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Abstract

Let A ∈ Mn(C). Let σ(A) denote the spectrum ofA, andF(A) the field of values ofA. It
is shown that ifσ(A) ∩ (−∞, 0] = ∅, thenA has a unique square rootB ∈ Mn(C) with σ(B)

in the open right (complex) half plane. This result and Lyapunov’s theorem are then applied
to prove that ifF(A) ∩ (−∞, 0] = ∅, thenA has a unique square root with positive definite
Hermitian part. We will also answer affirmatively an open question about the existence of a
real square rootB ∈ Mn(R) for A ∈ Mn(R) with F(A) ∩ (−∞, 0] = ∅, where the field of
values ofB is in the open right half plane. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

If A ∈ Mn(C) has a square root (conditions for this are given in [5, Theorem
6.4.12]), typically it will have many square roots. However, if mild spectral condi-
tions are placed upon the square root, there will often be a “natural” unique one. For
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example, it is well known (and quite useful) that a positive (semi-) definite matrix
has a unique positive (semi-) definite square root [4, Theorem 7.2.6], and that this
classical fact may be extended to matrices with real and positive spectrum having a
unique square root of the same type [5, pp. 287, 488]. Typically, this natural square
root may be given via spectral methods, convergent power series, or an integral rep-
resentation. Our purpose here is to present greatly simplified proofs, extend known
uniqueness statements, and to show that the extensions can be applied to answer an
open question. When a matrix in a given classC always has a square root inC, it
is an interesting issue to understand for whichC a uniqueness statement also holds.
Our results will be of this type.

We denote byσ(A) the set of eigenvalues ofA ∈ Mn(C) (where we agree to
list all eigenvalues in the set, including repetitions, e.g. ifI is the 3× 3 identity
matrix we will write σ(I) = {1, 1, 1}). By RHP, we mean the open right half of
the complex plane and byRHP its closure (imaginary axis included). The Hermi-
tian part ofA ∈ Mn(C) is H(A) = 1

2(A + A∗). The (classical) field of values of
A ∈ Mn(C) is defined byF(A) = {x∗Ax: x∗x = 1, x ∈ Cn}. It is easy to show that
A has positive (semi-) definite Hermitian part if and only ifF(A) ⊂ RHP (RHP).
Other general properties ofF(A), such as compactness and convexity [5, Theorem
1.4.2], are discussed in [5].

It is known [2] that ifA ∈ Mn(C) andσ(A) ⊂ RHP (or more generally,σ(A) ∩
(−∞, 0] = ∅), then there is a square root ofA, A1/2 such thatσ(A1/2) ⊂ RHP. The
region RHP may not be replaced byRHP in this statement without additional knowl-
edge about the Jordan canonical form ofA, because some singular matrices have no
square roots. Similarly, it is known [7,8] that ifA ∈ Mn(C) andH(A) is positive
definite (or more generally,F(A) ∩ (−∞, 0] = ∅), then there is a square root of
A, A1/2 such thatH(A1/2) is positive definite. There are uniqueness statements to
go along with both the spectral and field of value facts just mentioned. We provide
simplified proofs of these results.

In [6] the question is mentioned and left open as to whetherA ∈ Mn(R), such
thatH(A) is positive definite, has a square rootA1/2 ∈ Mn(R) such thatH(A1/2) is
positive definite. We will show that the answer to this question is in the affirmative.

2. Preliminaries

Lemma 1 extends a result in [9, p. 254]. This extended result for three block
matricesA, B andC has a further obvious extension to block tridiagonal matrices
with multiple blocks in the appropriate form. We will useei to denote the vector with
a one in theith position and zeroes elsewhere.

Lemma 1. LetA ∈Ml(C), B ∈Mm(C), C ∈Mn(C) andσ(A) = {α1, α2, . . . , αl},
σ (B) = {β1, β2, . . . , βm} andσ(C) = {γ1, γ2, . . . , γn}. Definea, b1, bm and c to
be eigenvectors as follows:
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Aa = α1a, Bb1 = β1b1, b∗
mB = βmb∗

m, c∗C = γnc
∗

and lety ∈ Cl , x, z ∈ Cm, w ∈ Cn. Then the matrix

D =

 A ax∗ 0

b1y
∗ B zc∗

0 wb∗
m C




has eigenvaluesα2, α3, . . . , αl, β2, β3, . . . , βm−1, γ1, γ2, . . . , γn−1, together with
the two eigenvalues of[

α1 x∗b1
y∗a β1

]

and the two eigenvalues of[
βm b∗

mz

c∗w γn

]
.

Proof. There are unitary matricesU ∈ Ml(C), V ∈ Mm(C), W ∈ Mn(C) such that

U∗AU =



αl · · · 0

∗ . . .
...

∗ ∗ α1


 , W∗CW =




γn · · · 0

∗ . . .
...

∗ ∗ γ1


 ,

where

Uel = a

‖a‖ , We1 = c

‖c‖ and V ∗BV =



β1 ∗ ∗
...

. . . ∗
0 · · · βm


 ,

where

V e1 = b1

‖b1‖ and V em = bm

‖bm‖ .

Then we have
U∗ 0 0

0 V ∗ 0
0 0 W∗





 A ax∗ 0

b1y
∗ B zc∗

0 wb∗
m C





U 0 0

0 V 0
0 0 W




=

 U∗AU U∗ax∗V 0

V ∗b1y
∗U V ∗BV V ∗zc∗W

0 W∗wb∗
mV W∗CW
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=




αl 0 0 0

∗ . . . 0 0
∗ ∗ α2 0
∗ ∗ ∗ α1 ‖a‖x∗V

‖b1‖y∗U β1 ∗ ∗ ∗ ∗
0 β2 ∗ ∗ ∗
0 0

... ∗ ∗
0 0 0 βm−1 ∗ ‖c‖V ∗z
0 0 0 0 βm

γn 0 0 0
‖bm‖W∗w ∗ γn−1 0 0

∗ ∗ . . . 0
∗ ∗ ∗ γ1




The two central 2× 2 blocks may be easily seen to be[
α1 ‖a‖ x∗b1‖b1‖

‖b1‖ y∗a
‖a‖ β1

]
=

[
1 0
0 ‖b1‖‖a‖

] [
α1 x∗b1
y∗a β1

][
1 0
0 ‖a‖

‖b1‖

]

and [
βm ‖c‖ b∗

mz

‖bm‖
‖bm‖ c∗w

‖c‖ γn

]
=

[
1 0
0 ‖bm‖

‖c‖

] [
βm b∗

mz

c∗w γn

] [
1 0
0 ‖c‖

‖bm‖

]
. �

Corollary 2 [9]. Let A ∈ Ml(C), B ∈ Mm(C), with σ(A) = {α1, α2, . . . , αl}, and
σ(B) = {β1, β2, . . . , βm}. Let a and b be right eigenvectors, so thatAa = α1a,

Bb = β1b, while x ∈ Cm andy ∈ Cl . Then the matrix[
A ax∗

by∗ B

]
has eigenvaluesα2, α3, . . . , αl , β2, β3, . . . , βm and the two eigenvalues of[

α1 x∗b
y∗a β1

]
.

Corollary 3. LetB ∈ Mm(C), C ∈ Mn(C), and letσ(B) = {β1, β2, . . . , βm}, and
σ(C) = {γ1, γ2, . . . , γn}. Let b and c be left eigenvectors, so thatb∗B = βmb∗, c∗C
= γnc

∗, while z ∈ Cm andw ∈ Cn. Then the matrix[
B zc∗

wb∗ C

]
has eigenvaluesβ1, β2, . . . , βm−1, γ1, γ2, . . . , γn−1 and the two eigenvalues of[

βm b∗z
c∗w γn

]
.
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Henceforth fora 6∈ (−∞, 0], we define
√

a to be the (unique) square root ofa
that lies in RHP. Then using Corollary 3, we prove the following:

Lemma 4. If A ∈Mn(C) is an upper triangular matrix such thatσ(A) ∩ (−∞, 0] =
∅, then there is a unique matrix B such thatB2 = A andσ(B) ⊂ RHP. Moreover,
this matrix B is upper triangular.

Proof. Let

A =




a11 a12 · · · · · · a1n

0 a22 a23 · · · a2n

... · · · . . . · · · ...

... · · · 0 an−1n−1 an−1n

0 · · · · · · 0 ann




,

whereaii /∈ (−∞, 0] for 1 6 i 6 n. By induction onn we demonstrate the unique-
ness and upper triangular part of the claim.

If n = 1, thenB = √
a11 is the claimed unique square root ofA. Assume, then,

that the assertion is correct in the casen − 1. Let

B =
[
B11 b12
b∗

21 b22

]
,

with B11 ∈ Mn−1(C) and setB2 = A. Then

B2 =
[

B2
11 + b12b

∗
21 (B11 + b22I)b12

b∗
21(B11 + b22I) b∗

21b12 + b2
22

]
.

SinceB2 = A, b∗
21(B11 + b22I) = 0. If B11 + b22I is nonsingular, thenb∗

21 = 0.
Then,

B =
[
B11 b12
0 b22

]
.

Now b22 = √
ann, and with the inductive assumption thatB11 is the unique square

root ofA11 (the upper left(n − 1) × (n − 1) principal submatrix ofA) with σ(B11) ⊂
RHP andB11 upper triangular, it is easy to calculateb12 and thusB is uniquely deter-
mined. IfB11 + b22I were singular andb21 /= 0, then−b22 would be an eigenvalue
of B11 (andb21 would be a corresponding left eigenvector). By Corollary 3, however,
the eigenvalues ofB would then be those ofB11, besides−b22, together with the two
eigenvalues of

X =
[−b22 b∗

21b12
1 b22

]
.

However, since trace(X) = 0, the requirement thatσ(B) ⊂ RHP would then be con-
tradicted.

It remains only to ensure the existence of any square rootB of A with the given
hypotheses onA, and withσ(B) ⊂ RHP. This can be done most easily as in [1]
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by lettingB be an upper triangular matrix, settingB2 = A, and observing that it is
possible to solve forB, starting with the main diagonal and then solving for each
superdiagonal successively. Thus

bii = √
aii, bij = 1√

aii + √
ajj


aij −

j−1∑
k=i+1

bikbkj


 , i < j,

and sinceaii 6∈ (−∞, 0] then
√

aii is in RHP for eachi. �

Remarks. There may be square roots of an upper triangular matrix that are not
upper triangular (as discussed in [1]), for example,

1 0 1
0 1 1
0 1 −1




2

=

1 1 0

0 2 0
0 0 2


 .

Lemma 4 states that the square root matrixB must be upper triangular, with the given
hypotheses onA, and when we requireσ(B) ⊂ RHP, which is not evident from [2].
The procedure described in [1] was primarily intended for matrices with real entries,
for which we included the details since we modify their procedure below. Theorem
5 below can also be obtained from the theory of Jordan Form and primary matrix
functions in the way outlined in [5, pp. 287, 488], where the spectrum of theirA is
real and positive. We note that our proofs are quite different.

3. Results with simplified proofs

Theorem 5 is a natural consequence of Lemma 4, and we will use it to prove
Theorem 7.

Theorem 5. Let A ∈ Mn(C) be such thatσ(A) ∩ (−∞, 0] = ∅. Then there is a
uniqueB ∈ Mn(C) such thatB2 = A with σ(B) ⊂ RHP.

Proof. Letλi (i = 1, 2, . . . , n) be the eigenvalues ofA. From Schur’s theorem, there
is a unitary matrixU such that

A = U∗




λ1 a12 · · · a1n

0 λ2 · · · ...
... · · · . . . an−1n

0 · · · 0 λn


U = U∗A′U.

Then from Lemma 4, there is a unique upper triangular matrixC such thatC2 = A′
andσ(C) ⊂ RHP. We can takeB = U∗CU . Now if B,B ′ ∈ Mn satisfyB2 = B ′2 =
A andσ(B), σ (B ′) ⊂ RHP, then
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λ1 a12 · · · a1n

0 λ2 · · · ...
... · · · . . . an−1n

0 · · · 0 λn


 = UAU∗ = (UBU∗)2 = (UB ′U∗)2.

The uniqueness in Lemma 4 givesUBU∗ = UB ′U∗, which impliesB = B ′. �

Corollary 6. Let A ∈ Mn(R) be such thatσ(A) ∩ (−∞, 0] = ∅. Then there is a
uniqueB ∈ Mn(R) such thatB2 = A with σ(B) ⊂ RHP.

Proof. If we show that forA ∈ Mn(R) there existsB ∈ Mn(R) with B2 = A and
σ(B) ⊂ RHP, then the uniqueness follows from the uniqueness of Theorem 5.

We first perform a similarity onA with S ∈ Mn(R), so thatS−1AS is in upper
Hessenberg form with 1× 1 blocks or 2× 2 blocks of form[

a b

−b a

]
∈ M2(R)

down the diagonal. Using the real Jordan form described in [4, Theorem 3.4.5], we
know that we can perform this similarity, and we shall arrange for all of these 2× 2
diagonal blocks to be placed adjacent to each other down the diagonal starting from
the top left corner, so that thereafter all 1× 1 diagonal blocks are placed adjacent to
each other down to the bottom right corner.

To find a square rootB for S−1AS we modify the procedure of Björck and Hamm-
arling [1]. B will be an upper Hessenberg matrix with an entry below the diagonal
when there is a 2× 2 block of form[

a b

−b a

]

on the diagonal ofS−1AS. Thus, if (say) one of these 2× 2 blocks is in the top left
corner ofS−1AS, then take

b12 =
√

−a + √
a2 + b2

2
= −b21,

solve forb11 in the equationb11b12 = b/2, and setb22 = b11. Continue in this way
determining all 2× 2 and 1× 1 blocks down the diagonal ofB (the 1× 1 blocks are
determined as previously described). Ifn is even, now, take all 1× 1 blocks in pairs
to form 2× 2 blocks where the bottom left entry of each 2× 2 block is 0, and the
top right entry determined as previously described. Ifn is odd, take all 1× 1 blocks
in pairs, except that the very bottom right entry ofS−1AS is left unpaired, and will
be dealt with as described below. Suppose again now thatn is even and considerB
as having its top two rows consisting of the 2× 2 blocksB11, B12, B13, . . . , B1m,
wheren = 2m. ThenB12 can be solved for in the equationB11B12 + B12B22 = A12
(whereS−1AS = (Aij ) is written as a matrix of 2× 2 blocks) in the usual way using
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Kronecker products [5, Theorem 4.4.6], sinceBii has its eigenvalues in RHP for each
i, 1 6 i 6 m. Proceeding in this way we can determine all 2× 2 blocksBii+1 down
the (block) superdiagonal adjacent to the main diagonal. Thus, we are performing
a 2× 2 block version of Björck and Hammerling’s [1] method. Continue in this
way for all 2× 2 blocks inB solving for each (block) superdiagonal successively.
If n is odd, wheren = 2m + 1, proceed exactly as above whenn is even, with the
top left (n − 1) × (n − 1) block of B as a matrix of 2× 2 blocks. The last column
is determined by takingBi(m+1) as a column vector inR2, for eachi, 1 6 i 6 m.
Moreover, takeB(m+1)(m+1) = bnn as an element ofR, and in this caseBii + bnnI

is invertible. Again, each superdiagonal can be solved for successively.�

For a comparison of stable algorithms to compute matrix square roots see [3]. In
the above algorithm all 2× 2 blocks ofB may be solved for explicitly in terms of
entries if desired.

We note that both existence and uniqueness fail ifσ(A) ∩ (−∞, 0] = ∅ is re-
placed byσ(A) ∩ (−∞, 0) = ∅ in the statement of Theorem 5. For example,[

0 1
0 0

]

has no square root and
0 0 1

0 0 0
0 0 0




has the family of square roots
0 x 0

0 0 1/x
0 0 0


 , x ∈ C\{0}.

In order to prove Theorem 7, we will use Lyapunov’s theorem which is most
commonly stated withA ∈ Mn(C) positive stable, that is, each eigenvalue ofA is in
RHP.

Lyapunov’s theorem. LetA ∈ Mn(C) be positive stable. IfAX + XA∗ is positive
definite, then X is positive definite, whereX ∈ Mn(C).

Although a more general form of Lyapunov’s theorem is given in [5, Theorem
2.2.1], the above version is all we need. Let us call the “(p/4)-cone” that wedge-
shaped region of the complex plane bounded by the linesy = ±x, more precisely
given by{z ∈ C\{0} | Arg(z) < p/4}.

Theorem 7 [7,8]. If A ∈ Mn(C) is such thatF(A) ∩ (−∞, 0] = ∅, then there is
a uniqueB ∈ Mn(C) such thatB2 = A andF(B) ⊂ RHP. Moreover, if Im(A) =
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(A − A∗)/2i is positive definite, then Im(B) is positive definite, while if Im(A) is
negative definite, thenIm(B) is negative definite.

Proof. SinceF(A) ∩ (−∞, 0] = ∅, there isθ such that|θ | < p/2 andF(eiθA) ⊂
RHP [5, proof of Theorem 1.3.5]. PutC = eiθA, soC has positive definite Hermitian
part andσ(C) ⊂ RHP. From Theorem 5 there is a uniqueD ∈ Mn(C) such that
D2 = C with σ(D) ⊂ RHP.

Write

D(D + D∗) + (D + D∗)D∗ = D2 + D∗2 + 2DD∗ = C + C∗ + 2DD∗.
SinceC + C∗ is positive definite andD is positive stable, Lyapunov’s theorem im-
plies thatD + D∗ is positive definite. LetB = e−iθ/2D. ThenB2 = e−iθD2 = e−iθ

C = A. We claim thatB + B∗ is positive definite. We have just shown that eiθ/2B +
e−iθ/2B∗ is positive definite, that isF(eiθ/2B) ⊂ RHP, so thatF(B) ⊂ e−iθ/2(RHP).
Now, let λ ∈ σ(B), then λ2 ∈ σ(A) and eiθλ2 ∈ σ(eiθA) ⊂ F(eiθA) ⊂ RHP. So
eiθλ2 ∈ RHP and±eiθ/2λ ∈ (p/4)-cone. But±λ ∈ e−iθ/2(p/4)-cone⊂ e−iθ/2RHP
impliesλ ∈ e−iθ/2(p/4)-cone, and so eiθλ ∈ eiθ/2(p/4)-cone⊂ RHP, since−p/4 <

θ/2 < p/4. Thus eiθB is positive stable. Then consider

eiθB(B + B∗) + (B + B∗)e−iθB∗ = eiθB2 + e−iθB∗2 + (eiθ + e−iθ )BB∗.

Since eiθ + e−iθ = 2 cosθ and−p/2 < θ < p/2, we know eiθ + e−iθ > 0, and
because eiθA + e−iθA∗ is positive definite, we can conclude thatB + B∗ is positive
definite as before.

The uniqueness ofB follows as a special case of Theorem 5.
For the last part of the theorem, suppose that Im(A) is positive definite and con-

sider

B

(
B − B∗

2i

)
+

(
B − B∗

2i

)
B∗ = B2 − B∗2

2i
= A − A∗

2i
.

Since Im(A) is positive definite andB is positive stable, so Lyapunov’s theorem
tells us that Im(B) is positive definite. Similarly, Im(A) negative definite implies that
Im(B) is negative definite. �

4. Answer to an open question

In [6] the following question was mentioned but left unanswered: Suppose that
A ∈ Mn(R) satisfiesF(A) ∩ (−∞, 0] = ∅. DoesA then have a square rootA1/2 ∈
Mn(R) such thatF(A1/2) ⊂ RHP? (It was, of course, known that it had a complex
such square root.) Our considerations allow us to answer this question.

Corollary 8. If A ∈Mn(R) is such thatF(A) ∩ (−∞, 0] = ∅, then there is a unique
B ∈ Mn(R) such thatB2 = A andF(B) ⊂ RHP.
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Proof. Sinceσ(A) ∩ (−∞, 0] = ∅, we know from Corollary 6 that there is a unique
B ∈ Mn(R) such thatB2 = A, with σ(B) ⊂ RHP. We saw in the proof of Theorem 7
thatA has a unique square rootB ′ such thatF(B ′) ⊂ RHP. But thenσ(B ′) ⊂ RHP,
so we must haveB = B ′. Hence the question is answered affirmatively.�
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