductive assumption thB4; is the unique square
rootof A1 (the upperlefin — 1) x (n — 1) principal submatrix oA) with o (B11) C
RHP andB11 upper triangular, it is easy to calculdtg and thusB is uniquely deter-
mined. If B11 + bp2I were singular and>1 ++ 0, then—b22 would be an eigenvalue
of B11 (andb21 would be a corresponding left eigenvector). By Corollary 3, however,
the eigenvalues d would then be those d#11, besides-b22, together with the two
eigenvalues of
—b22  b5b12
X = [ 1 2blzz i| ’

However, since tra¢e&) = 0, the requirement that(B) ¢ RHP would then be con-
tradicted.

It remains only to ensure the existence of any squareBamtA with the given
hypotheses o\, and witho (B) ¢ RHP. This can be done most easily as in [1]
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by letting B be an upper triangular matrix, settiltf = A, and observing that it is
possible to solve foB, starting with the main diagonal and then solving for each
superdiagonal successively. Thus

i—1
1 J
bii = aii, bij = ———— | aij — bixbyj | . i < J,
V e |
and sincey; € (—oo, 0] then,/a;; is in RHP for each. O

Remarks. There may be square roots of an upper triangular matrix that are not
upper triangular (as discussed in [1]), for example,

2

1 0 1 1 1 0
0 1 1| =10 2 0].
0 1 -1 0O 0 2

Lemma 4 states that the square root ma@rimust be upper triangular, with the given
hypotheses oA, and when we require(B) Cc RHP, which is not evident from [2].
The procedure described in [1] was primarily intended for matrices with real entries,
for which we included the details since we modify their procedure below. Theorem
5 below can also be obtained from the theory of Jordan Form and primary matrix
functions in the way outlined in [5, pp. 287, 488], where the spectrum of fesr

real and positive. We note that our proofs are quite different.

3. Results with simplified proofs

Theorem 5 is a natural consequence of Lemma 4, and we will use it to prove
Theorem 7.

Theorem 5. Let A € M, (C) be such thab (A) N (—oo, 0] = ¥. Then there is a
uniqueB € M, (C) such thatB2 = A with o(B) C RHP.

Proof. Letk; (i =1, 2,...,n)bethe eigenvalues &f From Schur’s theorem, there
is a unitary matrixJ such that
Al aiz -+ aip
a=yr| 0 P2 U=U*AU.
: PR anfln
0O -.- 0 An

Then from Lemma 4, there is a unique upper triangular m&tixich thatC2 = A’
ando (C) ¢ RHP. We can take8 = U*CU. Nowif B, B' € M, satisfyB2 = B'?> =
A ando (B), o (B’) C RHP, then
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Aroaiz - any

0 % — UAU* = (UBU*)2 = (UB'U"2.
N cee . an—ln

0 ... 0 A,

The uniquenessin Lemma 4 givEBU* = U B’U*, which impliesB = B’. 0O

Corollary 6. Let A € M,,(R) be such that (A) N (—oo, 0] = @. Then there is a
uniqueB € M, (R) such thatB? = A with o(B) C RHP.

Proof. If we show that forA € M, (R) there existsB € M, (R) with B2 = A and
o (B) c RHP, then the uniqueness follows from the uniqueness of Theorem 5.

We first perform a similarity or\ with S € M, (R), so thatS~1AS is in upper
Hessenberg form with % 1 blocks or 2x 2 blocks of form

[_Z Z} € Ma(R)

down the diagonal. Using the real Jordan form described in [4, Theorem 3.4.5], we
know that we can perform this similarity, and we shall arrange for all of thes@ 2
diagonal blocks to be placed adjacent to each other down the diagonal starting from
the top left corner, so that thereafter alk1l diagonal blocks are placed adjacent to
each other down to the bottom right corner.

To find a square roda for S~1AS we modify the procedure of Bjérck and Hamm-
arling [1]. B will be an upper Hessenberg matrix with an entry below the diagonal
when there is a % 2 block of form

B

on the diagonal o8—1AS. Thus, if (say) one of these 2 2 blocks is in the top left
corner ofS~1AS, then take

—a +va?+b?

b12= — = —b21,

solve forby1 in the equatiorby1b12 = b/2, and seby2 = b11. Continue in this way
determining all 2x 2 and 1x 1 blocks down the diagonal & (the 1x 1 blocks are
determined as previously described)nlis even, now, take all ¥ 1 blocks in pairs
to form 2 x 2 blocks where the bottom left entry of eackx 2 block is 0, and the
top right entry determined as previously described.iff odd, take all 1x 1 blocks
in pairs, except that the very bottom right entrySfLAS is left unpaired, and will
be dealt with as described below. Suppose again nowntigeven and considés
as having its top two rows consisting of thex2 blocksB11, B12, B13, - .., Bin,
wheren = 2m. ThenBj, can be solved for in the equatidi1B12 + B12B22 = A12
(wheres—1AS = (A;)) is written as a matrix of % 2 blocks) in the usual way using
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Kronecker products [5, Theorem 4.4.6], sig;g has its eigenvalues in RHP for each
i,1<i < m.Proceedingin this way we can determine ak 2 blocksB;; 1 down

the (block) superdiagonal adjacent to the main diagonal. Thus, we are performing
a 2x 2 block version of Bjorck and Hammerling’s [1] method. Continue in this
way for all 2x 2 blocks inB solving for each (block) superdiagonal successively.

If nis odd, wherex = 2m + 1, proceed exactly as above wheiis even, with the

top left (n — 1) x (n — 1) block of B as a matrix of 2« 2 blocks. The last column

is determined by takin®;,+1) as a column vector k2, for eachi, 1<i < m.
Moreover, takeB;,+1)m+1) = bnn @s an element dR, and in this case;; + by, [

is invertible. Again, each superdiagonal can be solved for successivély.

For a comparison of stable algorithms to compute matrix square roots see [3]. In
the above algorithm all 2 2 blocks ofB may be solved for explicitly in terms of
entries if desired.

We note that both existence and uniqueness fail(il) N (—oo, 0] = @ is re-
placed byo (A) N (—o0, 0) = @ in the statement of Theorem 5. For example,

[0 1
0 0
has no square root and
[0 0 1
0 0 O
|0 0 0

has the family of square roots

[0 x 0
0 0 I/x|, xeC\{0}.
|0 0 0

In order to prove Theorem 7, we will use Lyapunov’s theorem which is most
commonly stated wittd € M,,(C) positive stable, that is, each eigenvalué\as$ in
RHP.

Lyapunov’s theorem. Let A € M, (C) be positive stable. IAX + X A* is positive
definitg then X is positive definitavhereX € M, (C).

Although a more general form of Lyapunov’s theorem is given in [5, Theorem
2.2.1], the above version is all we need. Let us call the/4)-cone” that wedge-
shaped region of the complex plane bounded by the lines+x, more precisely
given by{z € C\{0} | Arg(z) < m/4}.

Theorem 7[7,8]. If A € M, (C) is such thatF(A) N (—oo, 0] = @, then there is
a uniqueB € M, (C) such thatB? = A and F(B) c RHP. Moreover if Im(A) =
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(A — A*)/2i is positive definitethenIm(B) is positive definitewhile if Im(A) is
negative definitethenlm(B) is negative definite.

Proof. SinceF(A) N (—oo, 0] = @, there is9 such thatd| < n/2 andF(€?A) C
RHP [5, proof of Theorem 1.3.5]. PGt = € A, soC has positive definite Hermitian
part ando (C) € RHP. From Theorem 5 there is a uniqlee M,(C) such that
D? = C with o (D) C RHP.

Write

D(D + D*) + (D + D*)D* = D?> + D*2 4+ 2DD* = C + C* 4+ 2DD*.

SinceC + C* is positive definite andD is positive stable, Lyapunov’s theorem im-
plies thatD + D* is positive definite. Le8 = e '/2D. ThenB? = e/ D2 = ¢

C = A. We claim thatB + B* is positive definite. We have just shown th&t/éB +

e 19/2 p* js positive definite, that i (€9/2B) c RHP, so thaf (B) C e '?/2(RHP).
Now, let & € o(B), then22 € 6(A) and ¥)2 € o(€?A) c F(d?A) c RHP. So
€922 € RHP and+€?/2) e (n/4)-cone. Buttx € e '%/2(1/4)-conec e ?/2RHP
impliesi € e€%/2(n/4)-cone, and so'&. e €7/2(/4)-conec RHP, since-nt/4 <
6/2 < n/4. Thus & B is positive stable. Then consider

Since & + e = 2cosw and—n/2 < 6 < /2, we know & + e ¥ ~ 0, and
because'®A + e A* is positive definite, we can conclude thait+ B* is positive
definite as before.

The uniqueness @ follows as a special case of Theorem 5.

For the last part of the theorem, suppose thatdirs positive definite and con-
sider

s(B=5 B— B\ .. B2 — B2 A — A*
(2i>+<2i) B T

Since IN{A) is positive definite andB is positive stable, so Lyapunov’s theorem
tells us that IniB) is positive definite. Similarly, IfiA) negative definite implies that
Im(B) is negative definite. [

4. Answer to an open question

In [6] the following question was mentioned but left unanswered: Suppose that
A € M, (R) satisfiesF(A) N (—oo, 0] = . DoesA then have a square roaf/2 e
M, (R) such thatF (AY2) c RHP? (It was, of course, known that it had a complex
such square root.) Our considerations allow us to answer this question.

Corollary 8. If A € M,(R) issuchthatF(A) N (—oo, 0] = ¥, then there is a unique
B € M,(R) such thatB? = A and F(B) C RHP.
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Proof. Sinceo (A) N (—o0, 0] = @, we know from Corollary 6 that there is a unique
B € M,(R) suchthat3? = A, witho (B) c RHP. We saw in the proof of Theorem 7
thatA has a unique square roBt such thatF(B") ¢ RHP. But therr (B’) C RHP,
so we must hav = B’. Hence the question is answered affirmatively]
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