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Nonparametric Multivariate Density 
Estimation: A Comparative Study 

Jenq-Neng Hwang, Member, IEEE, Shyh-Rong Lay, and Alan Lippman 

Abstract- This paper algorithmically and empirically studies 
two major types of nonparametric multivariate density estimation 
techniques, where no assumption is made about the data being 
drawn from any of known parametric families of distribution. 
The first type is the popular kernel method (and several of 
its variants) which uses locally tuned radial basis (e.g., Gauss- 
ian) functions to interpolate the multidimensional density; the 
second type is based on an exploratory projection pursuit tech- 
nique which interprets the multidimensional density through the 
construction of several 1-D densities along highly “interesting” 
projections of multidimensional data. Performance evaluations 
using training data from mixture Gaussian and mixture Cauchy 
densities are presented. The results show that the curse of dimen- 
sionality and the sensitivity of control parameters have a much 
more adverse impact on the kernel density estimators than on the 
projection pursuit density estimators. 

I.  INTRODUCTION 
N signal-processing applications, most algorithms work I properly if the probability densities of the multivariate 

signals (or noises) are known. Unfortunately, in reality these 
densities are usually not available, and parametric or non- 
parametric estimation of the densities becomes critically 
needed. Unlike the parametric density estimation where 
assumptions are made about the parametric form of the 
distribution that generates the data, the nonparametric density 
estimation makes less rigid assumptions about the distribution 
of the data 1241. 

A probability density function (pdf), f ( y ) ,  of a p- 
dimensional data y is a continuous and smooth function 
which satisfies the following positivity and integrate-to-one 
constraints 

Given a set of p-dimensional observed data { y n , n  = 
1, . . . , N } ,  the task of multivariate density estimation is to 
find an estimated function f̂  which “best” approximates the 
true probability density function f .  On the other hand, a 
probability mass function (pmf) is a discrete function which 
also satisfies the positivity and sum-to-one constraints and 
has been successful in some classification and regression 
applications [2], [19]. The success of a pmf results from 
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several well developed clustering algorithms (e.g., [ 161) 
which cluster multidimensional data {yn, n = 1; . . . , N }  
into several centroids { m k ,  IC = 1, . . . , K }  and the pmf can 
thus be obtained by estimating the proportion Ck of data 
population in each cluster. In this paper, we are only dealing 
with the continuous pdf which has been successfully applied 
in applications like classifier design [28], image restoration 
and compression [20], [21], etc. 

Traditionally and statistically, the pdf is constructed by 
locating a Gaussian kernel at each observed datum, e.g., the 
fixed-width kemel density estimator (FKDE) and the adaptive 
kemel density estimator (AKDE). Although the FKDE, 
which constructs a density by placing fixed width kernels at 
all of the observed data, is widely used for nonparametric 
density estimation, this method normally suffers from 
several practical drawbacks [25]. For example, the inability 
to deal satisfactorily with tails of distributions without 
oversmoothing the main part of the density. The other is 
the curse of dimensionality, i.e., the exponentially increasing 
sample size required to effectively estimate a multivariate 
density when the number of dimensions increases. 

The AKDE [I], [25] is thus introduced to improve the 
performance of an FKDE. Similar to an FKDE, the AKDE 
constructs a density by placing kernels at all of the observed 
data. Unlike an FKDE that uses kernels of fixed width, 
an AKDE allows the widths of kernels to vary from one 
point to another. Although the AKDE slightly improves the 
estimation capability of an FKDE, it does not reduce the high 
cost incurred in computation and memory storage commonly 
required in an FKDE. 

To overcome the problem of high cost in computation and 
memory storage, a (clustered) radial basis function (RBF) 
based kernel density estimator, named RBF network, can 
be used [14], [20], 1211. The RBF network uses a reduced 
number of (radial basis) kernels, with each kemel being 
representative of a cluster of training data, to approximate 
the unknown density function. This method is often referred 
as mixture (Gaussian) modeling [23]. The RBF networks are 
also widely used in regression and classification applications 
1181. Similar to the construction of a pmf, the construction 
of an RBF network requires the determination of the clus- 
ter centroids { m k } .  Furthermore, the estimates of the data 
correlation and proportion within or between clusters are 
translated into the bandwidths (as well as orientations) and 
heights of the (interpolating) Gaussian kernels to be deployed 
on the cluster centroids so that a smooth and continous 
pdf can be constructed. The determination of centroids and 
associated kernel parameters can be accomplished in two- 
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stage batch process or can be done simulataneously in an 
iterative manner. The two-stage batch process starts with 
acquiring a satisfactory set of cluster centroids, then deter- 
mine the kemel bandwidths, orientations, and heights through 
batch statistical analysis in the sense of maximum likelihood 
[14], [20], [21]. The iterative kernel deploying approaches 
for construction of RBF density estimators use the iterative 
expectation-and-maximization (EM) algorithm [ 171, [23], [27], 
a maximum likelihood optimization procedure, by treating the 
cluster label that indicates which kernel a datum belong to 
as missing data and maximizes the likelihood with respect 
to the kemel parameters (centroids, bandwidths, orientations, 
and heights). There are some drawbacks of this approach, 
namely, slow convergence and the sensitivity of the initial 
label parameter guesses. In some cases where the likelihood 
is unbounded in certain parameter space, the procedure will 
diverge if tlfe initial guess is too close to this space. Like 
most optimization approaches, the EM algorithm also suffers 
the local optimum issues. In this paper, we only focus on 
the discussion of two-stage batch process for RBF network 
construction. 

In two-stage batch construction of an RBF network, 
sequential and batch clustering algorithms are commonly 
used in determining the cluster centroids [4], [16], [18]. 
These clustering algorithms perform poorly in the presence 
of probabilistic outlying data or data of large variations 
of dynamic range among dimensions, the latter imposing 
high sensitivity to the selection of distance measures in 
the clustering. To overcome these difficulties, statistical 
data sphering technique combined with a centroid splitting 
generalized Lloyd clustering technique (also known as the 
LBG algorithm [16]) is used in the robust RBF density 
estimator construction. This robust construction method has 
been successfully applied to classification tasks [ 151. 

Although the robust RBF construction technique can over- 
come some of the difficulties encountered in using conven- 
tional RBF networks for density estimation, it still can not 
overcome the drawback of the estimators' performance being 
too sensitive to the settings of some control parameters, 
e.g., the number of kemels used, the locations of kemels, 
the orientation of kemels, the kernel smoothing parameters, 
the excluding threshold radius for data sphering, the size 
of training data, etc. We are thus motivated to study the 
statistical projection pursuit density estimation technique [5], 
[7]. In contrast to the locally tuned kemel methods, where 
data are analyzed directly in high dimensional space around 
the vicinity of the kernel centers, a projection pursuit method 
globally projects the data onto 1-D or 2-D subspaces, and 
analyzes the projected data in these low dimensional subspaces 
to construct the multivariate density. More specifically, the 
projection pursuit first defines some index of interest of a 
projected configuration (instead of using the variance adopted 
by the principal component analysis) and then uses a numerical 
optimization technique to find the projections of most interest 
[ 121, [ 171. The projection index adopted for density estimation 
is the degree of departure of the projection data from normal- 
ity. This technique has been applied to exploratory multivariate 
data analysis in some statistical tools [ 131. 

i 

I 
1 2 3  -0.051 4 -3 -2 -1 0 

Y 

Fig. 1. An example of fixed-width kernel density estimation. 

This paper is organized as follows: Section I1 presents 
various versions of kernel based density estimators: the fixed- 
width kernel method, the adaptive kemel method, and the 
robust RBF method. Section 111 discusses the algorithms used 
for implementing the projection pursuit density estimator. Ex- 
tensive comparative simulations and discussions of results are 
performed in Section IV, which is followed by the concluding 
remarks in Section V. 

11. KERNEL-BASED DENSITY ESTIMATION 

Given a set of N p-dimensional training data {yn, n = 
1,. . . , N } ,  a multivariate fixed-width kernel density estimator 
(FKDE), with the kernel function 4 and a fixed (global) kemel 
width parameter h, gives the estimated density f (y )  for a 
multivariate data y E RP based on 

The kemel function 4 should be chosen to satisfy 

4(Y)  L 0, and kp 4(Y)dY = 1. (3) 

A popular choice of I$ is the Gaussian kernel 

which is a symmetric kernel with its value smoothly decaying 
away from the kemel center. An illustration of FKDE using a 
small training data set of size 7 is given in Fig. 1. 

Normally, the observed data is not equally spread in all 
directions. It is thus highly desired to pre-scale the data to 
avoid extreme differences of spread in the various coordi- 
nate directions. One attractive approach 181 is to first sphere 
(whiten) the data by a linear transformation yielding data with 
zero mean and unit covariance matrix, then apply (2) to the 
sphered data. More specifically, given a set of p-dimensional 
observed data, {y}, we can define the sphered data z of y to be 

(4) = s - w  (Y - EY) ' 
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where the expectation E is evaluated through the sample mean, 
and S E R p X p  is the data covariance matrix 

S = E [ ( y  - E y ) ( y  - E Y ) ~ ]  = UDUT 

or 

S-112 = UD-1/2UT. (6) 

Note that U is an orthonormal matrix and D is a diagonal 
matrix. Robust statistics methods [ l l ]  can be used for the 
derivation of the data covariance matrix S. 

It can be easily shown that after sphering [Ez] = 0 and 
E[zzT]  = I (the identity matrix). The resulting FKDE for the 
sphered data performs a more sophisticated density estimation 

An optimal kernel width h* for an FKDE can be determined 
through the minimization of mean integrated squared error 
(MISE) [25]. For example, the h* for Gaussian kemels was 
proposed [25] for estimating normally distributed data with 
unit covariance 

h* = AN-&, where A = [4/(2p + l ) ] h .  (9) 

More complicated methods for determining the kernel width, 
such as the least-square cross-validation method [25], are also 
available with increasing complication and computation. 

The probabilistic neural network (PNN), introduced by 
Specht [26], is a multivariate kernel density estimator with 
fixed kernel width. The kernel width of a PNN is commonly 
obtained by a trial-and-error procedure. A small value of h 
causes the estimated density function to have distinct modes 
corresponding to the locations of the observed data. A larger 
value of h produces a greater degree of interpolation between 
data points. 

Although the FKDE’s are widely used for nonparametric 
density estimation, they normally suffer from several practical 
drawbacks [25]: e.g., the inability to deal satisfactorily with 
tails of distributions without oversmoothing the main part 
of the density, and the curse of dimensionality that calls 
for the requirement of an exponentially increasing sample 
size to estimate the multivariate density when the number 
of dimensions increases. The latter drawback also reflects a 
potential computational burden in using the density estimator 
after its construction due to the fact that for every observed 
training datum a kernel is deployed on and an extra term is 
added in (2). 

A. Adaptive Kernel Density Estimator 

An improved alternative to an FKDE is the adaptive kernel 
density estimator (AKDE) [25]. Similar to an FKDE, an 
AKDE constructs the density by placing a kernel on every 
observed datum, but it allows the kernel width to vary from one 
point to another. The intent is to use different widths of kernels 
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Fig. 2. An example of adaptive kernel density estimation. 

in regions of different smoothness. This method adopts a two- 
step algorithm for computing a data-adaptive kernel width. 
The algorithm can be summarized as follows: 

Step 0: Sphere the observed data { y , }  to be { z n } ,  so that 
E[z ]  = 0 and E[zzT]  = I. 

Step I :  Find a pilot estimate f ( z )  that satisfies f ( z n )  > 
0, Vn.  

Step 2: Set the local width factor A, _to be ( f ( z n ) / g ) - ’ ,  
where g is the geometric mean of f ( z ) ,  i.e., logg = 

 log f ( z i ) ,  and y is a user defined sensitivity 
parameter satisfying 0 5 y 5 1. 

Step 3: Construct the adaptive kernel estimate f ( z )  by 

where h is still the global width parameter used in (2). A 
natural pilot estimate would be a kernel estimate with fixed 
optimal kernel width (see (9)). The larger the y, the more 
sensitive the performance will be to the selection of pilot 
density. It is quite common to set y = [l], [25]. The estimate 
f of an AKDE using the small data set of size 7 is illustrated 
in Fig. 2. 

B. Radial Basis Function Density Estimator 

Due to the requirement that a kernel is placed at every 
observed datum, the implementations of FKDE’s and AKDE’s 
require too many kernels when the number of training data is 
huge. A density estimator, such as the radial basis function 
(RBF) network, which uses a reduced number of (radial basis) 
kernels with each kernel being representative of a cluster 
of training data, is highly desired. As shown in Fig. 3, the 
training data are grouped into three clusters, and the density 
is estimated through constructing three kernels of different 
heights and widths on each cluster center. 

Several supervised RBF networks were recently introduced 
[ 181 for classification and data regression applications. For 
example, Moody and Darken proposed a hybrid learning 
method [18] which used a self-organizing adaptive K-mean 
clustering algorithm to locate the positions of kernel functions, 
and then a “nearest-neighbor’’ heuristic to determine the kernel 
widths. This heuristic varies the widths in order to achieve a 
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Fig. 3. An example of radial basis function-based density estimation. 

certain amount of response overlap between each unit and its 
neighbors. Finally, a least mean squares (LMS) supervised 
training rule is used for the updating of the heights of the 
deployed kernels. 

1) Data Sphering and Outlier Removing: Since a density 
estimation task is an unsupervised learning task, a few 
modifications of the learning procedures for RBF classifi- 
catiodregression networks are needed. Since an RBF network 
possesses a local tuning property, the positions of the kernels 
searched by the clustering algorithm should cover the areas 
which are most representative of the data in the region around 
the cluster centers. Unfortunately, most clustering methods 
are vulnerable to the data outliers which are generated 
by long-tailed portion of the density. In the classification 
applications, some outlying training data are useful and can be 
carefully regularized to increase the generalization capability 
of the classifiers [22]. However, the outlying training data 
in a density estimation application usually carry very little 
information about the density and do not represent any 
meaningful isolated class as in a classification application. 
If the RBF network construction is based on the FKDE or 
AKDE, where a symmetric kernel is placed on every observed 
training data, the outlying data will not play a significant 
role in approximating the true density since the amount of 
outlying data are usually quite small. On the other hand, when 
clustering techniques are adopted to reduce the number of 
kernels deployed in an RBF construction, the outlying data 
play a more significant role. More specifically, most clustering 
algorithms are types of least squares estimators which are 
sensitive to outliers. Therefore, we are motivated to remove the 
outliers after the data sphering and before the data clustering 
processes [7], 1151. An additional benefit of applying data 
sphering before data clustering is to simplify the correlation 
structures of the data so that the distance measures used in 
the clustering algorithm can also be simplified since different 
dimensions of the non-sphered data have different scales. 

Our RBF density estimation starts with data sphering on the 
observed training data to get rid of probabilistic outliers and 
at the same time, if desired, to normalize the spread of data in 
all directions to facilitate the data clustering. All sphered data 
with larger norm (e.g., llzll 2 ,O, where p is a prespecified 
threshold) are excluded for clustering. This data sphering and 

outlier removing process continues for several iterations until 
no outlying data can be removed. 

To verify our assumption of the adverse impact of outlying 
data on density estimation, a simple 2-D density estimation 
experiment is conducted here. Fig. 4(e) shows the true density 
of a long tailed single-mode Cauchy density function: 

where y = [ y l ,  9zlT, m = [ml, mzIT = [O.O,O.OIT and 

Based on 1600 observed data randomly sampled from this 
distribution, the corresponding 32 cluster centers (centroids) 
found by some clustering algorithm (to be discussed later) 
without outlier removal are wide spread as shown in Fig. 4(a). 
The RBF approximated kernel density built upon these 32 
centroids is shown in Fig. 4(b). Note that this estimated 
density is nothing near the true density. On the other hand, 
when outlier removal is applied before data clustering, the 
32 centroids shown in Fig. 4(c) found by the LBG algorithm 
are much more representative to the true data distribution. 
Therefore, the estimated density is a better approximation to 
the true density (see Fig. 4(d)). 

2) Data Clustering and Centroid Splitting: After the data 
sphering and outlier removing, a clustering method can be 
applied to the search of representative centroids so that 
the reduced number of kernels in the RBF network can be 
deployed. The generalized Lloyd algorithm with centroid 
splitting (also known as LBG algorithm [9], [16]), originally 
developed for codebook generation in vector quantization 
applications, is used. Compared with the sequential (or batch) 
K-mean algorithm, the performance of LBG algorithm with 
centroid splitting is more consistent since it is not affected 
by the initial guess as the K-means algorithm is. More 
specifically, the LBG algorithm performs a distortion descent 
search to find a set of cluster centers which comprise a local 
minimum in the sense of the least mean squared errors. The 
basic LBG algorithm can be summarized as follows: 

Step 0: Given: a set of training data and an initial codebook. 
Step 1: Cluster the training data using the old codebook 

based on prespecified distance measures (e.g., the Euclidean 
distance). If the average distortion is small enough, quit. 

Step 2: Replace the old codebook with the centroids of 
clusters obtained in Step 1. Go to Step 1. 

The centroid splitting approach [9], [16] is applied to reduce 
the sensitive dependence of locations and size of the initial 
codebook to the performance of the clustering. One first finds 
the optimum codebook of size one, i.e., the centroid of the 
entire training data set. This single codeword is then split to 
form the initial codebook of size two and the LBG algorithm 
is run to reach the local minimum. The procedure is then 
repetitively applied to enlarge the codebook size. 

3)  Construction of an RBF Density: Due to the employ- 
ment of the data sphering, the covariance matrix for each 
data cluster of the sphered data z is expected to be close to 
a diagonal matrix, i.e., the data variance in each dimension 
can be independently computed. Therefore the RBF density 

U = [ u ~ , u z ] ~  = [0.84, 1.O2IT. 



HWANG et al.: NONPARAMETRIC MULTIVARIATE DENSITY ESTIMATION: A COMPARATIVE STUDY 2799 

(a) Cauchy data 8 32 VQ Centroids(n0 outliers removed) (c) Cauchy data & 32 VQ Centroids(out1iers removed) 

data points 

o vacentrolds 
e A 

8 

.... I -*..- 

(b) RBFfno outliei’sr~moved) 
.,.- 

-40 -20 0 20 40 

XI 
_..-._ ..- * .._ 

--..__ (dj..ReF* (o@ ers’i-emwed) _..- ._.. 

. , .. 
(e) True den.sity -- iSingiermoda.Cauchy 

Fig. 4. (a) The 32 centroids found by the LBG algorithm without outlier removal. (b) The estimated density based on the 32 centroids in (a). (c) The 32 
centroids found by the LBG algorithm afteroutlier removal. (d) The estimated density based on the 32 centroids in (c). ( e )  The true density of a long-tailed 
Cauchy density function. Note that the data coordinates [ U I ,  U Z ]  are labeled as [ s ~ , . c * ]  in the plots. 

estimator of q kernels can have a simplified overall response 
function 

(sample) deviation in each dimension for each cluster. In the 
case of very few data points clustered to a centroid, the average 

the estimation so that a very steep kernel can be avoided. One 
can also deploy asymmetric kernels in each clustered region 

4 standard deviation among all dimensions is used to regularize 
. f (z)  = CC;~;(Z, mi, vi) (12) 

k l  

(2, -m,, I* if the number of data points are large enough to compute the 
e-’ ‘‘?j (13) full covariance matrix. 1 

h ( Z ,  ”, VL) = 
( d m p  n;=, VZJ 

where mi = ( m i l ,  m;2, . . . , mip)T denotes the centroid vector 
of the ith Gaussian kernel obtained from the LBG clustering. 
c = (c1 , c2, . . . , cq)* is the kernel height vector, and vi = 
( i i ; ~ ,  w;2, . . . , v ; ~ ) ~  is a width vector for ith kemel. 

In our implementation of the RBF density estimator, the 
heights { c ; }  of kernels are determined by the percentages of 
training data clustered to various centroids; the kernel widths 
{ w i j }  are designed to be proportional to (with a factor 71, 
empirically in our simulations 1 5 v2 5 2.0) the standard 

111. PROJECTION PURSUIT DENSITY ESTIMATION 
The spirit of projection pursuit density estimation (PPDE) 

is based on looking for “interesting” low dimensional data 
projections which reveal distribution structures. Although the 
notion of “interestingness” may be difficult to quantify, Huber 
[12] gave a heuristic suggestion that the Gaussian (normal) 
distribution ought to be considered to be the least interesting. 
Building upon this suggestion, Friedman [7] proposed an al- 
gorithmic procedure, called exploratory projection pursuit, for 
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nonparametric multivariate density estimation. In this PPDE 
procedure, five steps are involved: 

Data Sphering: Simplify the location, scale, and correla- 
tion structures and remove outliers (as discussed in RBF 
density estimators, see Section 1I.B). 
Projection Index: Indicate the degree of interestingness 
of different projection directions. 
Optimization Strategy: Search efficiently the direction of 
maximal projection index. 
Structure Removing: Perform 1-D density estimation on 
the projection data and transform the data to remove 
this structure. 
Density Formation: Combine the 1-D densities from all 
searched interesting directions to form the multivariate 
density function. 

A. Projection Index: Which Projection Direction is Interesting ? 

It is known that all projections of a multivariate Gaussian 
density are Gaussian, and therefore evidence for the data 
being non-Gaussian in any projection is evidence against the 
data being multivariate joint Gaussian. One intuitive definition 
of projection index f ( a ) ,  which indicates how close the 
probability fa(.) of the 1-D projection data, z = a T z  along 
a direction n,  being Gaussian (where z is the sphered version 
of y), is [lo] 

1 - z 2  
00 

j ( a )  = ( f a ( x )  - g(x))’dz, with g(z) = ---e?. 6 
(14) 

A projection direction a that maximizes f ( a )  yields a pro- 
jected distribution that exhibit clustering (multimodality) or 
other kinds of nonlinear structure. If we transform the data 2 

by the following equation 

L 

T = 2G(z) - 1 = 2G(aTz) - 1, T E [-1,1] (15) 

where G(z)  is the standard normal cumulative distribution 
function (CDF) 

/x e G d t .  (16) 

According to the fundamental theorem of random variable 
transform 

1 
G(x) = ~ 6 -cc 

therefore we can rewrite (14) in terms of T as 

44 = l1 29(2)(f?.(T) - 1/2)’dr 

= L12g(G-’(?))(f?.(r) - 1/2)’dr. (18) 

Friedman [7] adopted a slightly different form for the 
projection index I ( a )  

I ( a )  = [p) - 1/2)2dT 

= J: f,2(T)dT - l /2 .  (19) 

Note that if x is Gaussian distributed, then f , . ( ~ )  = 3, Vr 
and projection index I ( a )  is zero. The more departure of the 
distribution of 2 from normality, the larger the value of index 
I ( a ) .  Since T E [-1,1], fr(r) can be expanded in terms of 
orthogonal Legendre polynomials { $ j ( ~ ) ,  j = 0,  . . . , J } ,  i.e., 
fr(T) = C , J = O W j ( T )  

The orthogonal Legendre polynomials have recursive relation 
as follows 

Through the orthogonal property, the weighting coefficients 
{ b j }  can be computed via sample average 

where J”, $ j ( r ) f ? . ( ~ ) d r  = E?.[$j(r)] is approximated by 
sample average. Therefore, (19) can be rewritten as 

B. Optimization Strategy: The Search for a Best Projection 

Once the analytical form of the projection index is defined, 
its gradient with respect to a projection direction a can be 
derived as (under the constraint aTa = 1 [7] 

where the derivative of each Legendre polynomial can be 
easily calculated by the recursive formula 
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C. Structure Removal: Gaussianize Data Along the Projection 

To construct a PPDE, several interesting projections are 
usually required. After an interesting projection Q: is found, 
we have to remove the least Gaussian structure along Q: to 
avoid future search of this direction again, in other words, we 
have to "Gaussianize" the data along a without affecting the 
density along other directions. Let's denote the I-D projection 
data before and after Gaussianization as x and 2,  respectively. 
Gaussianization of the 1-D projection data z is accomplished 
by 
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where G-l is the inverse of the standard normal CDF given in 
(16) and F,(x) is an estimate of the CDF of 2. Friedman [7] 
suggested to use the empirical CDF (x) = rank( z ) / N  - &, 
where rank(x) is the rank of x among all the N observed 
data points. However, this empirical distribution formulation 
is quite inaccurate and usually results in very unsmooth 
estimated densities. We estimate F, (x) through intergration 
of a linear interpolation of f,(x). Based on this modification, 
we then have to compute the high dimensional structure 
removed data Z from z. Let U be an orthonormal matrix, 
U = [ ~ , @ 1 , @ 2 , . . . , p ~ - 1 ] ~ ,  where {p i }  are found through 
Gram-Schmidt algorithm 

The same projection index maximization procedure is reap- 
plied to the data z for the searching of other interesting 
projection structures until the multivariate data is close to 
Gaussian distribution in any direction. It was noted [7] that 
"Gaussianizing" along one solution projection perturbs the 
normality along previously found solution projections so that 
they no longer have exactly zero interest. However, empirical 
experience indicates that the induced perturbation is very 
small. If desired, the backfitting procedure [SI can be reapplied 
to the previous projections. 

D. Density Formation: From Projections to Density 

The density of the original sphered data is estimated by com- 
bining those projected 1 -D density estimations. The density 
relation between the high-dimensional data z ( ~ )  and z ( ~ - ~ )  
is (where z ( ~ )  is the structure removed data of z(,-l) along 

.. 
....... 

e ,  ... .: 5 : .. .... j.: ... 
.. : . . . . . .  - ,--. r .. * *  

,. -::-#.:. . . 
. .  ... .-:*:.:. . . . .  . . .  - <  

~ 

2801 

-2 -4 0 2 4 6 8 
-41 

Fig. 5.  Four hundred randomly sampled Gaussian mixture data. 

the mth projection a,) 

where the Jacobian 

Starting from the original multivariate data z(O), the Gaus- 
sianization procedure is applied to every interesting projection 
found by the optimization procedure. At some point, say 
after N I  projections, the multivariate data z(*') no more 
exhibits much deviation from normality, i.e., f , ,  (.("I) z 
g(z("")), where y(z) = h e x p ( - z T z / 2 )  is a standard 
multivariate Gaussian distribution. The density of z(O) can 
now be estimated to be 
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Fig. 6. (a) The true density of a Gaussian mixture. (b) The PPD eestimate, fml(z(l))Jl(z(o)), after the first projection. (c) The PPDE estimate, 
fa2(~(2))J2(z(')) Ji(z(')), after the second projection. (d) The PPDE estimate, j n , ( z ( 3 ) ) J 3 ( z ( 2 ) )  . J z ( z ( ' ) )  J l ( z ( O ) ) ,  after the third projection. Note 
that the data coordinates [:I, 221 are labeled as [SI ~ x.21 in the plots. 

The 1-D probability fam ( Q ; Z ( ~ - ~ ) )  is estimated according 
to (17), i.e., fa  = 2g(z)f,(r), or more specifically 

Due to the polynomial form of the projection index and the 
recursive relations in the polynomials and its first derivatives, 
PPDE can be rapidly computed. Figs. 5 and 6 gives a step-by- 
step illustration of the PPDE construction from the first three 
projections using 400 training data sampled from a Gaussian 
mixture. 

IV. COMPARATIVE SIMULATIONS 
We have discussed the nonparametric "kernel-based" and 

"projection-pursuit'' density estimators from structural and 
computational viewpoints. We carry out in this section a 
detailed comparison of performance among these methods via 
a simulation study. 

A.  Simulated Data 

Three types of multidimensional (2-D-5-D) data of Gauss- 
ian and Cauchy mixture distributions are generated. The 
Cauchy distribution has a long tail while the Gaussian distri- 
bution does not. The data are generated such that all elements 
in the same data vector are independent of each other. These 

data have the following distribution forms 

K 

Gaussian Mixture: c k ~ ( y ,  mk, V k )  

k - 1  
K 

Cauchy Mixture: C k c ( y ,  mk, u k )  (32) 
k = l  

with the constraint ckl  C k  = 1 and 

(33) 

1) Single Mode Distribution: The first type of data is a 
single-mode distribution with parameters chosen as follows 
(note that, for 2 -D4-D cases we take the first 2-D-4-D 
elements from the 5-D parameter set as shown below): 

Gaussian Distribution: 
c = 1.0, 
v = [0.84,1.02,0.70,1.20, 0.96IT. 

c =  1.0, 
U = [0.84,1.02,0.70, 1.20,0.961T. 

m = [o.o,o.o, O.O,O.O, o . o ] ~ ,  

Cauchy Distribution: 
m = [o.o, 0.0, 0.0, 0.0, o . o ] ~ ,  

2 )  Lightly Overlapped Two-Mode Distribution: The sec- 
ond type of data is a lightly overlapped two-mode distribution 
with parameters chosen as follows: 
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Fig. 7. Estimation accuracy based on PVE measures for single-mode data of Gaussian (a) 2-D, (b) 3-D, (c) 4-D, and (d) 5-D; Cauchy (e) 2-D, (f) 
3-D, (g) 4-D, and (h) 5-D. 

Gaussian Distribution: 
c1 = 0.65, 
v1 = [0.42,0.51, 0.35,0.60,0.481T. 
c2 = 0.35, 
v2 = [0.33,0.46,0.53,0.43,0.451T. 

ml = [O.O,O.O,O.O,O.O,O.O]T, 

m2 = [2.0,2.0,2.0,2.0, 2.OlT, 

Cauchy Mixture: 
c1 = 0.65, ' ml = [O.O,O.O,O.O,O.O,O.O]T,  
~1 = [0.42,0.51, 0.35,0.60,0.48lT. 

c2 = 0.35, m2 = [2.0,2.0,2.0,2.0,2.0IT, 

3)  Heavily Overlapped Two-Mode Distribution: The third 
type of data is a heavily overlapped two-mode distribution 
with parameters chosen as follows: 

c1 = 0.65, 
VI = [0.84,1.02,0.70, 1.20,0.961T. 

~2 = [0.33,0.46,0.53,0.43, 0.451T. 

Gaussian Mixture: 
ml = [O.O,O.O,O.O,O.O,O.O]T,  
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(e) True den’sity‘-- /Skgie+nsde .Cauchy 

_ . ’  

Fig. 8. 
2-D Cauchy (e) True density. (0 PPDE estimation. (g) AKDE estimation. (h) RBF estimation. 

Perspective plots of single-mode distributions of 2-D Gaussian: (a) True density. (b) PPDE estimation. (c) AKDE estimation. (d) RBF estimation; 

c2 = 0.35, 
~2 = [0.66,0.92,1.06,0.86, 0.901T. 

m2 = [2.0,2.0,2.0,2.0, 2.OIT, For each type of data (either mixture Gaussian or mixture 
Cauchy) of any dimension (2-D to 5-D), six randomly sampled 
data sets of different sizes (200, 400, 800, 1600, 3200, 6400) 
are created for training and an additional randomly sampled 
data set of size 20000 is created for testing. 

Cauchy Mixture: 
c1 = 0.65, ml = [O.O,O.O,O.O,O.O,O.O]T,  
~1 = [0.84,1.02,0.70, 1.20,0.961T. 
cz = 0.35, 
uz = [0.66,0.92,1.06,0.86, 0.901T. 

B. Per$ormance Evaluation 
To objectively compare the performance, Monte Carlo ap- 

proximation of percentage of variance explained (PVE) [ 5 ]  
m2 = [2.0,2.0,2.0,2.0, 2.OIT, 
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Fig. 9. 
(e) 2-D, (f) 3-D, (g) 4-D, and (h) 5-D. 

Estimation accuracy based on PVE measures for two-mode lightly overlapped data of Gaussian (a) 2-D, (b) 3-D, (c) 4-D, and (d) 5-D; Cauchy 

measures is used 20000 testing data, where f denotes the sample average of 
the true density. 

C. Experimental Setup 
PVE = 100( 1 - Em/Var)% 

20 000 
where Err = 5TkiG cn=l (.fn - f n ) 2  denotes the mean 

Over 20000 testing data, and Var = true den,s$joo f n  

The experiments for the comparative simulations are done 

in this paper. Since the Gaussian distribution is not a long tail 

'quared between the estimated density .fn and the for the three estimators ( A m E ,  RBF, and PPDE) discussed 

cn=1 ( f n  - f l 2  denotes the variance Over distribution, an outlier removing procedure is not necessary 
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Fig. 10. 
RBF estimation; 2-D Cauchy (e) True density. (f) PPDE estimation. (8) AKDE estimation. (h) RBF estimation. 

Perspective plots of two-mode lightly overlapped distributions of 2-D Gaussian. (a) True density. (b) PPDE estimation. (c) AKDE estimation. (d) 

and therefore is not applied to the training data. However, 
in the Cauchy distribution there exists probabilistic outliers 
which bias the covariance estimation and mislead the search 
of kernel locations, therefore two sphering radii /3 = 5 and 
/3 = 6 (based on our observation of data that the probability 
of a Gaussian distribution is almost zero with a radius 5 or 6), 
were tried for outlier removing. 

For AKDE, in addition to the choices of sphering radii, 
several values were tried for y (=0.2, 0.4, 0.6, and 0.8). 
The reported AKDE performance is chosen from the best 
and the median of (in terms of PVE measure) all parameter 
combinations. In the simulations of RBF density estimators, 
several combinations of control parameters were tried. For 
example, two different numbers of clustered kernels, q = 
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Fig. 11. 
(e) 2-D, (f) 3-D, (g) 4-D, and (h) 5-D. 

Estimation accuracy based on PVE measures for two-mode highly overlapped data of Gaussian. (a) 2-D, (b) 3-D, (c) 4-D, and (d) 5-D; Cauchy 

16 and q = 32, were used. After clustering, the data in 
each cluster region is assumed to be independent enough 
in each dimension, therefore the variance of clustered data 
in each dimension was independently calculated. The kernel 
smoothing parameter q2 was chosen to be 1.2, 1.4, 1.6, and 
1.8. Among the PVE values corresponding to all different 
parameter combinations, the median PVE values and the best 
PVE values of RBF estimation were reported. As for PPDE 

simulations, three Legendre polynomial orders, 4, 5 ,  and 6, 
were tried. The number of interesting projections required 
in constructing the density was not fixed in advance, it 
was determined dynamically when the new projection index 
was smaller than either 0.01 or 0.005. Among the PVE 
values corresponding to all different parameter combinations, 
the median PVE values and the best PVE values of PPDE 
estimation were reported. 
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Fig. 12. 
RBF estimation; 2-D Cauchy (e) True density. (f) PPDE estimation. (g) AKDE estimation. (h) RBF estimation. 

Perspective plots of two-mode highly overlapped distributions of 2-D Gaussian. (a) True density. (b) PPDE estimation. (c) AKDE estimation. (d) 

D. Simulation Results and best) PVE performance plots for two-mode Gaussian and 
Cauchy lightly overlapped data of various dimensions versus 
Various training data Sizes. The perspective plots of the true 
and estimated densities (based on 1600 data) corresponding to 
the median PVE for two-mode Gaussian and Cauchy lightly 
overlapped distribution of 2-D data are shown in Fig. 10. 
Fig. 11 shows the (median and best) PVE performance plots 

~ i ~ .  7 shows the (median and best) PVE perfomance 
plots for single-mode Gaussian and Cauchy data of various 
dimensions versus various training data sizes. The perspective 
plots of the true and estimated densities (based on 1600 data) 
corresponding to the median PVE for single-mode distribution 
of 2-D data are shown in Fig. 8. Fig. 9 shows the (median 
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for two-mode Gaussian and Cauchy heavily overlapped data 
of various dimensions versus various training data sizes. The 
perspective plots of the true and estimated densities (based on 
1600 data) corresponding to the median PVE for two-mode 
Gaussian and Cauchy heavily overlapped data of 2-D data are 
shown in Fig. 12. 

It is observed that the PPDE outperforms the AKDE and 
RBF, in approximation accuracy based on PVE measures 
in almost all the simulations. From the PVE plots, one can 
clearly see that the performances of PPDE median curves 
do not degrade much from their corresponding PPDE best 
curves. On the other hand, the performances of RBF median 
curves degrade a lot from their corresponding RBF best curves. 
This fact indicates that the PPDE is more robust in that it is 
less sensitive to the setting of the control parameters values, 
e.g., the number of (projections) kernels used, the locations 
of kernels, the orientation of kernels, the kernel smoothing 
parameters, the excluding threshold radius for data sphering, 
the size of training data, etc. We can also observe the impact of 
dimensionality on each method, the PPDE, as expected, suffers 
much less on the curse of dimensionality when compared 
to AKDE and RBF methods. More specifically, RBF suffers 
the curse of dimensionality most in estimating the Cauchy 
mixtures. Note that PPDE does require at least some minimum 
number of training data (e.g., 400) to reasonably perform 
the gaussianization procedure, while the AKDE and RBF 
can survive at small number of training data (say from 200 
to 400) due to their prespecified implicit kernel structures. 
All three methods exhibit somewhat degraded performance 
estimation of long-tailed (Cauchy) distribution. However, the 
performance of AKDE and RBF degrades much more than 
that of PPDE. 

It is also worthwhile to mention the comparative com- 
putational complexities of these density estimation methods. 
Since the construction of projection pursuit density estimator 
(based on recursive Legendre polynomials) is based on the 
iterative optimization procedure, a conclusive quantitative 
comparison of computational complexity of these density 
estimator methods is very difficult. In general, from our 
intensive simulations we found that these two methods took 
quite comparable amount of CPU time (projection pursuit 
is slightly faster) during the construction of the estimators. 
While in the testing stage after the estimators are constructed, 
the robust RBF methods are fastest in responding the density 
values, the AKDE’s are the slowest. 

V. CONCLUSION 
We have extensively examined the algorithmic aspects of 

several nonparametric multivariate density estimators, and 
have carried out a thorough comparative study via simulations. 
In our simulation study, the PPDE outperformed the kernel 
methods in approximation accuracy based on PVE measures 
in most data sets. In particular, one would expect the RBF 
kernel method to be a natural fit for estimating the density of 
Gaussian mixtures, however the PPDE performs better for this 
set of data. This emphasizes the success of PPDE’s. 

In spite of its superior performance, the PPDE still suffers 
from several potential drawbacks which require further re- 
search. More specifically, the PPDE can not satisfactorily deal 
with structures hidden behind others, e.g., 2-D data density 
of doughnut shape. Although this problem can be solved by 
transforming the original data to other coordinates, such as 
the polar coordinate, before the application of the PPDE, 
appropriate use of coordinate transforms and identification of 
hidden structures in densities remains challenging. Another 
severe problem is the numerical instability caused by the 
denominator (Jacobian) term in a long density tail, which 
should be solved by sophisticated data analysis techniques. 
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