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Abstract 
 
In this paper, we present an on-line recognition method for hand-sketched symbols.  The method is 
independent of stroke-order, -number, and -direction, as well as invariant to rotation, scaling, and 
translation of symbols. Zernike moment descriptors are used to represent symbols and three different 
classification techniques are compared: Support Vector Machines (SVM), Minimum Mean Distance 
(MMD), and Nearest Neighbor (NN). We have obtained 97% accuracy rate on a dataset consisting of 
7,410 sketched symbols using Zernike moment features and a SVM classifier.  This method has been 
implemented in a software recognition package, HHreco [7]. 
 
1. Introduction 
 
Sketching is a simple and natural mode of expression. It is especially desirable for conceptual design, 
both on an individual basis and in a collaborative environment.  With a sketch-based user interface, 
one can have the freedom of sketching on paper and the benefit of an electronic design tool.  If a 
sketch system also includes a recognition capability, sketches can be interpreted and augmented with 
semantics so that they can be edited easily, efficiently searched, and neatened. 
 
There has been a significant amount of research to date in various aspects of sketch-based user 
interfaces: interactive design tools [12], studies of gestures [14], software toolkits [6], ink 
beautification [8], and sketch recognition [19].   In this work, we focus on the recognition of graphic 
symbols used in common applications.  Challenges in sketched symbol recognition lie in the variation 
and distortion of hand-sketched shapes.  Different people may use different stroke-order, -number, 
and -direction to draw the same shape.  Unlike printed symbols, hand-sketched symbols are imprecise 
in nature such that corners are not always sharp, lines are not perfectly straight, and curves are not 
necessarily smooth.  Furthermore, symbols can be drawn in different sizes and orientation (e.g. the 
orientation of an arrow depends on its pointing direction), in contrast to handwriting which is often 
assumed to be written on a baseline in an upright position.  A robust recognition system has to 
account for all of these factors. 
 
The work in on-line sketched symbol recognition can be roughly categorized into statistical [4, 16], 
structural [2, 15], and rule-based approaches [1, 25].  The structural approach describes a symbol in 
terms of simpler geometric primitives and represent it with a semantic network [2].  However, 
mistakes in the segmentation stage can lead to incorrect descriptions of symbols and inexact graph 
matching in the classification stage is very computationally expensive [17].  Rule-based approaches 
are often ad-hoc, hard to extend, and not very robust.  In this work, we consider a statistical approach 
to sketched symbol recognition using Zernike moments as features.  Zernike moments have been used 
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in the optical character recognition and image recognition communities with good results [10, 22], but 
as far as we know, this feature has not been explored for use in on-line symbol recognition.  The 
rotation invariance property of Zernike moments is especially desirable for symbol recognition.   
 
In this work, we evaluate the effectiveness of Zernike moment features for hand-drawn symbol 
recognition along with three classification methods.  Section 2 gives a description of our target 
symbol set and the test corpus.  Symbol preprocessing, feature extraction, and classification methods 
are presented in Section 3, 4, and 5 respectively.  Experiments and results are presented in Section 6. 
 
2. Data acquisition 
 
Since there is no publicly available benchmark for sketched symbols, we have created a test corpus by 
gathering data from different people.  Our target class of application for this work is one that has a 
bounded set of target symbols from which to select (e.g. a UML diagram editor, a slide drawing 
program like Microsoft PowerPoint, or an electrical schematic editing tool).   The shape set was 
chosen based upon the applications of interest, commonly used basic shapes, and the geometric 
properties of shapes (e.g. shapes with lines, shapes with curves, shapes with mixed lines and curves, 
and shapes with and without self intersections).  Of course, other shapes can be added and learned by 
the system, if desired. 
 
So far, we have gathered data from 19 users.  Each user was asked to sketch 30 examples for each of 
the 13 symbols shown in Figure 1.  The data set contains a total of 7,410 examples overall and 570 
examples per symbol.  The data was collected using the Wacom Graphire2 Pen and Tablet [24]. 

 
 
 

Figure 1. The symbol set. 

 
3. Preprocessing 

 
Zernike moments are not invariant to scale and translation, therefore the symbols are first scaled and 
translation normalized such that they are of the same dimension and their centroids are positioned at 
the origin.  Each symbol is 100×100 in size after scale normalization. 
 
Each symbol consists of a sequence of strokes.  The strokes are approximated and interpolated to 
produce a more evenly distributed data points for moment calculation.  Stroke approximations are 
used to reduce noise and the number of points enabling faster processing [5].   However, excessive 
filtering may result in the loss of perceptually salient points (e.g. corners) important to recognition.  
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We have found that using a threshold value of 1.0 in the stroke filter provides a good balance between 
point reduction and information retention.  
 
Next, strokes are interpolated to obtain more evenly weighted strokes and hence more consistent 
moment features.  Given a threshold value, T, a point is inserted in between two points that are more 
than T distance apart.  The procedure continues until the distance between every pair of consecutive 
points on a stroke is less than T.  The larger T is, potentially fewer points need to be inserted and 
hence fewer data points in a stroke.  This will speed up moment computation but at some point, it 
may adversely affect the recognition accuracy rate due to insufficient data points.  We have 
experimented with different interpolation thresholds to determine the optimal value.  The results are 
presented in Section 5. 

 
4. Zernike moments 
 
Moment descriptors have been studied for image recognition and computer vision since the 1960s 
[22].  Teague first introduced the use of Zernike moments to overcome the shortcomings of 
information redundancy present in the popular geometric moments [13, 21].  Zernike moments are a 
class of orthogonal moments and have been shown effective in terms of image representation.  
Zernike moments are rotation invariant and can be easily constructed to an arbitrary order.  Although 
higher order moments carry more fine details of an image, they are also more susceptible to noise.  
Therefore we have experimented with different orders of Zernike moments to determine the optimal 
order for our problem. 
 
The Zernike polynomials are a set of complex, orthogonal polynomials defined over the interior of a 
unit circle x2 + y2 = 1 [10, 11], 
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where n is a non-negative integer, m is an integer such that n–|m| is even and |m|≤n, 22 yx +=ρ , and 

x

y1tan−=θ . 

 
Projecting the image function onto the basis set, the Zernike moment of order n with repetition m is: 
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It has been shown in [11] that the Zernike moments on a rotated image differ from those of the 
original unrotated image in phase shifts, but not in magnitudes.  Therefore |Anm| can be used as a 
rotation invariant feature of the image function.  Since An,–m= Anm, and therefore |An,–m|=|Anm|, we will 
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use only |Anm| for features.  Since |A00| and |A11| are the same for all of the normalized symbols, they 
will not be used in the feature set.  Therefore the extracted features of the order n start from the 
second order moments up to the nth order moments. 
 
5. Learning and classification 
 
Three different classification techniques have been evaluated.  They are Support Vector Machines 
(SVM) [23], minimum mean distance (MMD), and nearest neighbor (NN) [10].  The classifiers learn 
from the training set in which every example is represented with a multi-dimensional feature vector 
composed of extracted Zernike moments. 
 
For the SVM multi-class classifier, we used a radial basis kernel and pair-wise classification [18].  
This results in (N−1)N/2 binary classifiers where N is the number of class.   During classification, all 
classifiers are evaluated and the test example is classified to the class receiving the maximum number 
of votes.  The training data is scaled to be in the range of [0, 1] in order to avoid numerical problems.  
The test data is also scaled according to the parameters obtained during the training stage.  Since our 
recognition system is developed in Java, we used the libsvm package which is also written in Java to 
allow better integration [3]. 
 
In the minimum distance classifier, each symbol class, Ck, is represented with the sample means, µk, 
and standard deviations, σk learned from the training examples.  When a new example is given, it is 
compared to each symbol class by calculating the normalized Euclidean distance.  The normalization 
is done on each feature to account for the variance in that feature dimension.  The example is assigned 
to class k for which the distance is minimum.  The equations are show below: 
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where  
µi

k    =  the mean of the ith feature in class k 
σi

k    =  the standard deviation of the ith feature in class k 
xi,j

k    =  the value of the ith feature of example j in class k 
d(x, Ck)  =  the normalized distance between example x and class k 
n    =  the number of examples in class k 
m    =  the feature dimension 
 
During training, the nearest neighbor classifier normalizes the feature vectors of the examples in the 
training classes using the corresponding µk, and σk. In the classification stage, the classifier extracts 
features from the test example and computes the normalized Euclidean distance, d, between the 
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example and every training example.  The test example has to be normalized using the parameters of 
the class under test.  The training example of class k, ck, with the smallest distance to the test 
example, a, is the nearest neighbor of a.  Equation 7 shows the normalization of an example to class 
k.  Equation 8 shows the Euclidean distance between two examples. 
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The recognition can be made adaptive with each of these classification methods by updating the 
training parameters with added examples. 
 
6. Experimental results 
 
Two potential methods that a recognition system can be used in an application are that a user can train 
the recognizer with his or her own data, and that the user can use the pre-trained recognizer which is 
adaptive.  We have designed two sets of experiments based on these two usage scenarios to evaluate 
the recognition system. 
 
6.1. Experiment 1: writer-dependent test 
 
This experiment evaluates the performance of the recognizer in a writer-dependent situation.  A 
classifier is trained and tested using different parts of an individual’s dataset and is evaluated on all 
users’ datasets.  K-fold cross validation is used where K is set to 10 [20].  Each symbol is scale and 
translation normalized, approximated, and interpolated as described in Section 3.  Various 
interpolation values and orders of Zernike moments have been experimented and the results are 
presented in Table 1–3 and Figure 2. 
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Table 1. Recognition rates (%) using an SVM classifier.  

 
 Order of Zernike moments 

 3 4 5 6 7 8 9 10 
none 63.6 87.7 90.9 93.0 94.0 94.8 95.2 94.9 

10 67.2 89.1 91.4 95.2 96.1 96.9 97.2 97.3 
20 67.2 89.1 91.4 95.2 96.1 96.9 97.2 97.3 

 
Interpolation 

values 

30 67.2 89.1 91.4 95.2 96.1 96.9 97.2 97.3  
 

Table 2. Recognition rates (%) using an MMD classifier. 

 
 Order of Zernike moments 

 3 4 5 6 7 8 9 10 
none 55.9 81.6 83.5 86.0 86.3 86.4 86.0 85.5 

10 61.2 84.2 86.1 89.9 90.4 91.5 90.9 90.8 
20 61.2 84.2 86.1 90.0 90.4 91.5 90.9 90.8 

 
Interpolation 

values 

30 61.2 84.2 86.1 89.9 90.4 91.5 90.9 90.8  
 

Table 3. Recognition rates (%) using an NN classifier. 

 
 Order of Zernike moments 

 3 4 5 6 7 8 9 10 
none 42.3 79.2 82.4 86.8 87.2 88.0 87.9 87.6 

10 47.0 81.4 84.3 90.7 91.2 93.2 92.7 93.0 
20 46.8 81.3 84.3 90.7 91.2 93.2 92.7 93.0 

 
Interpolation 

values 

30 48.7 81.3 84.5 90.7 91.3 93.2 92.7 93.0  
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Figure 2. Experiment 1, writer-dependent test. 

 
The result showed SVM is superior compared to the other two classification methods.  The accuracy 
rate is higher when data has been interpolated.  However there is very little difference (< 0.2%) in the 
accuracy rates for interpolation values of 10, 20, and 30.  We did not try larger interpolation values 
for a few reasons: our approximation is very conservative as to not over filter the strokes, so there is 
little likelihood that neighboring data points would be very far apart, and if they are far apart, they 
should be interpolated with smaller values anyway to avoid uneven weighting.  Accuracy rates start to 
level off when moment order is 6.  Based on the experimental data, order 8 seems to be sufficient for 
this problem (with interpolation value = 10, the accuracy rates are 96.9% using SVM, 91.5% using 
MMD, and 93.2% using NN).  For a higher order moment, the accuracy rates are slightly higher in 
the SVM case, but worse in the other two (order = 10, 97.3% using SVM, 90.8% using MMD, and 
93.0% using NN). 

 
It is also important to determine the number of examples sufficient to train the recognizer.  Since the 
recognizer is adaptive, it will continue to train itself as more examples are added.  However, in this 
test, we try to determine the number of examples needed to get it started at a practical accuracy rate 



 8 

(Figure 3).  The results of different interpolation values (e.g. 10, 20, 30) are very similar, therefore, 
we simply show one of the plots below. 
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Figure 3. Testing the recognizer on incremental training data. 
 
The accuracy rate converges faster when an SVM classifier is used.  For the set of symbols under test, 
averaged across all users, by providing ≈10 examples per symbol, a user can expect to obtain > 90% 
accuracy rate using SVM in the writer-dependent case.  Though this may seem to be a very small 
number of training examples for such high accuracy rate using a statistical classifier, we believe it is 
because there is a great level of consistency in how a user draws shapes.  Of course, the more 
examples, the better it is to train the recognizer. 
 
6.2. Experiment 2: writer-independent test 
 
In this experiment, we are interested in determining how well the pre-trained recognizer works for a 
new user under different classification methods.  N−fold cross-validation is used where N is the 
number of users.  Each time, a different individual’s data set is held out for a test set, and a classifier 
is trained with all other users’ data and then test on the holdout set.  For each round, there are ≈ 7,020 
symbols for training, and ≈ 390 symbols for testing.  Again, various interpolation values and orders of 
moments have been evaluated along with three different classification methods.  The results are 
shown in Table 4-6 and Figure 4. 
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Table 4. Recognition rates (%) using an SVM classifier.  

 
 Order of Zernike moments 

 3 4 5 6 7 8 9 10 
none 44.1 77.2 84.1 88.5 89.5 91.0 91.8 92.3 

10 63.1 76.7 87.9 94.1 94.4 96.7 96.9 96.2 
20 63.1 76.7 87.9 94.1 94.4 96.7 96.9 96.2 

 
Interpolation 

values 

30 63.1 76.7 87.9 94.1 94.4 96.7 96.9 96.2  
 

Table 5. Recognition rates (%) using an MMD classifier.  

 
 Order of Zernike moments 

 3 4 5 6 7 8 9 10 
none 30.0 60.5 65.9 70.8 73.3 76.9 75.9 74.1 

10 55.4 73.8 78.5 85.4 85.4 92.8 91.5 91.5 
20 56.7 75.4 78.5 85.6 85.9 92.8 92.1 91.5 

 
Interpolation 

values 

30 56.7 75.4 78.5 85.6 85.9 92.8 92.1 91.5  
 

Table 6. Recognition rates (%) using an NN classifier.  

 
 Order of Zernike moments 

 3 4 5 6 7 8 9 10 
none 8.97 30.5 49.2 72.8 76.2 83.3 81.8 83.8 

10 13.3 35.4 60.5 84.6 87.7 94.1 91.3 92.1 
20 12.8 32.8 63.6 85.6 88.2 94.4 91.5 92.6 

 
Interpolation 

values 

30 12.8 32.8 63.6 85.6 88.2 94.4 91.5 92.6  
 
Again, SVM outperforms the other two classifiers.  With a moment order of 6, the accuracy rate starts 
to level off.  We speculate the reason SVM is more robust than the other two methods is due to its 
discriminative approach which makes use of weaker assumptions on class densities than the 
generative approach [9]. In the generative approach, such as MMD, if the knowledge of the class 
densities is reflective of the true data-generation process, then this approach can be more efficient in 
terms of fewer number of data required.  NN is similar to SVM in that it is based on the 
discriminative models, but it discriminates between every pair of examples instead of every class and 
the ability to generalize is thus weaker.  Also in the case of NN, as the size of the training set 
increases, the recognition speed will decrease since the number of comparisons needed is proportional 
to the number of training examples.  The experimental data suggests that a moment order of 8 is 
optimal (with interpolation value = 10, SVM = 96.7 %, MMD = 92.8%, and NN = 94.1%).  As 
evident from the plots, in some cases, the accuracy rates start to decline with higher moment orders. 
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Figure 4. Experiment 2, writer-independent test 

 
7. Conclusion 
 
We have developed an on-line symbol recognition method that is independent of stroke-order,  
-number, and -direction, as well as invariant to rotation, scaling, and translation.  The method is 
tolerant to shape distortion and adaptive.  Using Zernike moments as symbol features, three 
classification methods, namely SVM, MMD, and NN, have been compared.  A recognition accuracy 
rate of 97% had been obtained using Zernike moments up to order 8 with an SVM classifier. 
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