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Abstract

We consider the problem of scaling a nondegenerate predistance matrix A to a doubly sto-
chastic matrix B. If A is nondegenerate, then there exists a unique positive diagonal matrix C

such that B = CAC. We further demonstrate that, if A is a Euclidean distance matrix, then B

is a spherical Euclidean distance matrix. Finally, we investigate how scaling a nondegenerate
Euclidean distance matrix A to a doubly stochastic matrix transforms the points that generate
A. We find that this transformation is equivalent to an inverse stereographic projection.
© 2004 Elsevier Inc. All rights reserved.
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1. Preliminaries

A square matrix B = (bij ) is doubly stochastic if and only if bij � 0 and Be =
e = BTe, where e = (1, . . . , 1)T. A matrix A can be scaled to a doubly stochas-
tic matrix B if and only if there exist strictly positive diagonal matrices D and E
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such that B = DAE. The literature on scaling matrices to doubly stochastic matrices
dates to at least as early as [11]. Only strictly positive A were considered in [11], but
that hypothesis can be relaxed to obtain Lemma 1 below. Recall that A and C are
permutation equivalent if there exist permutation matrices P and Q such C = PAQ,
and that A is completely irreducible if it is irreducible via permutation equivalence.

Lemma 1. If A can be scaled to a doubly stochastic matrix B = DAE, then B is
the only doubly stochastic matrix to which A can be scaled. Furthermore, if A is
completely irreducible, and if G and H are strictly positive diagonal matrices such
that B = GAH, then there exists t > 0 such that G = tD and H = E/t.

The following result states which matrices can be scaled to doubly stochastic
matrices. Derived from a theorem in [1], it is Remark 1 in [6].

Lemma 2. A square nonnegative matrix A can be scaled to a doubly stochastic
matrix if and only if A is permutation equivalent to a direct sum of completely irre-
ducible matrices. In particular, A can be scaled to a doubly stochastic matrix if A is
completely irreducible.

We study the possibility of scaling Euclidean distance matrices to doubly sto-
chastic matrices. The following terminology is becoming increasingly popular:

Definition 1. An n × n matrix A = (aij ) is a Euclidean distance matrix (EDM) if
and only if there exist p1, . . . , pn ∈ �d , n � 2 points in some d-dimensional Euclid-
ean space, such that aij = ‖pi − pj‖2. The smallest d for which this is possible is
the dimensionality of A.

Notice that the entries of an EDM are squared Euclidean distances, not the Euclidean
distances themselves. It is evident from Definition 1 that, if A = (aij ) is an EDM,
then

1. aij = ‖pi − pj‖2 � 0 (A has nonnegative entries);
2. aij = ‖pi − pj‖2 = ‖pj − pi‖2 = aji (A is symmetric); and
3. aii = ‖pi − pi‖2 = 0 (A is hollow).

We shall refer to a matrix that possesses these three properties as a predistance
matrix. Furthermore, if each off-diagonal entry of the predistance matrix A is strictly
positive, then we shall say that A is a nondegenerate predistance matrix. Notice that
an EDM is nondegenerate if and only if it is generated by distinct points.

Although the sections that follow are not concerned with computation, we note
that various researchers have proposed computational algorithms for the diagonal
scaling of a nonnegative matrix A. A polynomial-time complexity bound on the
problem of computing the scaling factors to a prescribed accuracy was derived in
[8]. We do not know if the assumption that A is an EDM can be exploited to sim-
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plify computation. If A is an EDM, then a well-known constructive characterization
of EDMs [10,14] allows one to compute a configuration of points that generate
A. This calculation is the basis for classical multidimensional scaling [13,2] (not
to be confused with diagonal scaling), a visualization technique that is popular in
psychometrics and statistics.

2. Doubly stochastic scaling

We begin with a straightforward application of Lemma 2:

Theorem 1. Every nondegenerate predistance matrix can be scaled to a doubly
stochastic matrix.

Proof. Let A be an n × n predistance matrix. If n = 2, then

A=
(

0 a

a 0

)

with a > 0. Because(
0 1
1 0

)(
0 a

a 0

) (
1 0
0 1

)
=

(
a 0
0 a

)
.

A is permutation equivalent to the direct sum of two completely irreducible matrices
and the claim follows from Lemma 2.

Now suppose that n > 2. Let P and Q denote any two n × n permutation matri-
ces. Because A is a nondegenerate predistance matrix, A has exactly one zero entry
in each row and column. The matrix PA is a permutation of the rows of A, so it
must have exactly one zero entry in each row and column. And the matrix PAQ is
a permutation of the columns of PA, so it must have exactly one zero entry in each
row and column. Therefore, it is impossible to find square matrices A11 and A22 that
allow us to write PAQ in the form

PAQ =
(
A11 0
A21 A22

)
.

Thus, A is completely irreducible and again the claim follows from Lemma 2. �

We proceed to demonstrate that the scaling guaranteed by Theorem 1 can be writ-
ten in a canonical form:

Theorem 2. If A is a nondegenerate predistance matrix, then there exists a unique
strictly positive diagonal matrix C such that CAC is doubly stochastic.

Proof. By Theorem 1, there exist strictly positive diagonal matrices D and E such
that B = DAE is doubly stochastic. Because A is symmetric, BT = EAD. But BT
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is doubly stochastic because B is doubly stochastic; hence, it must be that BT = B

by virtue of Lemma 1.
We have shown that both DAE and EAD scale A to the same doubly stochastic

matrix B. Now we suppose that n � 3, in which case A is completely irreducible
and the second statement in Lemma 1 applies.

If A is completely irreducible, then there must exist t > 0 such that E = tD, in
which case B = tDAD. Then B = CAC upon setting C = √

tD. This demonstrates
existence, which can also be deduced by applying Corollary 2.2 in [7]. To demon-
strate uniqueness, suppose that we had B = CAC and B = MAM . Again applying
Lemma 1, there must exist t > 0 such that M = tC and M = C/t . Then t = 1 and
M = C, as claimed.

The case n = 2 is covered by a straightforward calculation. �

Henceforth, whenever we refer to the scaling of a nondegenerate predistance
matrix to a doubly stochastic matrix, we mean the scaling of Theorem 2.

Let A be a nondegenerate predistance matrix and let B denote the doubly stochas-
tic matrix to which A scales. We have already remarked (in the proof of Theorem 2)
that B is symmetric. Writing B = CAC and bij = ciiaij cjj , we see that B is itself
a nondegenerate predistance matrix. We now impose the additional assumption that
A is an EDM and obtain the main result of this section:

Theorem 3. Let A be a nondegenerate EDM and let B be the doubly stochastic
matrix to which A scales. Then B is a nondegenerate EDM.

Proof. Theorem 3.3 in [3] states that a nonzero EDM has exactly one positive
eigenvalue. Now B = CAC by Theorem 2, and Sylvester’s Law of Inertia states
that congruence relations preserve inertia, i.e., the numbers of positive and nega-
tive eigenvalues. (See, for example, Section 4.5 of [5].) It follows that B has ex-
actly one positive eigenvalue. Furthermore, Be = e because B is doubly stochastic.
Combining these facts, it follows from Theorem 2.2 in [4] that B is an EDM. �

3. Doubly stochastic scaling and spherical distance matrices

Theorem 3 directs our attention to nondegenerate EDMs that are doubly stochas-
tic. We proceed to investigate such matrices. Crucial to our investigation is the fol-
lowing:

Definition 2. An EDM is spherical if and only if it can be generated by points that
lie on a sphere.

The following characterization of spherical distance matrices concatenates Theo-
rem 3.4 in [12] and Theorem 2.2 in [3]. Recall that the centroid of a finite number of
points in a vector space is the arithmetic mean of the points.
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Lemma 3. An n × n EDM B is spherical if and only if there exists v ∈ �n and λ �
0 such that Bv = λe and vTe = 1, in which case the radius of the sphere is

√
λ/2.

Furthermore, the center of the sphere coincides with the centroid of the generating
configuration if and only if e is an eigenvector of B.

If the EDM B is doubly stochastic, then Be = e and Lemma 3 applies with v =
e/n and λ = 1/n. Hence,

Theorem 4. Let B denote an n × n EDM. Then B is doubly stochastic if and only
if B is generated by a configuration of points that lie on a sphere whose center is the
centroid of the configuration and whose radius is

√
1/2n.

The fact that the doubly stochastic scaling of Theorem 2 scales arbitrary EDMs
to spherical EDMs has several interesting consequences. For example, the following
result was demonstrated in [3]:

Lemma 4. Suppose that A is an EDM and rank(A) = r. If A is spherical, then the
dimensionality of A is r − 1; otherwise the dimensionality of A is r − 2.

Because congruence relations preserve rank, it follows that rank(B) = rank(CAC) =
rank(A). Hence,

Theorem 5. Let A denote a nondegenerate EDM with dimensionality d. Let B

denote the doubly stochastic EDM to which it scales. If A is spherical, then the
dimensionality of B is d; otherwise the dimensionality of B is d + 1.

A related consequence of Theorem 4 concerns the configurations of points that
generate a nondegenerate EDM and the doubly stochastic EDM to which it scales.
Somehow, doubly stochastic scaling transforms an arbitrary configuration into one
that lies on a sphere. To investigate how, we performed several numerical experi-
ments, described in [9]. Several features of the resulting configurations reminded
David Lutzer of properties possessed by stereographic projection. In Section 4, we
demonstrate that there is indeed an intimate connection between the doubly stochas-
tic scaling of EDMs and stereographic projection.

4. Doubly stochastic scaling and stereographic projection

Given r > 0, let

Sd(r) =
{
x ∈ �d+1 :

d∑
i=1

x2
i + (xd+1 − r)2 = r2

}
,



258 C.R. Johnson et al. / Linear Algebra and its Applications 397 (2005) 253–264

the sphere of radius r that is tangent to the hyperplane xd+1 = 0 at the origin θ =
(0, . . . , 0)T of �d+1. The point (0, . . . , 0, 2r)T ∈ Sd(r) that is diametrically opposed
to the point of tangency is called the north pole of Sd(r). Given a point p′ ∈ Sd(r)

that is not the north pole, let � denote the straight line that passes from the north pole
through p′. The point p at which � intersects the hyperplane xd+1 = 0 is called the
stereographic projection of p′ into the hyperplane xd+1 = 0.

Stereographic projection defines a bijection between Sd(r) less its north pole and
the hyperplane xd+1 = 0. We will be interested in the mapping defined by the inverse
of stereographic projection, which has the following explicit representation:

Lemma 5. Let p denote the stereographic projection of p′ = (p′
1, . . . , p

′
d , p

′
d+1)

T ∈
Sd(r) into the hyperplane xd+1 = 0. Then

p′
d+1 = 2r‖p‖2

4r2 + ‖p‖2
and p′

i = 4r2pi

4r2 + ‖p‖2
(1)

for i = 1, . . . , d.

Proof. Because � must pass through both (0, . . . , 0, 2r)T, the north pole of Sd(r),
and p = (p1, . . . , pd, 0)T, each point through which � passes can be written as

�(t) = (0, . . . , 0, 2r)T + t (p1, . . . , pd,−2r)T

for some t ∈ �.
We seek t /= 0 for which �(t) ∈ Sd(r). Let

tp = 4r2

4r2 + ‖p‖2
,

so that �(tp) is the point specified in (1). Because

d∑
i=1

[tppi]2 + [(2r)(1 − tp) − r]2 = t2
p‖p‖2 + r2(1 − 2tp)

2

= r2 + t2
p(4r

2 + ‖p‖2) − 4r2tp = r2,

�(tp) ∈ Sd(r) and therefore �(tp) = p′. �

Our argument that scaling an EDM to a doubly stochastic matrix is related to
stereographic projection will rely on the following technical fact:

Lemma 6. Let p and q denote the stereographic projections of p′, q ′ ∈ Sd(r) into
the hyperplane xd+1 = 0. Then

‖p′ − q ′‖2 = 16r4‖p − q‖2

(4r2 + ‖p‖2)(4r2 + ‖q‖2)
.
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Proof. Let ρ = 4r2 and let

κ = ρ2

(ρ + ‖p‖2)2(ρ + ‖q‖2)2
.

Then, for i = 1, . . . , d ,

(p′
i − q ′

i )
2 =

(
ρpi

ρ + ‖p‖2
− ρqi

ρ + ‖q‖2

)2

= κ
[
(ρ + ‖q‖2)pi − (ρ + ‖p‖2)qi

]2

= κ
[
ρ2(pi − qi)

2 + ‖q‖4p2
i + ‖p‖4q2

i + 2ρ‖q‖2pi(pi − qi)

− 2ρ‖p‖2qi(pi − qi) − 2‖p‖2‖q‖2piqi
]

and therefore

1

κ

d∑
i=1

(p′
i − q ′

i )
2 = ρ2‖p − q‖2 + ‖q‖4‖p‖2 + ‖p‖4‖q‖2

+ 2ρ
(‖q‖2‖p‖2 + ‖p‖2‖q‖2) − 2ρ

(‖p‖2 + ‖q‖2)〈p, q〉
− 2‖p‖2‖q‖2〈p, q〉

= ρ2‖p − q‖2 + ‖p‖2‖q‖2‖p − q‖2 + 4ρ‖p‖2‖q‖2

− 2ρ
(‖p‖2 + ‖q‖2)〈p, q〉.

Also,

(p′
d+1 − q ′

d+1)
2 =

(
2r‖p‖2

ρ + ‖p‖2
− 2r‖q‖2

ρ + ‖q‖2

)2

= ρ(
ρ + ‖p‖2

)2(
ρ + ‖q‖2

)2

(
ρ‖p‖2 + ‖p‖2‖q‖2

− ρ‖q‖2 − ‖p‖2‖q‖2)2

= κρ
(‖p‖4 − 2‖p‖2‖q‖2 + ‖q‖4);

hence,

1

κ
‖p′ − q ′‖2 = 1

κ

d∑
i=1

(p′
i − q ′

i )
2 + 1

κ
(p′

d+1 − q ′
d+1)

2

=ρ2‖p − q‖2 + ‖p‖2‖q‖2‖p − q‖2 + 4ρ‖p‖2‖q‖2

− 2ρ
(‖p‖2 + ‖q‖2)〈p, q〉 + ρ

(‖p‖4 − 2‖p‖2‖q‖2 + ‖q‖4)
=ρ2‖p − q‖2 + ‖p‖2‖q‖2‖p − q‖2 + ρ

[
4‖p‖2‖q‖2

− 2
(‖p‖2 + ‖q‖2)〈p, q〉 + ‖p‖4 − 2‖p‖2‖q‖2 + ‖q‖4]
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=ρ2‖p − q‖2 + ‖p‖2‖q‖2‖p − q‖2 + ρ
[(‖p‖2 + ‖q‖2)2

− 2
(‖p‖2 + ‖q‖2)〈p, q〉]

=ρ2‖p − q‖2 + ‖p‖2‖q‖2‖p − q‖2

+ ρ
(‖p‖2 + ‖q‖2)‖p − q‖2

=(
ρ + ‖p‖2)(ρ + ‖q‖2)‖p − q‖2.

Multiplying both sides of this expression by κ now yields the desired result. �

An immediate consequence of Lemma 6 is that stereographic projection is related
to the diagonal scaling of EDMs.

Theorem 6. Let {p1, . . . , pn} denote the stereographic projections of p′
1, . . . , p

′
n ∈

Sd(r) into the hyperplane xd+1 = 0. Let A and A′ denote the EDMs that correspond
to these configurations and let D denote the diagonal matrix with diagonal entries

dii = 4r2

4r2 + ‖pi‖2
.

Then A′ = DAD.

Proof. Applying Lemma 6,

a′
ij = ‖p′

i − p′
j‖2

= 16r4‖pi − pj‖2(
4r2 + ‖pi‖2

)(
4r2 + ‖pj‖2

)
= 4r2(

4r2 + ‖pi‖2
)aij 4r2(

4r2 + ‖pj‖2
) = diiaij djj . �

We now begin a somewhat intricate argument that will culminate in our main
result. To make this argument, it is convenient to consider stereographic projection
with respect to

Sd(z, r) =
{
x ∈ �d+1 :

d∑
i=1

(xi − zi)
2 + (xd+1 − r)2 = r2

}
,

the sphere of radius r that is tangent to the hyperplane xd+1 = 0 at (zT, 0)T ∈ �d+1.
Notice that the inverse stereographic projection of a point in xd+1 = 0 that is far
from (zT, 0)T will be near the north pole of Sd(z, r). This observation is quantified
by the following inequality:

Lemma 7. Let p denote the stereographic projection with respect to Sd(z, r) of p′
into the hyperplane xd+1 = 0. If 0 < r � ‖p − z‖/(2

√
3
)
, then p′

d+1 � 3r/2.
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Proof. By choosing a coordinate system in which (zT, 0)T is the origin of �d+1,
we can use Lemma 5 to calculate that

p′
d+1 = 2r‖p − z‖2

4r2 + ‖p − z‖2
� 2r‖p − z‖2

‖p − z‖2/3 + ‖p − z‖2
= 3r

2
. �

Now let P denote a configuration of points p1, . . . , pn ∈ {x ∈ �d+1 : xd+1 = 0}.
Given the sphere Sd(z, r), let P(z, r) denote the configuration of points obtained by
inverse stereographic projection, i.e., the configuration of points p′

1, . . . , p
′
n ∈ �d+1

such that pi is the stereographic projection with respect to Sd(z, r) of p′
i into the

hyperplane xd+1 = 0. We focus on which sphere is used for stereographic projection.
The following result is crucial to our investigation:

Lemma 8. Let P denote a configuration of n � 2 distinct points in {x ∈ �d+1 :
xd+1 = 0}. There exists a sphere Sd(z, r) whose center is the centroid of the config-
uration P(z, r).

Proof. We give separate arguments for n = 2 and n � 3. If n = 2, then let z denote
the centroid of P in xd+1 = 0 and choose a coordinate system in which (zT, 0)T is
the origin of �d+1, so that P = {p,−p} and the center of Sd(z, r) is (0, . . . , 0, r)T.
Then it follows from Lemma 5 that the centroid of P(z, r) has coordinates

1

2

[
4r2pi

4r2 + ‖p‖2
+ 4r2(−pi)

4r2 + ‖p‖2

]
= 0

for i = 1, . . . , d and

1

2

[
2r‖p‖2

4r2 + ‖p‖2
+ 2r‖ − p‖2

4r2 + ‖p‖2

]
= 2r‖p‖2

4r2 + ‖p‖2
,

which equals r if r = ‖p‖/2.
Now suppose that n � 3 and let K be any bounded convex subset of {x ∈ �d+1 :

xd+1 = 0} that contains P . Let f : K × (0,∞) → �d+1 denote the function that
maps (z, r) to the centroid of P ′ = P(z, r). We will show that f has a fixed point.

The continuity of f follows from an application of Lemma 5 to P − z. Further-
more, the (d + 1)st coordinate function of f is

h(z, r) = 1

n

n∑
i=1

2r‖pi − z‖2

4r2 + ‖pi − z‖2
.

Notice that h is strictly positive on K × (0,∞).
Next we establish that h is bounded above. Let β < ∞ denote the diameter of K ,

finite because K is bounded. Let δi = ‖pi − z‖ � β. Then

h(z, r) � 1

n

n∑
i=1

δi
2rδi

r2 + δ2
i

� β

n

n∑
i=1

2rδi
(r − δi)2 + 2rδi

� β < ∞.
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Next we investigate the behavior of h when r is small. Let

ε = 1

2
min
i /=j

‖pi − pj‖,

strictly positive because we have assumed that the points in P are distinct. For
any z ∈ K , there can be at most one point p ∈ P for which ‖p − z‖ < ε. Let γ =
ε/

(
2
√

3
)

and suppose that r < γ . By Lemma 7, if ‖p − z‖ � ε, then the (d + 1)st
coordinate of p′ is at least 3r/2. Because n � 3,

h(z, r) � 1

n

n−1∑
i=1

3r

2
= n − 1

n
× 3r

2
� r. (2)

Now let α denote the minimum of the continuous function h on the compact set K ×
[γ, β]. Because h is strictly positive on K × (0,∞), α > 0. Let L = K × [α, β].
Evidently, L is compact and convex. We claim that f maps L into itself.

First, given (zT, r) ∈ L, we choose a coordinate system in which (zT, 0)T is the
origin. Suppose that x ∈ K . Then, by Lemma 5,

x′
i =

(
4r2

4r2 + ‖x‖2

)
xi,

so (x′
1, . . . , x

′
d)

T lies on the line segment that connects x and z. Because K is convex,
x′ ∈ K × (0,∞). It follows that, if P ⊂ K , then the centroid of P ′ lies in K ×
(0,∞).

Second, we consider the consequences of choosing r ∈ [α, β]. By the definition
of β, h(z, r) � β. If r � γ , then h(z, r) � α by the definition of α; if r < γ , then
h(z, r) � r � α by (2).

We conclude that f maps the compact and convex set L into itself. The existence
of a fixed point then follows from the Brouwer fixed point theorem. �

We can now state the first of our two main results.

Theorem 7. Let P ⊂ �d denote a configuration of at least two distinct points. Let
A denote the EDM that corresponds to P and let B denote the doubly stochastic
matrix to which A scales. There exists (z, r) such that A′, the EDM that corresponds
to P ′ = P(z, r), is a scalar multiple of B.

Proof. Invoking Lemma 8, let Sd(z, r) be a sphere whose center is the centroid of
P ′ = P(z, r). Then A′ is a spherical EDM and it follows from Lemma 3 that e is an
eigenvector of A′. Hence, A′ is a scalar multiple of a doubly stochastic matrix, say
A′ = σB ′.

By Theorem 6, A′ = DAD for a strictly positive diagonal matrix D. Setting C =
D/

√
σ , we see that CAC = DAD/σ = A′/σ = B ′, i.e., A scales to the doubly sto-

chastic matrix B ′. By Lemma 1, B ′ = B. �
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Theorem 7 expresses a relation between an EDM and stereographic projection
in terms of the EDM. Our final result expresses the same relation in terms of the
configuration of points that generates the EDM.

Theorem 8. Let P ⊂ �d denote a configuration of n � 2 distinct points. Let A

denote the EDM that corresponds to P and let B denote the doubly stochastic matrix
to which A scales. There exists an affine linear transformation T : �n → �n such
that B is the EDM that corresponds to the configuration Q′, the inverse stereo-
graphic projection with respect to Sd

(
1/

√
2n

)
of the transformed configuration Q =

T (P ).

Proof. Invoking Lemma 8, let Sd(z, r) be a sphere whose center is the centroid
of P ′ = P(z, r). Let t = r

√
2n and define T : �n → �n by T (x) = (x − z)/t . Be-

cause T is a translation followed by a dilation, the EDM that corresponds to the
configuration Q = T (P ) is A/t2.

Let Q′ denote the inverse stereographic projection with respect to Sd

(
1/

√
2n

)
of Q. We choose a coordinate system whose origin is z and apply Theorem 6 to
conclude that A′ = D(A/t2)D = CAC, where C = D/t . Thus, A can be diagonally
scaled to A′.

Because the centroid of P ′ is the center of Sd(z, r), the centroid of [P − z]′ is
the center of Sd(r) and therefore the centroid of Q′ = [(P − z)/t]′ is the center of
Sd(r/t) = Sd

(
1/

√
2n

)
. Because Q′ ⊂ Sd

(
1/

√
2n

)
, it follows from Theorem 4 that

A′ is doubly stochastic. By Lemma 1, the doubly stochastic matrix to which A scales
is unique; hence, B = A′. �
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