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TIIE DETERRIIXAST OF THE ADJACEXCY i\lA4TRIX OF A GRhPI112 

THEREARE THREE MUTUrZLLT ISTERCHrZNGEABLE WAYS of ~epre~eiltillga 
binary relation R on a finite set S. ITe may list the ordered pairs of objects in the 
relation, me may draw a directed graph (or more briefly, a digraph) D whoie 
points are the objects in S and in which we dram a directed line from one point 
to another whenever these two points form one of the ordered pairs in K ,  and 
finally we may write a square matrix A = A(D) in which the entry in the i,j cell 
is 1 if there is a line of D from the i'th point to the j'th point, and this entry is 
O otherwise. The matrix A is known as the adjacency m a t r i ~  of the digraph D. 

I t  is sometimes customary when speaking of digraphs to restrict consideration 
to irreflexive relations. Thus, in this special case, there is no directed line in D 
from any point to itself, and in A every diagonal entry is 0. Our object is to ob- 
tain a formula for the determinant of A in terms of the structural properties of D. 
We will also find a formula for the determinant of the adjacency matrix of an 
ordinary graph (or more briefly, a graph) which corresponds to an irreflexive 
symmetric relation. The extension to arbitrary relations, which are not neces- 
sarily irreflexive, is straightforward. 

In  their classical book of problems, P6lya and Szego [6] proposed the special 
cases of finding the determinant of the adjacency matrix of the tetrahedron 
( -3) ,  hexahedron (9), and octahedron (0) ,  as Exercise 1 in their chapter on 
determinants and quadratic forms. Collatz and Sinogowitz [2] have studied the 
properties of the eigens~alues of the adjacency matrix of an ordinary graph and 
discussed the value of the determinant of A while describing the coefficients of 
the polynomial / A - X I  1 .  Thus their work contains our equation (7) implicitly. 
Our formulas (2) and (7) give explicit expressions for the value of the product 
of the eigens~alues of A for digraphs and ordinary graphs respectively. These 
follow from more general formulas (1) and ( 5 )  which give a structural interpreta- 
tion to the determinant of the matrix obtained from A n-hen a variable corre- 
sponding to a line replaces each entry of value 1. 

Since formula (1) also gives the determinant of any square matrix, including 
those with nonzero diagonal entries, it can be regarded as a combinatorial formula 
for evaluating determinants and can in fact be taken as an alternate definition 
of a determinant. 

Two graphs GI and Ga are isomo~phic if there is a 1 - 1 correspondence between 
their sets of points which preserves adjacency. Thus GI and Gz are isomorphic if 
and only if their adjacency matrices Al and A2 have the property that for some 
permutation matrix P, A2 = PA~P-'. 

This note was suggested by Professor Pblya, to  whom the author is grateful for his com- 
ments. I t  was written during a visit a t  the Xumerical Analysis Group, Stanford University 
in September 1960. Presented to the An~er. Math. Soc. April 6, 1961. 

Received by the editors July 21, 1961 and in revised form February 20, 1962. 
University of Michigan. 
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lluriag the ten minute talk mentioned in footnote 1, I made the folloiving 
statement as a conjecture. 

Coujectz~re: Two graphs GI and G2 are isonlorphic if their adjacency matrices 
Al and Aq have the same eigenvalue spectra. 

R. C. Bose, who was present, immediately announced that the conjecture was 
not true, and later provided a counterexample consisting of two nonisomorphic 
graphs with 16 points each, whose adjacency matrices have the same eigenvalues. 
Subsequently, other counterexamples with 16 points have been found by R. H. 
Bruck and A. J. Hoffman. Several disproofs of this conjecture will soon appear 
in the literature. W. T.  Tutte (oral comnlunication) has suggested that the 
conjecture be withdrawn, and this is hereby done. However, the following ques- 
tion remains. 

Questiolz: What is the smallest number of points in two nonisomorphic graphs 
GI and G2 which serve as a counterexample? 

I t  has been verified by exhaustive methods that the conjecture holds for all 
graphs with up to 6 points. I t  is suspected that the answrer to the question is 16. 

Let D be a digraph whose points are VI , v2 , . . , v, and whose directed lines 
are x, , x2 , . . . ,x, . By an abuse of notation which will be clear by context, we 
refer to x, both as the i'th line and as a variable associated with this line. There 
is an additional matrix which can he defined for the digraph D which will be 
called the variable adjacency nzatrix. This matrix is denoted A(D, x) and is con- 
structed as fo l lo~~s:  the i, j entry is x~ if and only if there is s~ line in D from v ,  to 
v, and xk is this line, and this entry is 0 if there is no such line in D. Let A(D) 
be the adjacency matrix of D. Since A(D) is obtained from A(D, x) by sub- 
stituting xk = 1 for each of the variables standing for the lines of D, it follows that 
the value of the determinant 1 i4 (D) j is immediately determined from that of 

/ d ( D ,  x) , by substituting xk = 1 for each line. We will call I A(D) I the de- 
terileinant of D and i AiD, 2) / the variable determinant of D. 

The entries in the adjacency matrix A = A(D) of digraph D clearly depend 
on the ordering of the points. But the value of the determinant / A 1 is inde- 
pendent of this ordering. For the adjacency matrix with any other ordering is of 
the form PAP-' for some permutation matrix P ,  and I PAP-' / = 1 P 1 .  I A 1 .  
I P - ' 1  = IA 1 .  

Tt7e illustrate with the digraph D of Fig. 1, which has five points and ten 
lines. The rariahle adjacency matrix of this digraph is 
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so that its adjacency matrix is 

One may readily verify that 

1 11( D , X )  / = r1.r?23.2.4Xj- -k I L ' ; R ' ~ ~ L ' ~ )~ . 5 ~ t j ( ~ . 2 ~ 3 ~ l i )  

from which we see at  once that 

I A ( D )  i = -1.  

I n  Fig. 2 we show the suhgraphs of D corresponding to the three terms in the 
expression for j -4 (0,z) I .  

This example has been developed in detail in order to bring out the structure 
of the nonvanishing terms in the polynomial which is obtained by expanding the 
determinant of the variable adjacency matrix of a digraph. A general observation 
on this subject has been made implicitly in a previous article [4], and we only 
state the result here. 

THEOREMA. A term in the expansion of the cleten7zinant of a digraph i s  nonzero 
i f  and only i f  the lines of a, digraph corr~sponding to the ~n2rie.s in this trrw constitzrte 
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a collection of directed cycles such that each point of D i s  contained in exactly one of 
these cycles. 

I t  is easy to build on this result to obtain an explicit formula for the deter- 
minant 1 A(D, x )  1, which we shall state as Theorem 1. The indegree (outdegree) 
of a point v of a digraph B is the number of lines to v (from v ) .  By a linear sub- 
graph of a digraph we will mean a subgraph of the kind described in Theorem A, 
that is, a subgraph of B in which each point of D has indegree 1 and also out- 
degree 1.Thus, a linear subgraph of a digraph D consists of a collection of directed 
cycles such that each point occurs in exactly one cycle. This has been noted in 
Iionig [3]. 

Let n be the number of distinct linear subgraphs of D.Let D, be the i'th linear 
subgraph. Let p , ( x )  be the product of the variables xk for the lines in D, . Let 
e ,  be the number of even cycles in D, . 

THEOREM1. The variable deterwzinant of a digraph i s  given by the following 
fori~zula: 

PROOF.The factor p , ( x )  in each term of the sum which gives the value of this 
determinant is an immediate consequence of Theorem A. I t  remains only to 
*justify the factor (-1)': The reason for this may be seen by referring to Fig. 2. 
If we consider the cycle of length 2 in Fig. 2a as a digraph, then obviously its 
variable determinant is - x g s  . If we take the directed cycle of length 3 in Fig. 2a 
as a digraph in its own right, then it is immediately evident that the correspond- 
ing determinant is x2x3x10. Continuing, we see that any directed cycle of even 
length, considered as a digraph, will have for its variable determinant the negative 
of the product of its lines, while any odd cycle will have simply the product of its 
lines. Since the determinant 1 A(D, x )  1 is independent of the ordering of the 
points of D, we may select a separate ordering for the points in each linear sub- 
graph of D, so that its adjacency matrix is decomposed into diagonal submatrices. 
But since the determinant of a matrix which is decomposed into diagonal sub- 
matrices is the product of the determinants of these submatrices, it follon~s that 
the variable determinant of a linear subgraph of D, ignoring the remaining lines 
of D, is the product of the corresponding determinants for each of the directed 
cycles which together constitute this linear subgraph, proving that 1 A(D, , x )  I 
= ( - 1)" " p ( x )  . To complete the proof of the theorem, it only needs to be noted 
that 

But this is an immediate consequence of the definition of a determinant. 
We immediately determine the determinant of the adjacency matrix of a 

digraph by setting each xk = 1, 
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A path in a digraph is an alternating sequence of distinct points and directed 
lines beginning and ending with a point such that each line is preceded by its 
first point and followed by its second point. If there is a path from ul to v2 in D, 
we say that v2 is reachable from ul . A digraph is strongly connected or strong if 
any two points are mutually reachable. A strong cowzponent of a digraph is a 
maximal strong subgraph. Thus a strong component C of D is a subgraph of D 
which is itself a strong digraph and any other subgraph of D which contains C 
properly is not strong. 

THEOREM2. The determinant of the adjacency matrix of a digraph i s  the prodzid 
of the corresponding determinants of its strong components. 

PROOF.In  the formula of Theorem 1,we combined the observations that the 
variable determinant of a digraph is the sum of the corresponding determinants 
of its linear subgraphs, and that the variable determinant of a linear subgraph is 
the product of the variable determinants of its directed cycles. Since the points 
and lines of a directed cycle necessarily lie in the same strong component, it 
follo\vs that the product of the variable determinants of each of the strong com- 
ponents of a digraph gives the variable determinant for the entire digraph. 

This result is stated in the following equation, in which C1, ( 2 2  , . . . , C8denote 
the strong components. 

In  the case of a digraph with several strong components, this formula mould 
simplify the calculations required to find the determinant of its adjacency 
matrix. A line of a digraph D which does not lie in any strong component cannot 
be in any cycle and therefore is never contained in a linear subgraph of D. Thus, 
to find the determinant of D it is sufficient to find the determinant of that sub- 
graph of D obtained by deleting all those lines that are not contained in any 
strong component. In the article [4], there is an algorithm for finding the strong 
components of a digraph. Using this method, the lines to be deleted are readily 
determined. After removing these lines, the digraph (if it is not strongly con- 
nected to start) will be disconnected. 

An ordinary graph (or simply graph) G is obtained by modifying a digraph D 
as follows. Both G and D have the same points and two points q and u2 in G 
are joined by an undirected line if and only if both the directed lines s -+ ua and 
u2 -+ u1 occur in D. In  order to avoid confusion between the notation for the lines 
of a digraph and the lines of a graph, we shall denote the lines of G by the variable 
symbols yl , y 2 ,  . .  . . We now develop a formula for the determinant of the 
variable adjacency matrix of G. Let A(G) be the adjacency matrix of a graph G 
and let A(G, y) be its variable adjacency matrix. We illustrate these matrices 
with the graph of Fig. 3. 
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The variable adjacency matrix of this graph is 

1Ve verify at once that the determinant of this matrix is 

and 

I t  is clear that the variable adjacency matrix of an ordinary graph G may be 
obtained from that of the corresponding symmetric digraph D which has a sym- 
metric pair of directed lines for each undirected line of G. We use this observation 
to define the properties of a subgraph of G whose lines correspond to a single 
nonx~anishing term in the determinant / A(G, y) 1 .  

A path in a graph G is the set of elements in an alternating sequence of points 
and (undirected) lines beginning and ending with a point, in which the points are 
distinct. A cycle in a graph is obtained from a path by adding the line joining the 
two endpoints of the path. A spanning subgraph of G has the same set of points as 
G. To illustrate, the set of all points of G, with no lines, is always a spanning sub- 
graph of G. An (ordinary) linear subgraph of G is a spanning subgraph whose 
components are lines or cycles. Let n be the number of linear subgraphs of G 
and let G, be the i'th linear subgraph. An even component of G, has an even 
number of points. Let e; be the number of even components of G; and c, be the 
number of components of G; containing more than two points, and thus consisting 
of a single undirected cycle. 

As in the case of digraphs, the variable determinant of an ordinary graph is the 
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sum of the variable determinants of its ordinary linear subgraphs: 

Therefore, it is sufficient to develop a formula for the variable determinant of an 
ordinary linear subgraph Gi . Let Li be the set of components of Gi consisting of 
two points and the line joining them and let Mi be the remaining components of 
Gi each of which is a cycle. 

THEOREM3. The variable determinant of an ordinary linear subgraph ($ an 
ordinary graph is given by the following formula. 

PROOF.This formula, although longer and more complicated in appearance 
than equation ( I ) ,  is actually a corollary of that equation. We may see this by 
considering the digraph corresponding to the linear subgraph G, obtained by 
replacing each undirected line yk by the symmetric pair of directed lines joining 
the same two points, and calling each of these two directed lines by the same 
symbol yk . The factor ( - 1)" of formula (6) is exactly the same as equation (1) .  
I t  remains to show that the factor p,(z) becomes the rest of formula (6) .  To 
do this, it is necessary to point out that the linear subgraph G, , after being con- 
verted to a symmetric digraph D, , may contain several linear subgraphs. Thit 
is a consequence of the fact that every undirected cycle of G, becomes the unior 
of two directed cycles, only one of which is in any linear subgraph of D, . Thus the 
number of linear subgraphs of the digraph just constructed from G, is obtainec 
by raising 2 to that power which is the number of components of G, which arc 
cycles, that is, contain more than two points. For each of the linear subgraphc 
of D, , the product of the variables attached to the lines is given by multiplying 
all the variables attached to those lines of G, which are contained in a cycle bj 
the square of each variable attached to a line of G, which is itself a componen 
of G, . This follo~vs from the fact that each line of G; in a cycle occurs just onct 
in any ordinary linear subgraph while each variable attached to a line not in : 
cycle occurs twice in every such ordinary linear subgraph, once in each direction 
Combining these observations, we obtain equation (6). 

As immediate corollaries we obtain formulas for the determinant of the ad 
jacency matrix of an ordinary linear subgraph: 

(7) I A(G,) I = ( - l)ei2cL1 

and also the determinant of the adjacency matrix of the original graph G: 

In  Figure 4 we show a graph G and its three ordinary linear subgraphs GI 
G z , G3. Since I A(GI,  y) I = ys2!~4" I A(G2, y) I = y ~ ~ y ~ ' ,and 

I A (G3 , y) I = ,- ~ Y I ? I ~ Y ~ Y ~  
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we see that 

and 

1 A(G) I = 0. 

Similarly, for the graph G of Fig. 5, we find 

and 

We conclude by observing that equation ( I )  in this article is of interest in 
electric network problems and has been anticipated in the literature. In  the lan- 
guage of flow graphs used by Desoer [3] in his proof of Coates' formula [I], a 
"connection-gain" of a "flow graph" is the product of the line variables in a 
linear subgraph of a given digraph. In  Fig. 5 of [3], a digraph with 4 points and 
its 5 linear subgraphs are depicted, and it is said: "Thus by simply listing all the 
connections, as is done on Fig. 5, one obtains all the terms of the sum" (where 
the sum is the value of a given determinant). 
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