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Kernel principal component analysis has been introduced as a method
of extracting a set of orthonormal nonlinear features from multivariate
data, and many impressive applications are being reported within the lit-
erature. This article presents the view that the eigenvalue decomposition
of a kernel matrix can also provide the discrete expansion coef�cients
required for a nonparametric orthogonal series density estimator. In ad-
dition to providing novel insights into nonparametric density estima-
tion, this article provides an intuitively appealing interpretation for the
nonlinear features extracted from data using kernel principal component
analysis.

1 Introduction

Kernel principal component analysis (KPCA) is an elegant method of ex-
tracting nonlinear features from data, the number of which may exceed
the dimensionality of the data (Schölkopf, Smola, & Müller, 1996, 1998).
There have been many notable applications of KPCA for the denoising of
images and extracting features for subsequent use in linear support vector
classi�ers (Schölkopf et al., 1996; Schölkopf, Bruges, & Smola, 1999). Com-
putationally ef�cient methods have been proposed in Rosipal and Girolami
(2001) for the extraction of nonlinear components from a Gram matrix, thus
obviating the computationally burdensome requirement of diagonalizing a
potentially high-dimensional Gram matrix. 1

In KPCA, the implicit nonlinear mapping from input space to a possibly
in�nite-dimensional feature space often makes it dif�cult to interpret fea-
tures extracted from the data. However, by considering the estimation of a
probability density function from a �nite data sample using an orthogonal

1 The term Gram matrix refers to the N £ N kernel matrix. The terms kernel matrix and
Gram matrix may be used interchangeably.
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series, some insights into the nature of the features extracted by KPCA can
be provided.

Section 2 brie�y reviews orthogonal series density estimation, and Sec-
tion 3 introduces the notion of using KPCA to extract the orthonormal fea-
tures required in constructing a �nite series density estimator. Section 4
considers the important aspect of selecting the appropriate number of com-
ponents that should appear in the series. Section 5 highlights the fact that the
quadratic Renyi entropy of the data sample can be estimated using the asso-
ciated Gram matrix. This strengthens the view that KPCA provides features
that can be viewed as estimated components of the underlying data density.
Section 6 provides some illustrative examples, and section 7 is devoted to
conclusions and related discussion.

2 Finite Sequence Density Estimation

The estimation of a probability density by the construction of a �nite series
of orthogonal functions is brie�y described in this section. (See Izenman,
1991, and the references in it for a complete exposition of this nonparametric
method of density estimation.) We �rst consider density estimation using
an in�nite-length series expansion.

2.1 In�nite-Length Sequence Density Estimator. A probability density
function that is square integrable can be represented by a convergentorthog-
onal series expansion (Izenman, 1991), such that

p(x) D
1X

kD1

ckWk (x), (2.1)

where x 2 <D and the functions fWk (x)g1
kD1 form an orthonormal sys-

tem of functions. For any orthonormal series expansion in a Hilbert space
(Kreyszig, 1989), for the case where p(x) is a density function, the associated
expansion coef�cients follow as

ck D
Z

p(x)Wk (x) dx D EpfWk (x)g ´ m W
k , (2.2)

where Ep denotes expectation with respect to the density function p. Thus,
we can write p(x) D

P1
kD1 m W

k Wk (x) D h¹W ¢ © (x)i where h¢i represents
the canonical (Euclidean) inner product. We can also consider the elements
of the series © (x) as a nonlinear map from the data space to some fea-
ture space (Schölkopf et al., 1999), such that the inner product in feature
space is computed directly using a kernel function h © (x0 ) ¢ © (x)i D K (x0 , x).
Consider a reproducing kernel Hilbert space (RKHS) H with associated
kernel K(x0 , x) D

P1
kD1 lkwk (x)wk (x0 ) and inner product denoted by h¢iH ,



Orthogonal Series Estimation 671

therefore implicitlyde�ning theelements of themappingas Wk (x) ´
p

lkwk (x).
The density function is given by the inner product of the mapped point in
feature space © (x0 ) and the mean of the distribution, ¹W, in the de�ned fea-
ture space; thus, the reproducing property of the space yields the following
density at the point x0:

p(x0 ) D hp(x) ¢ K(x0 , x)iH D h¹W ¢ © (x0 )i. (2.3)

The form of the expression for the density function 2.3 gives an indication
of a link between the fundamental problem of density estimation and un-
supervised learning methods that employ the kernel trick (Schölkopf et al.,
1998, 1999). If there is a �nite sample of points [x1, ¢ ¢ ¢ , xN] drawn from the
true distribution p(x), then an unbiased numerical estimate of the above
expectation (coef�cients of the expansion)2 is ck ¼ Ock D

R 1
N

PN
nD1 d (xn ¡

x)Wk (x)dx D 1
N

PN
nD1 Wk (xn) ´ Om W

k . The estimated value of the probabil-
ity density function for a point x0 , denoted by Op(x0 ), is then given by the
expression

Op(x0 ) D h O¹W ¢ © (x0 )i D
1
N

NX

nD1

h© (xn) ¢ © (x0 )i

D
1
N

NX

nD1

K (x0 , xn) D 1T
Nk(x0 ),

where the N £ 1 vector [K (x0 , x1) ¢ ¢ ¢ K (x0 , xN )]T is denoted by k(x0 ) and the
vector 1N is an N £ 1 dimensional vector whose individual elements are
each the value 1/N. This expression is the familiar Parzen window den-
sity estimator with K (., .) being the smoothing kernel. For the case where a
density-dependent weighting an is employed in estimating the series coef-
�cients, then Op(x0 ) D

PN
nD1 anK (x0 , xn), and support vector methods can be

employed in estimating the appropriate weighting coef�cients (Mukherjee
& Vapnik, 1999), which will yield a sparser representation of the density
estimate than the Parzen window estimator.

2.2 Truncated Sequence Density Estimator. Turning to the truncated
form of the in�nite series estimate, the estimated value of the probability

2 Note that the empirical density estimate based on the sum of delta functions 1
N d (xn ¡

x) can also be exchanged for a weighting an such that 0 · an · 1 and
PN

nD1 an D 1, in

which case Ock D
PN

nD 1 anWk (xn ), where each an will be estimated from the data using, for
example, maximum likelihood.
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density function for a point x0 is then given by the expression

OpM (x0 ) D
MX

kD1

OckWk (x0 )

D
1
N

NX

nD1

MX

kD1

Wk (xn)Wk (x0 ) D
1
N

NX

nD1

MX

kD1

lkwk (xn)wk (x0 ), (2.4)

where OpM (x0 ) denotes the density estimate yielded when M components
of the series are retained. Many systems of orthogonal functions exist—
for example, Legendre, Fourier, and Hermite systems have all been use in
equation 2.4 for density estimation (Izenman, 1991). For the case where p(x)
has in�nite support on the real line, then the system of orthogonal functions
chosen is typically the normalized Hermite polynomials, and if the support
is strictly positive, the Laguerre system may be used (Izenman, 1991; Tou
& Gonzalez, 1974). Although density estimation using an orthogonal series
is asymptotically unbiased, it has one distinct shortcoming: it can produce
negative point values (Izenman, 1991).

A standard method for estimating a probability density function is the
truncated orthogonal series density estimate, and this has been brie�y in-
troduced. The following section begins by considering the solution of the
continuous Karhunen-Loève (KL) expansion from discrete data and points
out that the nonlinear features provided by KPCA may be used in forming
the basis functions for a series density estimator.

3 KPCA and Orthonormal Basis Functions

The solution of the continuous KL expansion from a discrete sample of data
is a well-studied problem. Consider the integral equation that describes the
KL expansion:

Z

D
K (x, x0 )wi (x) dx D liw i (x0 ), (3.1)

where K (x, x0 ) de�nes the covariance kernel of the associated stochastic
process and the domain of integration is de�ned by D. This integral can
be generalized to take into account the variation over the domain of in-
tegration given by the underlying probability density function, in which
case the integral in equation 3.1 becomes an expectation, and the eigen-
functions are then orthonormal with respect to the data density (Williams
& Seeger, 2000). The estimation of the eigenfunctions of the continuous
integral equation 3.1 from the associated discrete version, equation 3.2,
generated by a �nite sample of N data points was studied in Ogawa
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and Oja (1986):

1
N

NX

nD1

K (xn, xm)wi (xn) D liw i (xm). (3.2)

Indeed, equation 3.1 is a homogeneous Fredholm integral equation of the
second kind, and there are a number of quadrature methods available
for its approximate numerical solution based on the discretized form of
equation 3.2 (Delves & Mohamed, 1985). This is achieved by performing
an eigenvalue decomposition on the N £ N-dimensional Gram matrix K
whose elements are Kin D K (xi , xn), where K (xi, xn) denotes the kernel
function associated with the two points. The eigen-decomposition satis�es
KU D US, where the columns of the N £ N matrix U are the eigenvec-
tors of the Gram matrix and the diagonal matrix S contains the elements
Qlk, the corresponding eigenvalues. These eigenvectors form an estimate
of the actual eigenfunctions such that wk (xn) ¼ Owk (xn) D

p
Nunk and the

eigenvalues are estimated by lk ¼ N¡1 Qlk (Williams & Seeger, 2001). Esti-
mates of the eigenfunctions at a new point x0 can be made by simply using
equation 3.2 as an interpolatory formula (Delves & Mohamed, 1985), in

which case Owk (x0 ) D
p

N
Qlk

PN
nD1 unkK (x0 , xn). This approach is a form of the

Nyström routine (Delves & Mohamed,1985) and has recentlybeenproposed
in Williams and Seeger (2001) as a method for speeding up the inversion
of the Gram matrix in kernel-based classi�cation methods such as gaussian
process classi�ers.

In summary, the eigenvalue decomposition of a Gram matrix associated
with a particular kernel (K (xi, xn)) provides estimates of the orthogonal
system of eigenfunctions associated with the continuous integral equation
(the KL expansion). It is now proposed that the extracted eigenvectors can
be used to form the required orthogonal series for a probability density
function estimate, and by doing so we gain some insights into the nature of
the features extracted using KPCA.

3.1 Orthogonal Series Density Estimation from KPCA. It is clear that
the eigenvalue decomposition of the Gram matrix K as in KPCA now pro-
vides estimates of the eigenfunctions associated with the kernel appearing
in equation 3.1.3

Using the eigenvectors as �nite sample estimates of the correspond-
ing eigenfunctions, it is straightforward to see that the truncated estimate
of the probability density function (see equation 2.4) at a point x0

3 In fact, kernel PCA is an eigenvalue decomposition performed on the centered kernel
matrix QK, which is related to the original kernel matrix by QK D (I ¡ 1N )K (I ¡ 1N ), where
I is an N £ N identity matrix and 1N is an N £ N matrix whose elements are all 1/N.
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follows as

OpM (x0 ) D
MX

kD1

OckWk (x0 ) ¼ 1
N

NX

nD1

MX

kD1

Qlk

N
Owk (xn) Owk (x0 )

D
1
N

NX

nD1

MX

kD1

Qlk

N

p
Nunk

p
N

Qlk

NX

lD1

ulkK (x0 , xl)

D
1
N

NX

nD1

MX

kD1

q
Qlkunk

NX

lD1

ulkq
Qlk

K (x0 , xl )

D 1T
N

MX

kD1

q
Qlkuk

8
<

:

NX

lD1

1q
Qlk

ulkK (x0 , xl)

9
=

; ,

where the vector 1 is an N £ 1-dimensional vector whose individual ele-
ments are each the value one. It is worthy of note that the bracketed term
appearing in the last line of the above equations is the projection of the
kernel for the point x0 onto the corresponding eigenvector—that is, the non-
linear principal component as in KPCA (Schölkopf et al., 1996). In other
words, the density estimate is a weighted sum of the M signi�cant (the
sense of this signi�cance will be de�ned in the following section) normal-
ized eigenvectors of the Gram matrix. The weighting terms correspond to
the associated nonlinear principal components of the point under question,
so in this sense, the features extracted using KPCA can be viewed as com-
ponents of the estimated data density. The implication is that the choice of
kernel and any associated parameters4 will have a profound effect on the
quality of the associated density estimate. Therefore, good5 features will
be extracted by KPCA when the Gram matrix is such that a faithful recon-
struction of the underlying data density can be made from the associated
eigenfunctions.

The choice of kernel to use requires some consideration, and indeed it
is this question that the focus of much research into kernel methods in
machine learning is moving. From the viewpoint taken in this article, the
choice of kernel is determined by the desire to model any density function.
The gaussian, radial basis function (RBF) kernel has well-known universal
approximation properties, and �tting a suf�cient number of them to con-
tinuous data provides a means of estimating an arbitrary density function.
This can be achieved either by semiparametric modeling using, for exam-
ple, a mixture of gaussians, or by nonparametric modeling and using the
gaussian smoothing window. The enhanced performance of support vec-
tor machines (Schölkopf et al., 1999) when employing features extracted by

4 The width parameter, in the case of an RBF kernel.
5 In the sense of providing discrimination power for a classi�er, for example.
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KPCA on dif�cult classi�cation problems using RBF kernels (Schölkopf et
al., 1998) can now be understood from the perspective given in this article.
The principled selection of other kernels will be motivated by prior data
and domain knowledge, and this is an open area of research investigation.

The eigenvectors extracted are estimates of the corresponding eigenfunc-
tions of the continuous KL expansion; the accuracy of this estimate has been
studied in Ogawa and Oja (1986). More recently in Williams and Seeger
(2000), the signi�cance of the eigenvectors of the Gram matrix for the pur-
poses of classi�cation has been discussed in detail.

A method for selecting the number of eigenvectors that should be re-
tained in the expansion is presented in the following section.

4 Selecting the Length of Sequence

Now we see that this probability density function estimator can be written
in compact format as

OpM (x0 ) D 1T
N

MX

kD1

q
Qlkuk

8
<

:

NX

lD1

1q
Qlk

ulkK (x0 , xl )

9
=

; (4.1)

D 1T
NUMUT

Mk(x0 ),

where UM is the N £ M matrix, which retains M of the eigenvectors of K.
For the case when M D N as UUT D I, equation 4.1 reduces to the familiar
form of p(x0) D 1T

Nk(x0), the standard Parzen window density estimate. This
representation of the orthogonal series estimator provides some insight into
the kernel PCA approach to density estimation. It is clear from this that
inserting the matrix UMUT

M in the standard Parzen window estimator has a
smoothing effect on the estimated density. In other words, if, by way of an
example, a series of noisy observations is available to estimate the density,
then the orthogonal series estimator will potentially smooth out the effects
of the noise by selectively removing N¡M eigenvectors from the expansion.

The length of the sequence of eigenvectors retained in the expansion
requires consideration. The error generated by truncating the in�nite ex-
pansion at M can be shown (Kreyszig, 1989; Tou & Gonzalez, 1974) to give
an overall integrated-square truncation error of E D

P1
kDMC1 c2

k, where each
ck is de�ned in equation 2.2. Therefore, the corresponding error associated
with each element of the expansion is

Ek D c2
k D

»Z
p(x)Wk (x) dx

¼ 2

¼ 1
N2

(
NX

nD1

Wk (xn)

)2

¼ lk

N

(
NX

nD1

unk

)2

¼ Qlk

n
1T

Nuk

o2
,
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where uk and Qlk are the kth eigenvector and eigenvalue of K, respectively.
The approximate truncation error associated with each element in the se-
ries based on the N-sample density estimate is OEk D Qlk

©
1T

Nuk
ª2

. Therefore,
expansion coef�cients that have a small squared-sum value of the compo-
nents will have a negligible effect on the overall integrated-square error.6

Although this error gives an indication of the contribution to the overall
error from each component, it does not provide a stopping rule as such for
the elimination of eigenvectors within the expansion. In Kronmal and Tarter
(1968), the value of the mean integrated squared error is used in deriving
a stopping criterion. This is one criterion that is appropriate for the appli-
cation of kernel PCA in density estimation. In Diggle and Hall (1986), an
alternative criterion is proposed; however, for the purposes of this work,
the criterion of Kronmal and Tarter (1968) is adequate for the exposition of
the ideas set forth. Details found in Kronmal and Tarter (1968) show that
series elements that satisfy the following inequality should be considered
for retention in the sequence:

»
1
N

XN

nD1
Wk (xn)

¼ 2

>
2

1 C N

»
1
N

XN

nD1
W2

k (xn)g
¼

.

Substituting the eigenvector approximations for the eigenfunctions in the
above equation gives the following cutoff threshold:

n
1Tuk

o2
>

2N
1 C N

(uT
k uk) D

2N
1 C N

. (4.2)

If the sample size is large, then 2N
1CN ! 2, and the stopping criterion is

simply
©
1Tuk

ª2 > 2. Much has been written in the literature of nonparamet-
ric statistics regarding the stopping criteria for orthogonal series density
estimators. (See Diggle & Hall, 1986, for an extensive overview of these.)

This section has shown that the eigenvalue decomposition of the Gram
matrix (KPCA) provides features that can be used in density function es-
timation based on a �nite sample estimate of a truncated expansion of or-
thonormal basis functions. One criterion for the selection of the appropriate
eigenvectors that will appear in the series has been considered.

The following section presents the nonparametric estimation of Renyi
entropy from a data sample. The importance of the constructed Gram matrix
along with the associated eigenspectrum is considered.

6 This does not take into account the error in approximating the eigenfunctions using
the estimated eigenvectors.
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5 Nonparametric Estimation of Quadratic Renyi Entropy

Thus far, the discussion regarding the form of the kernel appearing in equa-
tion 3.1 has been general, and no speci�c kernel has been assumed. Let us
now consider speci�cally a gaussian RBF kernel. Note that the quadratic
Renyi entropy, de�ned as

HR2 (X) D ¡log
Z

p(x)2 dx, (5.1)

can easily be estimated using a nonparametric Parzen estimator based on
an RBF kernel. This above integral formed a measure of distribution com-
pactness in (Friedman & Tukey, 1974) and has recently been used for certain
forms of information-theoretic learning (Principe, Fisher, & Xu, 2000). De-
noting an isotropic gaussian computed at x centered at ¹ with covariance
¤ as N x (¹, ¤ ), employing the standard result for a nonparametric density
estimator using gaussian kernels and noting the convolution theorem for
gaussians, the following holds:

Z
p(x)2 dx ¼

Z
Op(x)2 dx D

1
N2

Z
8
<

:

NX

iD1

NX

jD1

N x (xi, ¤ ) N x (xj, ¤ )

9
=

; dx

D
1

N2

NX

iD1

NX

jD1

N xi (xj, 2¤ ).

For an RBF kernel with a common width of 2 ¤ , it is clear that the quadratic
integral can be estimated from thesum of each element in the Gram matrix—
in other words,

Z
Op(x)2 dx D

1
N2

NX

iD1

NX

jD1

K (xi, xj) D 1T
NK1N, (5.2)

where each N £1 vector 1N has each element equal to 1/N. Now we can see
that the contribution to the overall estimated data entropy of each orthonor-
mal component vector can be viewed using an eigenvalue decomposition
of the Gram matrix

Z
Op(x)2 dx D

NX

kD1

Qlk

n
1T

Nuk

o2
D

NX

kD1

OEk.

It is clear that large contributions to the entropy will come from components

that have small values of Qlk
©
1T

Nuk
ª2

and can be attributed to elements with
little or no structure. This can be considered as the contribution caused by
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observation noise in some cases or diffuse regions in the data. Large values

of Qlk
©
1T

Nuk
ª2

therefore indicate regions of high density or compactness and
are also indicative of possible modes of the density or underlying class and
cluster structure. Interestingly, the integral considered in the computation
of the quadratic Renyi entropy

R
Op(x)2 dx also de�nes the squared norm of

the functional form of Op(x) such that

Z
Op(x)2 dx D k Op k2

H D h O¹W ¢ O¹Wi D
1

N2

NX

nD1

NX

mD1

1X

iD1
liwi (xn)w i (xm)

D 1T
NK1N D 1T

NUSUT1N D
NX

kD1

OEk.

The above equation provides a more general result in that the kernel used
in estimating the quadratic integral need not be restricted to an RBF form.
The main point being made here is that the Gram matrix is fundamental
to the estimation of the Renyi entropy, which is based on data density.
When creating a Gram matrix for extraction of nonlinear features using,
for example, KPCA, from the arguments presented in this and the previous
section, the key is to choose a kernel that provides a reasonable estimate
of the underlying data density. Because different types of kernel produce
varying forms of associated eigenfunction, it is clear that the eigenfuctions
should be appropriate for the density to be estimated. For example, an RBF
kernel has eigenfunctions of the form of normalized Hermite polynomials
(Zhu, Williams, Rohwer, & Morciniec, 1998; Williams & Seeger, 2001) and
as such would be suitable for distributions with in�nite support.

The following section provides a number of illustrative examples.

6 Simulation

The �rst simulation provides a two-dimensional illustration of the extracted
features from the Gram matrix and how these can be interpreted. Analytic
solutions to the one-dimensional form of equation 3.1 have been provided in
Zhu et al. (1998) and Williams and Seeger (2001). An RBF kernel is used, and
the weighting function is taken as a gaussian, in which case the eigenfunc-
tions take the form of normalized Hermite polynomials (Kreyszig, 1989).
Normalized Hermite polynomials form an orthonormal sequence such that
in the univariate case,

Wi (x) D
1

(2ii!
p

p )
1
2

exp(¡x2 /2)Hi (x), (6.1)

where the Hermite polynomials Hi (x) are de�ned by the recursion

H0 (x) D 1 and Hi (x) D (¡1)iexp(x2)
di

dxi exp(¡x2). (6.2)
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Figure 1: A sample of 300 two-dimensional points where 100 are drawn from
each of three two-dimensional gaussian clusters. (Left) Scatterplot of the 300
points drawn from the gaussians with an isotropic variance of value 0.1. (Right)
The same points with additive gaussian noise whose variance is 0.38.

The generalization of the univariate form to a multivariate representation
is straightforward (Tou & Gonzalez, 1974).

Consider a sample of two-dimensional data points distributed in a similar
manner to those presented in Schölkopf et al. (1998) for illustrative purposes.
Three clusters of identical variance with value s D 0.1 and centers ¹ D
[0.0, 0.7I 0.7, ¡0.7I ¡0.7 ¡ 0.7] are generated. The left-hand plot of Figure 1
shows the scatter plot of the data. The density of the data corresponds to
the general form of mixture such that p(x) D

PK
k c k N x (¹k, sI), where the

usual constraints
P

k c k D 1 hold. Now note that an orthonormal set of basis
functions with respect to the density of the data p(x) must satisfy

KX

kD1

c k

Z

x
N x (¹k, sI)Qi (x ¡ ¹k)Qj (x ¡ ¹k) dx D dij . (6.3)

Because the weighting function is a gaussian, two-dimensional Hermite
polynomials of the form Hi (x ¡ ¹k) will satisfy this requirement. This indi-
cates that each of the components of the mixture (clusters in this instance)
will have a set of orthonormal Hermite polynomial functions associated
with them.

An RBF kernel of equal width to the individual cluster components was
used, and 300 points were drawn from the distribution (see Figure 1). An
eigenvalue decomposition was performed on the associated Gram matrix,
and the eigenvectors were used in forming the series density estimate.
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Figure 2
data of Figure 1 are shown starting from the top row. The characteristic structure
of two-dimensional orthonormal Hermite polynomial functions is clear and
most evident.

Figure 2 shows the nonlinear features associated with each of the �rst six-
teen eigenvectors. These are clearly estimates of the orthonormal Hermite
polynomial expansion coef�cients associated with the density. The �rst four
extracted features for one of the clusters are shown in Figure 3. It is clear
that the extracted features are indeed, up to a rotation and scaling, esti-
mates of the orthonormal Hermite polynomial functions (see Figure 3). In
essence, what we see is that the nonlinear features extracted by kernel PCA
using an RBF kernel are estimates of the orthonormal Hermite polynomial
components associated with the underlying data distribution.

between the actual density
sity
estimated using the expectation maximization algorithm) and the KPCA
method was computed for a range of the isotropic variance values rang-
ing from 0.05 to 0.5, in 0.05 increments. The empirical KLD was computed
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Figure 3
vectors associated with one of the clusters in the data. (Bottom) The �rst four
two-dimensional orthonormal Hermite polynomial functions.

using the standard form

Three hundred sample points were used to create the Gram matrix and
estimate the parameters of the gaussian mixture. Six hundred uniformly
distributed points within the region de�ned in Figure 1 were used to com-
pute the KLD for both methods. The mean KLD for the KPCA method was
0.036 compared to 0.043 for the mixture method over the range of values.
The comparison shows similar performance for both methods on this par-
ticular two-dimensional data, as would be expected.

KPCA density estimation method. The 300 points from the clustered data
in the previous simulation had gaussian noise of variance 0.38 added
ure 1 shows the original data and the noisy samples. From Figure 4, it is
quite obvious that three components are all that is required to estimate the
distribution corresponding to the noiseless data. However, in the case of
the noisy data, a slowly decaying eigenspectrum can be seen (see Figure 5).
However, when examining the contributions to the error of each eigenvec-
tor, it is still apparent that there are three signi�cant generators of the data.
The �rst three eigenvectors satisfy the Kronmal and Tarter criterion, after
which a small number of eigenvectors satisfy the criterion. The right-hand
plot of Figure 6 shows the estimated density contour plots when the �rst
three eigenvectors are retained in the series expansion. This should be con-
trasted to that which a Parzen window estimator yields (middle plot of
Figure 6). The smoothing effect can be noted due to the removal of series
elements that capture the diffuse areas within the data and the sharpening
of the three modes in the sample.



682 Mark Girolami

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

Figure 4: (Top) The �rst 50 eigenvalues of the Gram matrix created from the
noiseless and well-separated clusters of Figure 1. Due to the distinct structure in
the data, there are only three dominant eigenvalues. (Bottom) The contribution
to the overall integrated square error of each of the �rst 50 eigenvectors. Again
it is clear that only three eigenvectors satisfy the Kronmal and Tarter (1968)
criterion, and it is these that are required for the density estimate.

The �nal illustrative simulation uses data drawn from a uniform distri-
bution with �nite support. The left-hand plot of Figure 7 shows the data
drawn from a uniform distribution within the annular region that satis�es
9 · x2 C y2 · 25. The Parzen window estimated density iso-contours are
superimposed on these. The adjacent plot in Figure 7 gives the contour plot
of the estimated density using the kernel PCA method. Figures 8 and 9 show
the related nonlinear features and the relative importance of each.

7 Conclusion

Kernel PCA has proven to be an extremely useful method for extracting
nonlinear features from a data set, and its utility has been demonstrated
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Figure 5: (Top) The �rst 50 eigenvalues of the Gram matrix created from the
noisy clustered data of Figure 1. It is apparent that the slow exponential decay
of the eigenvalues is attributed to the high level of additive noise on the �nite
number of observations. The fast decay of the previous example is now dif�cult
to discern from the eigenvalues alone. (Bottom) The contribution to the overall
integrated square error of each of the �rst 50 eigenvectors. It is apparent that
there are only three dominant eigenvectors required for the majority of the
density estimate. It is also clear that only the �rst three eigenvectors satisfy the
Kronmal and Tarter (1968) criterion before it is violated, and it is these that are
retained for the density estimate.

on, among other applications, many complex and demanding classi�cation
problems. An intuitive insight into the nature of these particular features has
been somewhat lacking to date. This article has presented an argument that
the nonlinear features extracted using KPCA (the eigendecomposition of a
Gram matrix created using a speci�c kernel) provides features that can be
considered as components of an orthogonal series density estimate. This fol-
lows somewhat from the observations made in Williams and Seeger (2001)
regarding the effect of the data distribution on kernel-based classi�ers.
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Figure 6: (Left) The estimated probability density contour plot of the data con-
sisting of the three noiseless clusters using the kernel PCA-based orthogonal
series approach. A Parzen window estimator using a gaussian kernel with a
width of 0.1 gives an identical result. (Middle) The contour plots of the density
estimate, using a Parzen window estimator, for the noisy data in Figure 1. (Right)
The density for the noisy data using an orthogonal series estimator that consists
of the �rst three eigenvectors of the Gram matrix that satis�ed the Kronmal and
Tarter (1968) criterion. A smoothing of the effects of the noise on the density
estimate is apparent in this example.

Figure 7: (Left) The scatterplot of 1000 points drawn from a uniform annular
ring centered at the origin with uniform width. Superimposed on this are the
iso-contours of the estimated probability density using Parzen window estima-
tor. (Right) The iso-contours of the estimated probability density using kernel
PCA method. An RBF kernel of unit width was used in this experiment. It is
apparent that the uniform region of support has been extended in the density
estimate due to the in�nite support of the RBF kernel. Only eight eigenvectors
satis�ed the stopping criterion, and these were retained in the series expan-
sion estimate, which amounts to a representation that uses 0.8% of the possible
features.
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Figure 8: (Top) The eigenvalue spectrum for the �rst 50 eigenvalues of the ker-
nel. (Bottom) The values of Qlk

©
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Nuk

ª2
associated with each eigenvector. Eight

of the eigenvectors satisfy the Kronmal and Tarter criterion (1968).

The probability density function estimate provided by the relevant M
eigenvectors OpM (x0) D 1T

NUMUT
Mk(x0 ) can be seen to be a smoothed Parzen

window estimate where the matrix UMUT
M acts to smooth the estimate based

on the data sample. In some sense, this can be seen as a reduced-set represen-
tation of the density function estimate based on the retained eigenvectors
of the Gram matrix. The decomposition of the Gram matrix shows how
each of the eigenvectors contributes to the overall data entropy (or norm
of the functional form of the estimated density). Components that are re-
lated to the possible class structure (or modes) have a large sum-squared
value, while those that are attributed to unstructured noise have low values.
These particular values correspond to the induced error in the series density
estimate when the related eigenvectors are discarded.

One point of note is the accuracy of the eigenvectors as estimates of the
corresponding eigenfunctions and their effect on the density estimate. It is
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Figure 9
matrix. The characteristic Hermite polynomial structure of the features is most
apparent.

noted that the series representaion is very sparse, with only eight compo-
nents required to form the series density estimator for the data uniformly
distributed within the annular region (see Figure 7). This amounts to the
removal of 99.2% of the possible components in the series, with the large
majority corresponding to the smaller eignvalues being discarded. Williams
and Seeger (2001) show that for an RBF kernel, the accuracy of the estimates
of the dominant eigenvalues is good, and this deteriorates for the estimation
of the smaller values. The important components for the density function
estimate are situated at the top end of the eigenspectrum, which do not
suffer the effects of poor estimation.

sity estimation and provides an insight into the signi�cance of the associated
nonlinear features. This view may prove useful when considering kernel
PCA as a means of nonlinear feature extraction for classi�er design or data
clustering and, of course, nonparametric density estimation.
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