
Artificial Intelligence Review13: 3–54, 1999. 3
c
 1999Kluwer Academic Publishers. Printed in the Netherlands.

Separate-and-Conquer Rule Learning

JOHANNES F̈URNKRANZ*
Austrian Research Institute for Artificial Intelligence, Schottengasse 3, A-1010 Wien, Austria;
E-mail: juffi@ai.univie.ac.at; *Current address: Carnegie Mellon University,
Computer Science Department, 5000 Forbes Avenue, Pittsburgh, PA 15213-3891, U.S.A.;
E-mail: juffi@cs.cmu.edu

Abstract. This paper is a survey of inductive rule learning algorithms that use aseparate-and-
conquerstrategy. This strategy can be traced back to the AQ learning system and still enjoys
popularity as can be seen from its frequent use in inductive logic programming systems. We
will put this wide variety of algorithms into a single framework and analyze them along three
different dimensions, namely their search, language and overfitting avoidance biases.

Key words: covering, inductive logic programming, inductive rule learning

1. Introduction

In this paper we will give an overview of a large family of symbolic rule
learning algorithms, the so-calledseparate-and-conqueror coveringalgo-
rithms. All members of this family share the same top-level loop: basically,
a separate-and-conquer algorithm searches for a rule that explains a part of
its training instances, separates these examples, and recursively conquers the
remaining examples by learning more rules until no examples remain. This
ensures that each instance of the original training set is covered by at least
one rule.

It is well-known that learning algorithms need an appropriate bias for
making an “inductive leap”. Mitchell (1980) definedbiasas

any basis for choosing one generalization over another, other than strict
consistency with the observed training instances.

A learning algorithm can thus be characterized with the biases it employs.
While the basic top-level loop is invariant for all algorithms of the separate-
and-conquer family, their method for learning single rules can vary consider-
ably for different members of this family. We will characterize separate-and-
conquer algorithms along three dimensions:

Language Bias: The search space for a learning algorithm is defined by
its hypothesis language. Certain concepts may not be expressible or

4 JOHANNES F̈URNKRANZ

may have an awkward representation in certain hypothesis languages.
An appropriate choice of the hypothesis language thus constitutes an
important form of bias.

Search Bias: The term search bias refers to the way the hypothesis space is
searched. It includes the search algorithm (hill-climbing, beam search,
etc.), its search strategy (top-down or bottom-up), and the search heuris-
tics that are used to evaluate the found hypotheses.

Overfitting Avoidance Bias: Many algorithms employ heuristics for avoid-
ing overfitting of noisy data. They may prefer simpler rules to more
complex rules, even when the accuracy of the simpler rules on the train-
ing data is lower, in the hope that their accuracy on unseen data will be
higher. Such a bias for simpler rules has recently been termedoverfitting
avoidance bias(Schaffer 1993; Wolpert, 1993).1

We will start with the description of a generic separate-and-conquer algo-
rithm that can be instantiated to various existing (and new) learning algorithms
by specifying different biases.

2. The Separate-and-Conquer Strategy

The separate-and-conquer strategy has its origins in the AQ family of algo-
rithms (Michalski 1969) under the namecoveringstrategy. The termseparate-
and-conquerhas been coined by Pagallo and Haussler (1990) because of the
way of developing a theory that characterizes this learning strategy: learn
a rule that covers a part of the given training set (theseparatepart) and
recursively learn another rule that covers some of the remaining examples
(theconquerpart) until no examples remain. The terminological choice is a
matter of personal taste, both terms can be found in the literature. We will use
the termseparate-and-conquerlearning.

Separate-and-conquer algorithms have been developed for a variety of
different learning tasks. Figure 1 shows a collection of well-known algorithms
grouped by the types of concepts they learn. The classical separate-and-
conquer algorithms inducerule setsfor attribute-value based concept learning
problems. Variants generalize this approach to inducing ordered rule sets (also
calleddecision lists) for multi-class problems. Problems with continuous class
variables can be solved by learningregression rules. Research in the field of
inductive logic programming(Bergadano and Gunetti 1995; Muggleton 1992;
De Raedt 1995) has developed a variety of separate-and-conquer algorithms
that can solve the above tasks in a richer representation language by inducing

SEPARATE-AND-CONQUER RULE LEARNING 5

Figure 1. Separate-and-conquer algorithms grouped by concept type.

6 JOHANNES F̈URNKRANZ

Figure 2. The inductive concept learning problem.

logic programsfor classification or for predicting output values infunctional
relations.

In this paper we will mainly concentrate onconcept learningtasks, as they
seem to be the most common application of separate-and-conquer algorithms
in the literature. We will start with a brief formalization of this learning
problem (section 2.1), proceed to formalize a generic separate-and-conquer
algorithm that can address this problem (section 2.2) and briefly discuss
important variants that handle related learning problems (section 2.3).

2.1. The learning problem

Figure 2 shows the inductive concept learning problem. Given are positive
and negative examples of a target concept, described with a fixed number
of attributes, maybe enriched with additional background knowledge. The
goal of the algorithm is to discover a description for the target concept in the
form of explicit rules formulated in terms of tests for certain values of the
attributes or the background knowledge. The resulting rule set should be able
to correctly recognize instances of the target concept and discriminate them
from objects that do not belong to the target concept.

There are various approaches for tackling this problem. The most
commonly used alternative is decision tree learning via thedivide-and-
conquerstrategy (Quinlan 1986). Much of the popularity of decision tree
learning stems from its efficiency in learning and classification (Boström
1995). Moreover, decision trees can easily be turned into a rule set by
generating one rule for each path from the root to a leaf. However, there

SEPARATE-AND-CONQUER RULE LEARNING 7

are several aspects which make rule learning via the separate-and-conquer
strategy attractive:
� Decision trees are often quite complex and hard to understand. Quinlan

(1993) has noted that even pruned decision trees may be too cumber-
some, complex, and inscrutable to provide insight into the domain at
hand and has consequently devised procedures for simplifying decision
trees into pruned production rule sets (Quinlan 1987a, 1993). Additional
evidence for this comes from Rivest (1987) who shows that decision
lists (ordered rule sets) with at mostk conditions per rule are strictly
more expressivethan decision trees of depthk. A similar result has been
proven in (Bostr̈om 1995).

� The restriction of decision tree learning algorithms to non-overlapping
rules imposes strong constraints on learnable rules. One problem result-
ing from this constraint is thereplicated subtree problem(Pagallo and
Haussler 1990): It often happens that identical subtrees have to be learned
at various placed in a decision tree, because of the fragmentation of
the example space imposed by the restriction to non-overlapping rules.
Separate-and-conquer learners do not make such a restriction and are thus
less susceptible to this problem. An extreme example for this problem
can be found in (Cendrowska 1987), where it is shown that the minimal
decision tree for the conceptx defined as

x :– a = 3, b = 3.

x :– c = 3, d = 3.

has 10 interior nodes and 21 leafs assuming that each attributea : : : d
can be instantiated with three different values.

� Propositional separate-and-conquer algorithms extend naturally to the
first-order inductive logic programmingframework, where the goal is
basically the induction of a PROLOG program. First-order background
knowledge can also be used for decision-tree induction (Watanabe and
Rendell 1991; Lavrǎc, Džeroski and Grobelnik 1991; Kramer 1996;
Blockeel and De Raedt 1997), but once more, Watanabe and Rendell
(1991) have noted that first-order decision trees are usually more complex
than first-order rules.

In particular the last issue has contributed to a recent revival of separate-
and-conquer learning strategies, which has been a source of motivation for
this systematic overview.

2.2. The algorithm

Figure 3 shows a simple separate-and-conquer algorithm, which has been
implemented in a more or less equivalent form in the PRISM learning system

8 JOHANNES F̈URNKRANZ

Figure 3. A simple separate-and-conquer algorithm.

(Cendrowska 1987). It starts with an empty theory and successively adds
rules to it until all positive examples are covered. The learning of single
rules starts with a rule whose body is always true. As long as its still covers
negative examples the current rule is specialized by adding conditions to its
body. Possible conditions are tests on the presence of certain values of various
attributes. In order to move towards the goal of finding a rule that covers no
negative examples, the algorithm selects a test that optimizes the purity of the
rule, i.e., a test that maximizes the percentage of positive examples among
all covered examples. When a rule has been found that covers only positive
examples, all covered examples are removed and the next rule is learned from
the remaining examples. This is repeated until no examples remain. Thus it is
ensured that the learned rules together cover all of the given positive examples
(completeness) but none of the negative examples (consistency).

All separate-and-conqueralgorithms share the basic structure of this simple
algorithm. However, many learning tasks require modifications of this proce-
dure. For example, if the data are noisy, the induction of complete and
consistent theories can lead to overfitting. Thus many algorithms relax this
constraint and use stopping criteria or post-processing methods to be able to
learn simpler theories, which are not complete and consistent but often more
predictive on unseen data. Other algorithms replace the top-down search of
the innerwhile -loop with a bottom-up search, where rules are successively
generalized starting with a most specific rule (e.g. consisting of one of the

SEPARATE-AND-CONQUER RULE LEARNING 9

positive examples itself). Yet other algorithms do not use hill-climbing, but
employ less myopic search algorithms like beam search or best-first search.
Another issue is the type of conditions that can be used in the formulation of
the hypotheses. The algorithm of Figure 3 can only formulate rules in propo-
sitional logic, but research in inductive logic programming has developed
algorithms that can learn rules in first-order logic.

Figure 4 shows a generic separate-and-conquer rule learning algorithm
that calls various subroutines which can be used to instantiate the generic
algorithm into specific algorithms known from the literature. SEPARATEAND-
CONQUERstarts with an empty theory. If there are any positive examples in
the training set it calls the subroutine FINDBESTRULE for learning a rule that
will cover a subset of the positive examples. All covered examples are then
separated from the training set, the learned rule is added to the theory, and
another rule is learned from the remaining examples. Rules are learned in this
way until no positive examples are left or until the RULESSTOPPINGCRITERION

fires. Often the resulting theory undergoes some POSTPROCESSing.
The procedure FINDBESTRULE searches the hypothesis space for a rule

that optimizes a given quality criterion defined in EVALUATE RULE. The value
of this heuristic function usually is the higher the more positive and the
less negative examples are covered by the candidate rule. FINDBESTRULE

maintainsRules, a sorted list of candidate rules, which is initialized by the
procedure INITIALIZE RULE. New rules will be inserted in appropriate places
(INSERTSORT), so thatRuleswill always be sorted in decreasing order of the
heuristic evaluations of the rules. At each cycle, SELECTCANDIDATES selects
a subset of these candidate rules, which are then refined using REFINERULE.2

Each refinement is evaluated and inserted into the sortedRuleslist unless the
STOPPINGCRITERIONprevents this. If the evaluation of theNewRuleis better
than the best rule found previously,BestRuleis set toNewRule. FILTERRULES

selects the subset of the ordered rule list that will be used in subsequent
iterations. When all candidate rules have been processed, the best rule will
be returned.

Different choices of these functions allow the definition of different biases
for the separate-and-conquer learner. The search bias is defined by the choice
of a search strategy (INITIALIZE RULE and REFINERULE), a search algorithm
(SELECTCANDIDATES and FILTERRULES), and a search heuristic (EVALUATE -
RULE). The refinement operator REFINERULE constitutes the language bias of
the algorithm. An overfitting avoidance bias can be implemented via the two
stopping criteria and/or in a post-processing phase.

As an example, assume we want to instantiate the generic algorithm into
the simple algorithm of Figure 3. SIMPLESEPARATEANDCONQUERsearches
the hypothesis space in a top-down fashion. INITIALIZE RULE will thus return

10 JOHANNES F̈URNKRANZ

Figure 4. A generic separate-and-conquer rule learning algorithm.

the most general rule, i.e., the rule with the bodyftrue g. REFINERULE will
specialize a given rule by adding a condition to it. The rules will be evaluated
by the percentage of covered examples that are positive, i.e., EVALUATE -
RULE will implement the PURITY subroutine used in Figure 3. FILTERRULES

will only let the best refinement pass to the next iteration, so that SELECT-
CANDIDATES will always have only one choice. Together these two procedures
implement the hill-climbing search. As only the first (and best) element
of the sorted list of all refinements will be used, this part of the code is

SEPARATE-AND-CONQUER RULE LEARNING 11

equivalent to the corresponding part in SIMPLESEPARATEANDCONQUER.Both
stopping criteria will always be false, and the learned rules will not be post-
processed. Together, these choices instantiate SEPARATEANDCONQUERinto
SIMPLESEPARATEANDCONQUER.

2.3. Rule ordering

Note that we assume a binary classification task: the goal of the induced
concept is to discriminate between positive and negative examples of a target
concept. Many separate-and-conquer learning algorithms, in particular the
algorithms used in inductive logic programming, are based on this assump-
tion. In this case, the order in which the rules are used for classification does
not matter, because the rules only describe one class, the positive class. Nega-
tive examples will be classified usingnegation as failure, i.e., when no rule
fires for a given example, it will be classified as negative. This is equivalent
to assuming a default rule for the negative class at the end of an ordered rule
list.

However, many real world problems are concerned with multi-valued or
even continuous class variables. In suchmulti-classorregression problemsthe
order of the rules is very important, because each example could be covered
by several rules that make different predictions. A different rule order can
thus make a different prediction for an example. This problem is known as
the overlap problem. Segal and Etzioni (1994) address it by allowing only
homogeneous rules. A homogeneous rule is a rule with the property that all its
specializations have the same heuristic evaluation as the rule itself. Segal and
Etzioni (1994) have shown that for each decision list there exists a logically
equivalent homogeneous decision list. The latter has the advantage that the
evaluation of its rules does not change with their position in the list, but the
rule can be considerably more complex.

Theories that impose a fixed evaluation order on their rules as commonly
referred to asdecision lists(Rivest 1987). They can be viewed as a PROLOG
program where each rule ends with a cut (!) (Mooney and Califf 1995). CN2
(Clark and Niblett 1989) is able to handle multi-class problems by learning
decision lists. For this purpose, it uses an evaluation function that gives
preference to class distributions where examples of one class are dominating
(see section 4.3). Each learned rule predicts the class that is dominant among
the examples it covers. Learning stops whenall examples are covered by at
least one rule. To handle clashes (when multiple rules fire) CN2 orders rules in
the order they have been learned. This seems to be a natural strategy, because
most search heuristics tend to learn more general rules first. However, it has
been pointed out in (Webb and Brkič 1993) that prepending a new rule to the
previously learned rules can produce simpler concepts. The intuition behind

12 JOHANNES F̈URNKRANZ

this argument is that there are often simple rules that would cover many of
the positive examples, but also cover a few negative examples that have to
be excluded as exceptions to the rule. Placing such a simple general rule near
the end of the rule list allows to handle these exceptions with rules that are
placed before the general rule thus keeping it simple. This hypothesis has
been empirically confirmed in (Webb 1994) and (Mooney and Califf 1995).

Another method for inducing multi-class concepts is to learn a separate
concept description for each class, taking all examples of other classes as
negative examples for the class to learn. Then the program assigns a weight
to each rule according to some heuristic. Examples will be classified with the
class predicted by the rule with the highest weight. This method is used in
HYDRA (Ali and Pazzani 1993) where thels-content of a rule (see section
4.3) is used as a weighting heuristic. In AQ-15 (Michalski et al. 1986) each
rule is weighted by the percentage of positive examples in the set of examples
covered by it. The weights of rules of the same class are combined to a weight
for the entire class and the class with the highest weight will be returned.
Quinlan (1987a) sorts the rules by theiradvantage, i.e., by the number of
examples that would be erroneously classified after deleting the rule. In later
work, Quinlan (1993) replaced this algorithm by a scheme that groups the
rules according to the classes they predict and orders these groups using a
heuristic based on theminimum description length principle(Rissanen 1978).
This increases the comprehensibility of the learned concepts. Pazzani, Merz,
Murphy, Ali, Hume and Brunk (1994) present an algorithm that orders a set
of learned rules with respect to a minimization of expected misclassification
cost.

Similar problems have to be tackled in first-orderfunction learning
(Quinlan 1996), where the learned rules do not check the validity of a given
ground instance but derive ground values for its unbound variables. Different
rules might derive different values and some ordering of the rules is needed to
handle such clashes. Finally, the ordering of the rules is also important when
learningrecursive concepts, where it has to be ensured that the base case of
the recursion is placed before the recursive rule as, e.g., in FOIL (Quinlan
1990).

In the remainder of this paper we will neglect the aspect of rule ordering
and simply assume that rules are used in the same order in which they are
learned.

3. Language Bias

Before the user invokes a certain learning algorithm he already has to make a
choice of a suitable representation language for the hypotheses to learn. This

SEPARATE-AND-CONQUER RULE LEARNING 13

choice naturally has a considerable influence on the result of the learning
procedure (Mitchell 1980). Although most options for hypothesis languages
that we will discuss in this section are also available or could probably be
adapted for other learning approaches like divide-and-conquer decision tree
learning algorithms, many of them have been developed for separate-and-
conquer rule learning systems. In particular in inductive logic programming,
the ability to restrict the possibly infinite space of first-order logic clauses3

proved to be crucial. Flexible mechanisms that use an explicit representation
of the language bias are particularly useful.

We will first discuss static approaches, where the user has to fix the language
bias before the induction task, and then shortly summarize several techniques
that allow a learning system to autonomously change the langauge bias when
it proves to be inadequate.

3.1. Static language bias

There is a wide variety of condition types that can be made available for a
classification learning algorithm. The spectrum reaches from simple selectors
that relate the value of an attribute to one of its domain values (section 3.1.1)
to rule models that offer a flexible way to restrict the huge search space for
first-order classification rules (section 3.1.5).

3.1.1. Selectors
Selectors are the most commonly used form of representation language in
inductive learning. The termselectorwas introduced by Michalski (1973). A
selector is a condition of the form

Ai # constant

where an example’s value of a certain attributeAi is related to a constant
value of its domain via relations like=, >, or<. The equality relations are
used for symbolic attributes, while the inequalities are more often used for
numeric, in particular for continuous attributes. Often the negations of these
relations (i.e.,6=,�,�) are also available.

Algorithms of the AQ-family (Michalski 1980; Michalski et al. 1986;
Bergadano et al. 1992) are able to extend these elementary selectors to
using attribute sets (internal conjunctions), value sets (internal disjunc-
tions), and intervals (range operators). Moreover, they can also make use
of tree-structured attributes. A description of these extensions can be found
in Michalski (1980).

14 JOHANNES F̈URNKRANZ

3.1.2. Literals
Research ininductive logic programming (ILP), in particular on FOIL and
related systems (Quinlan and Cameron-Jones 1995a), has produced algo-
rithms for solving classification problems in first-order logic. In these cases
the target concept is usually represented as a PROLOG relation in the form

concept name(A1, A2, : : : , An)

whereconcept name is ann-ary PROLOG predicate denoting the concept
to learn. Itsn arguments represent the attributes that have been measured for
this concept. Thus each propositional learning problem of the type discussed
in section 3.1.1 can be transformed into a first-order learning problem by turn-
ing examples into PROLOG literals using the class variable as the predicate
symbol and the attributes’ values as arguments. All selectors discussed in the
previous sections can be trivially used as possible conditions in the learned
rules.

However, in addition to these selectors, the user can also specify relations
between several attributes as background knowledge in the form of PROLOG
predicates. These (or their negations) can then be used as additional conditions
in the final rules. A typical example is the king-rook-king (KRK) chess
endgame learning task (Muggleton et al. 1989) that has developed into a
standard benchmark problem for ILP algorithms. The goal concept is to
recognize illegal white-to-move positions in this endgame. These can be
positions where two or more pieces are on the same square or positions
where the black king is in check. The target predicate isillegal (WKf,
WKr, WRf, BKf, BKr) where the six arguments specify the file and row
coordinates of the squares of three pieces. When the hypothesis language
is restricted to the use of selectors, no meaningful concept representation
can be learned in this task (Muggleton et al. 1989). However, if additional
background relations likeadjacent/2, </2, or =/2 can be used as
possible conditions, the final rules are able to check whether two pieces are
on the same file or rank, on adjacent squares, etc. With the help of these
predicates, simple rules can be learned for this concept. Note that here the
equality (and inequality) relations are used in a different way as in section
3.1.1: while selectors can only compare the value of one attribute with a
certain domain constant, general literals are able to compare the values of
two attributes with each other.

In many cases these background relations can not only make use of the
available attributes, but also introduce new variables that can be used for
subsequent tests in this rule. For example, theadjacent/2 relation can
be added as a condition with one old and one new variable. The condition
adjacent (WKf, X) binds the new variableX to one of the files that are

SEPARATE-AND-CONQUER RULE LEARNING 15

adjacent to the fileWKf on which the white king is located. Subsequent
conditions of this rule can then use the variableX in their arguments. New
variables also allow the construction ofrecursive rules.

A problem often caused by conditions introducing new variables is that
they have no discriminatory power. The literaladjacent (WKf, X) is true
for KRK positions, be they legal or illegal, because for every fileWKf, on
which the white king can possibly be placed, there will always be a fileXadja-
cent toWKf. Top-down hill-climbing algorithms that learn rules by adding
one condition at a time will thus attribute low importance to these conditions,
because they appear to be unable to discriminate between positive and nega-
tive examples. This is also the main reason why propositional problems are
usually translated in the way we specified above. Alternative methods, like
using a target relation with one argument – an index to the examples – and
one additional binary background relation for each attribute that takes the
index and the attribute’s value as arguments, may easily run into the above
problems (see also section 4.3.6).

3.1.3. Syntactic restrictions
Considering general first-order literals as conditions in the body of a rule
may lead to huge, even infinite search spaces. The original version of FOIL
(Quinlan 1990) for example allowed all possible combinations of variables in
the arguments of the used literals. Thus the search space grew exponentially
with the number of attributes in the data set, which severely handicapped the
program in terms of both efficiency and accuracy.

One observation that has been made is that in most applications the avail-
able variables have different types. Similarly, many of the available back-
ground literals only make sense when their arguments are instantiated with
variables of certain types. For example, list-processing predicates need list-
valued variables, arithmetic operations need numbers and so forth. These
argument typescan be specified in advance so that attributes are only used in
appropriate places. The places where new variables can appear can be speci-
fied by so-calledmode declarations. Arguments where only bound variables
can appear are calledinput variables, whereas arguments where new variables
can be used as well are calledoutput variables. Type and mode declarations
have already been used in early ILP systems such as MIS (Shapiro 1981).
Many predicates are also symmetric in some of their input arguments, i.e.,
they will produce the same result no matter in which order these arguments
are given. Suchsymmetriescan also be exploited by various programs.

The programs used in (Fürnkranz 1994a, 1997) for example can specify
background knowledge with statements like

known literal(adjacent(X,Y), [X-file, Y-file], [+,+], [X �Y]) .

16 JOHANNES F̈URNKRANZ

This declaration specifies that the literaladjacent/2 can be used as a
rule condition with two input variables (+) of the typefile . The literal
is symmetric in the variablesX andY. A more detailed description of this
syntax can be found in the appendix of (Fürnkranz 1994a). Similar decla-
rations can be made inmFOIL (Džeroski and Bratko 1992), recent versions
of FOIL (Quinlan and Cameron-Jones 1995a), PROGOL (Muggleton 1995),
and others. Restrictions of this type can significantly reduce the hypothesis
space. Similar effects can also be achieved by restricting the domains of the
selectors. Several systems allow to declare certain values of an attribute as
constants that can be used in specified places like the right-hand side of a
selector. For example, it may be useful to specify that selectors for list-valued
attributes will only be used with the empty list, but not with arbitrary lists
(Quinlan and Cameron-James 1995a).

Many rule learning systems also place upper bounds on the complexity of
the learned rules in order to restrict the search space. PROGOL, e.g., has a
parameter that can be used to specify amaximum rule length. FOIL allows
the specification of amaximum variable numberand amaximum variable
depth.4 It also makes sense to allow onlylinkedliterals, i.e., literals that share
variables with the head of the clause or with another linked literal (Helft
1989). Severe restrictions have to be used when learning recursive programs
in order to avoid infinite recursions. This problem has been discussed at length
in (Cameron-Jones and Quinlan 1993).

3.1.4. Relational clich́es
In some cases it may prove useful for top-down algorithms to not only add
one condition at a time, but to add a conjunction of conditions at once.
The classical example is to avoid myopic behavior in hill-climbing algo-
rithms. The simplest approach to achieve this goal is to declare specific
conjunctions as if they were single background literals. For example in the
known literal/4 declaration shown above, the first argument does not
have to be a single literal; it could also be a conjunction that for example
consists of one literal that introduces a new variable (agenerator) and
one condition that uses this variable. Such declarations can be made in the
programs described in (Fürnkranz 1994a, 1997; Kramer 1996; Blockeel and
De Raedt 1997).

A similar idea has been explored further in (Silverstein and Pazzani 1991).
Relational clich̀es are conjunctions of the type explained above with the
difference that the predicate does not have to be exactly specified. Instead the
user can provide a place-holder that stands for a certain class of predicates.
For this purpose, the predicates in the background knowledge can often be
organized into a symbol hierarchy, in which the leaves are the predicates

SEPARATE-AND-CONQUER RULE LEARNING 17

and the interior nodes represent certain predicate classes that can be used as
predicate variables. A typical example – the so-calledthreshold comparator
clichè– is a conjunction consisting of a literal that introduces a new measure-
ment and a selector that compares this new variable to a domain value.
Silverstein and Pazzani (1993) also demonstrate a method for learning useful
clichès from experience. Similar ideas for improving the learning behavior by
adding more than one literal at a time can be found in ML-SMART (Bergadano
and Giordana 1988) and FOCL (Pazzani and Kibler 1992). These systems
allow to replace conditions of a rule with the body of their definitions in the
background knowledge.

In a later version of ML-SMART (Bergadano, Giordana and Ponsero 1989)
one could also specify so-calledpredicate sets. A predicate set is a set of
literals that are known to be relevant for the definition of a certain predicate.
Although the precise definition of the predicate is not available, it is known
that it will contain a subset of these literals, which will be identified by the
program.

3.1.5. Rule models
Building upon previous work in ML-SMART, Giordana and Sale (1992)
describe a simple method for modeling the entire hypothesis space with
a single clause consisting of multiple predicate sets, a so-calledtemplate.
These have later been generalized toclause sets(Bergadano and Gunetti
1995), enhanced PROLOG programs, where sets of variables, literals and
clauses can appear in the definition. The task of the learner is to find the best
rules defined by appropriate subsets of these clause sets.

Similarly, the RDT rule learning system has expanded the relational clichès
idea to modeling the entire hypothesis space instead of only certain conjunc-
tions (Kietz and Wrobel 1992). Hierarchically organized predicate variables
can be used for writing downrule modelsthat can be instantiated by replac-
ing all predicate variables in a rule model with suitable predicates. These rule
models can be organized into a lattice that can be efficiently searched in a
top-down fashion.

Adé et al. (1995) introduce a framework for comparing certain language
bias mechanisms in bottom-up separate-and-conquer learning algorithms.
This framework combines the advantages of rule models and clause sets by
recognizing that predicate variables implicitly define predicate sets. It has
later been generalized into the DLAB declarative langauge bias formalism
(Dehaspe and De Raedt 1996), which can also specify the number of items
that have to be chosen from an explicitly or implicitly defined predicate set.

The most flexible and most expressive framework for explicitly model-
ing hypothesis spaces areantecedent description grammars(Cohen 1994)

18 JOHANNES F̈URNKRANZ

as used in the top-down separate-and-conquer learning algorithm GREN-
DEL. An antecedent description grammar is a context-free grammar whose
symbols are logical literals. Its terminal symbols are literals from the back-
ground knowledge. The grammar has a designated starting symbol which
will be successively expanded using the rules of the grammar. Sentences, i.e.,
rules consisting only of terminal symbols, can be evaluated as in conven-
tional algorithms. Sentential forms, i.e., rules where not all non-terminal
symbols have been expanded into terminals, can be evaluated by replacing
non-terminal symbols with a disjunction of all possible terminal symbols that
can be derived from them. In many cases non-terminal symbols will expand
to a disjunction that will always be true. These special cases can often be
efficiently recognized and efficiently computed.

Although antecedent description grammars are certainly the most flexible
and most expressive rule modeling technique, they are harder to understand
than other rule models. While it is usually obvious whether a certain clause
can be generated from a certain clause set, it is considerably harder to deter-
mine whether a certain clause can be derived from an antecedent description
grammar.

More details on declarative bias formalisms along with an evaluation of
their respective strengths and weaknesses can be found in (Nédellec, Rou-
veirol, Adé, Bergadano and Tausend 1996; Adé et al. 1995; Bergadano and
Gunetti 1995).

3.2 Dynamic language bias
While the approaches discussed in the last section offer a considerable flex-
ibility for defining a language bias, they are all static. Once a language bias
is defined it cannot be changed without user intervention. In this section we
will discuss approaches that can dynamically adjust their language bias to the
problem at hand via a so-calledbias shift(Utgoff 1986): If the hypothesis
space does not include an acceptable concept description, these techniques
allow the learner to shift to a weaker bias, i.e., they allow to express concepts
in a more expressive representation language.

3.2.1. Language hierarchies
A simple approach for implementing a procedure for dynamically shifting
the language bias has been first proposed for the first-order theory revision
system CLINT (De Raedt 1992). CLINT makes use of a predefined (possibly
infinite) series of hypothesis languages with increasing expressive power.
Whenever it cannot learn a complete and consistent concept with the given
language it tries again with the next, more expressive language (De Raedt and
Bruynooghe 1990). Although CLINT is not a separate-and-conquer learning
algorithm, this technique could be easily adapted for members of this family.

SEPARATE-AND-CONQUER RULE LEARNING 19

In fact this idea has already been used in the NINA separate-and-conquer
framework for analyzing bottom-up inductive logic programming algorithms
(Adé et al. 1995). Furthermore, techniques for explicitly modeling the lan-
gauge bias (see section 3.1.5) could be conveniently used for defining a series
of hypothesis languages with increasing expressiveness like the ones used in
CLINT. Other separate-and-conquer learning systems like FOIL or PROGOL
have parameters for controlling syntactic aspects of the hypothesis language
(see section 3.1.3) that could be systematically varied to allow expressing
concepts in more complex languages. Kohavi and John (1995) describe an
approach how such parameters could be automatically adjusted.

3.2.2. Constructive induction
In its original use (Utgoff 1986) the termbias shiftreferred to the process
of automatically extending the representation language by constructing
new features, a process that is commonly known asconstructive induction
(Matheus 1989). Contrary to the approaches of section 3.2.1 where the user
has to predefine a series of hypothesis languages, constructive induction tech-
niques can automatically extend the representation language by constructing
new useful features or predicates on the basis of the given information. This
will not necessarily extend the space of representable concepts, but adjusting
the vocabulary to the task at hand may make the learner’s task easier.

The simplest approach to constructive induction with separate-and-conquer
learning algorithms is to apply a predefined set of arithmetic and logical
operators to certain attributes and compute new attributes from them. For
example AQ17-DCI (Bloedorn and Michalski 1991) – and to some extent
AQ15 (Michalski et al. 1986) – can compute equality and inequality relations,
use addition and multiplication operators, and can determine optima, averages
and frequencies in sets of features, reminiscent of some ideas previously used
in the BACON discovery system (Langley, Simon and Bradshaw 1987). The
generated attributes are then evaluated with anattribute quality function
which basically computes the number of attribute values that only occur in
instances of single target classes.

However, a better evaluation for the quality of generated attributes might
result from an analysis of the performance of the learning algorithm that uses
the new features. Many approaches to constructive induction implement this
idea with a so-calledwrapperapproach.5 They use a stand-alone induction
algorithm and wrap around it an algorithm that analyzes the performance
of the induction algorithm by estimating predictive accuracies, looking for
co-occurrences of certain conditions in the rules etc. Based on these obser-
vations, the wrapper changes the input representation or certain parameters
of the learning algorithm to improve the result. The prototypical system

20 JOHANNES F̈URNKRANZ

for this approach is the AQ17-HCI algorithm (Wnek and Michalski 1994),
which incorporates several constructive induction operators based on ideas
used earlier in the INDUCE system (Michalski 1980). AQ17-HCI scans the
rules generated by the AQ15 induction algorithm (Michalski et al. 1986) for
patterns of co-occurring values of a single attribute, co-occurring conjunc-
tions, or even subsets of the induced rule set that have a highpattern strength.
Pattern strength is evaluated by computing the ratio of positive examples
over negative examples covered by the pattern (with the possible addition of
a factor proportional to the number of positive examples uniquely covered by
this pattern). Patterns that have a high strength will be turned into additional
attributes. Feature subset selection and discretization algorithms can also be
cast into this framework of constructive induction as a bias shift operation.
AQ17-MCI (Bloedorn et al. 1993) integrates the approaches taken by AQ17-
DCI and AQ17-HCI into a single system, which is able to learn meta-rules
that specify which types of constructive operators are suitable for which type
of tasks.

Similar ideas are implemented in CIPF (Pfahringer 1994a, 1994b) which
uses a propositional top-down separate-and-conquer algorithm as the basic
induction module and in CN2-MCI (Kramer 1994) which introduces a new
powerful constructive induction operator for CN2-like algorithms. This oper-
ator constructs a new attribute from the cross-product of attributes that
often occur together in different rules. Both systems evaluate the quality
of generated features by estimating the predictive accuracy of the concepts
learned with the new representation and stop when no further improvement
is possible.

All approaches mentioned above either invoke constructive induction
before the learning process or after a careful analysis of the result of previous
learning episodes. A few other approaches that directly invoke construc-
tive induction operators during the learning process have been developed in
inductive logic programming. In this context, constructive induction is often
calledpredicate invention, as it is not concerned with the construction of new
features, but of new predicates.

CHAMP (Kijsirikul et al. 1992) reverts to inventing a new predicate when-
ever the top-down first-order separate-and-conquer learner CHAM (Kijsirikul
et al. 1991) cannot complete the current clause by appending a literal from the
background knowledge without excluding all positive examples or without
exceeding a certain clause length.6 In such a case CHAMP constructs a new
predicate. The arity of this predicate is determined by a search for a minimal
set of variables that is able to form a discriminating relation between the
covered positive and negative instances. A definition of the invented pred-

SEPARATE-AND-CONQUER RULE LEARNING 21

icate is then induced from these examples by recursively calling CHAMP
with the invented predicate as the target predicate.

A very similar approach – calledclosed-world specialization– is taken in
(Bain 1991) and (Srinivasan, Muggleton and Bain 1992). Here over-general
clauses learned by the bottom-up first-order separate-and-conquer learner
GOLEM (Muggleton and Feng 1990) are specialized by adding anegated
new predicate. The intuition behind this approach is that the original rule will
already cover more positive than negative examples and the new predicate
will only be used for denoting the few exceptions to the rule. A definition for
this predicate will be learned by reverting the role of the positive and negative
examples covered by the original rule. Note that generalizing (specializing)
the definition of the newly invented predicate will specialize (generalize) the
rules containing its negation.

4. Search Bias

There are several options for searching a given hypothesis space for accept-
able rules. First, different search algorithms can be employed, ranging from
a greedy hill-climbing approach to an exhaustive search of the complete
hypothesis space (section 4.1). Second, the hypothesis space can be searched
in different directions: hypotheses can be refined either by specialization or
by generalization (section 4.2). Finally, various heuristic evaluation functions
can be used to compare different candidate clauses (section 4.3). All these
search options can be implemented with the help of the various subroutines
of the procedure FINDBESTRULE (Figure 4).

4.1. Search algorithms

This section will discuss various options for searching the space of possible
hypotheses that can be implemented into the FINDBESTRULE procedure (see
Figure 4). The simplest method would be to systematically generate all possi-
ble rules and check each of them for consistency. Rivest (1987) discusses
such an algorithm that examines all rules up to a maximum rule lengthk.
Whenever it finds a rule that covers only positive examples, it adds this rule
to the current rule set, removes the covered examples, and continues the search
until all examples are covered. This simple algorithm will find a complete
and consistent concept description if there is one in the search space. For a
fixedk the time complexity of the algorithm is polynomial in the number of
tests to choose from.

However, this algorithm was only developed for theoretical purposes. Its
severe drawback is that it does not use any heuristics for guiding the search,

22 JOHANNES F̈URNKRANZ

which makes the algorithm very inefficient. Rivest (1987) notes that it would
be advisable for practical purposes to generate the rules ordered by simplicity.
Thus simple consistent rules will be found first and will therefore be preferred.
For similar reasons most practical algorithms have access to a preference
criterion that estimates the quality of a found rule as a trade-off between
simplicity and accuracy (see also section 4.3) and use this heuristic to guide
its search through the hypothesis space.

4.1.1. Hill-climbing
The most commonly used search algorithm in separate-and-conquer learning
systems ishill-climbing, which tries to find a rule with an optimal evaluation
by continuously choosing the refinement operator that yields the best refined
rule and halting when no further improvement is possible. Hill-climbing
tries to discover aglobal optimum by performing a series oflocally optimal
refinements. The simple algorithm Figure 3 employs such an approach. Hill-
climbing can be trivially implemented in the procedure FINDBESTLITERAL of
Figure 4 by specifying that FILTERRULES will only return the first and best
rule of the list of all refined rules.

The basic problem of this method is itsmyopiadue to the elimination of all
one-step refinements but one. If a refined rule is not locally optimal, but one
of its refinements is the global optimum, hill-climbing will not find it (unless
it happens to be a refinement of the local optimum as well). A typical example
of this myopia are first-order literals that introduce new variables and have no
discriminatory power as discussed in sections 3.1.2 and 4.3.6. Nevertheless,
most first-order top-down separate-and-conquer algorithms, like FOIL and
its many relatives (Quinlan and Cameron-Jones 1995a), use hill-climbing
because of its efficiency.

A simple technique for decreasing search myopia in hill-climbing is to
look further ahead. This can be done by choosing the best rule resulting
from performingn refinement steps at once instead of only 1. This approach
has been implemented in the ATRIS rule learning shell (Mladenić 1993). Its
major deficiency is its inefficiency, as the search space for each refinement
step grows exponentially withn.

4.1.2. Beam search
Many algorithms try to alleviate the myopic behavior of hill-climbing by
usingbeam search. In addition to remembering the best rule found so far,
beam search also keeps track of a fixed number of alternatives, the so-called
beam. While hill-climbing has to decide upon a single refinement at each
step, beam search can defer some of the choices until later by keeping theb
best rules in its beam. It can be implemented by modifying the FILTERRULES

SEPARATE-AND-CONQUER RULE LEARNING 23

procedure of a hill-climbing algorithm so that it will return thebbest elements
of the refinements of the previous beam. Settingb= 1 results in hill-climbing.

Beam search effectively maintains hill-climbing’s efficiency (reduced by
a constant factor), but can yield better results because it explores a larger
portion of the hypothesis space. Thus many separate-and-conquer algorithms
use beam search in their FINDBESTRULE procedures. Among them are AQ
(Michalski et al. 1986), CN2 (Clark and Niblett 1989),mFOIL (Džeroski
and Bratko 1992), and BEXA (Theron and Cloete 1996). Extreme cases of
myopia, like indiscriminative literals, are nevertheless a problem for beam
search algorithms.

4.1.3. Best-first search
Hill-climbing and beam search algorithms are both limited by myopia that
results from their restriction to storing only a fixed number of candidate
rules and immediately pruning the others. Best-first search, on the other
hand, selects the best candidate rule (SELECTCANDIDATES) and insertsall its
refinements into the sortedRuleslist unless unpromising rules are pruned
by the STOPPINGCRITERION. FILTERRULES will not remove any rules. Thus
best-first search does not restrict the number of candidate rules and may be
viewed as a beam search with an infinite beam sizeb = 1. ML-SMART
(Bergadano, Giordana and Saitta 1988) implements such a strategy with
several coverage-based pruning heuristics that discard unpromising rules. In
(Botta, Giordana and Saitta 1992) this approach has been shown to compare
favorably to hill-climbing in an artificial domain.

When no pruning heuristics are used (i.e., STOPPINGCRITERION always
returnsfalse) the search space will be completely exhausted and it is guaran-
teed that an optimal solution will be found. Nevertheless, the A* algorithm
(Hart, Nilsson and Raphael 1968) allows to prune large portions of the search
space without losing an optimal solution. This optimality can be guaranteed
if the search heuristic isadmissible. An admissible search heuristic usually
consists of two components, one for evaluating the quality of a rule and one
for computing an estimate for the quality of the rule’s best refinement. It has
to be ensured that the latter estimate will always return an optimistic value,
i.e., it has to overestimate the quality of the best refinement of the rule. If this
optimistic estimate is already worse than the evaluation of the best rule found
so far, the refinements of the current rule need not be further investigated,
because their true evaluation can only be worse than the optimistic estimate,
which in turn is already worse than the best rule.

The ILP system PROGOL (Muggleton 1995) implements an A* best-first
search. It generates the most specific clause in the hypothesis space that covers
a randomly chosen example and searches the space of its generalizations in

24 JOHANNES F̈URNKRANZ

a top-down fashion. It guides this search by a heuristic that computes the
number of covered positive examples minus the covered negative examples
minus the length of the rule. Incomplete rules are evaluated by subtracting an
estimate for the number of literals that are needed to complete the rule and
adding the number of covered negative examples to this heuristic value. By
doing so it is assumed that the completed rule will cover all positive instances
the incomplete rules covers, but none of the negative instances which clearly
is an optimistic assumption. With this admissible search heuristic PROGOL
performs an exhaustive search through the hypothesis space. However, for
longer rules (>4 conditions) this exhaustive search is too inefficient for prac-
tical problems (Ďzeroski et al. 1996). A similar heuristic is used in FOIL’s
hill-climbing algorithm for safely pruning certain branches of the search space
(Quinlan 1990). It might be worth-while to try a best-first search with this
heuristic.

However, there is considerable evidence that exhausting a search space can
lead to worse results because the chances that rules are encountered that fit the
training data by chance are increased. For example, Webb (1993) has used
the efficient best-first search algorithms OPUS (Webb 1995) for inducing
decision lists in a covering framework and has surprisingly found that the
generalizations discovered by the beam search with CN2 are often superior to
those found by an exhaustive best-first search. Quinlan and Cameron-Jones
(1995b) have later studied this problem ofover-searchingby studying the
behavior of a CN2-like algorithm at different beam widths. They have empir-
ically verified in a variety of domains that too large a beam width may lead to
worse results. This is also confirmed by early results from statistical learning
theory (Vapnik and Chervonenkis 1971, 1981), where it has been observed
that larger hypothesis spaces can lead to poorer generalization behavior (see
also Saitta and Bergadano (1993)).

4.1.4. Stochastic search
Another approach to escape the danger of getting stuck in local optima is
to use astochastic search, which can be implemented in the framework of
Figure 4 by allowing randomness in the REFINERULE procedure. In that case
this procedure will not refine a given rule step by step, but may (with a
certain probability) also perform bigger leaps, so that the learner has the
chance to focus on entirely new regions of the hypothesis space. In the
simplest case, each call to REFINERULE will return a random rule of the
search space. More elaborate methods employ randomized generalization
and specialization operators. The probability for selecting an operator is
often correlated with the quality of the resulting rule, so that better rules
are selected with a higher chance, but seemingly bad candidates also get

SEPARATE-AND-CONQUER RULE LEARNING 25

a fair chance to be improved with further refinement steps (stochastic hill-
climbing). The probability for selecting a suboptimal rule may also decrease
over time so that the algorithm will eventually stabilize (simulated annealing
(Kirkpatrick, Gelatt and Vecchi 1983)).

Kononenko and Kovǎcič (1992) and Mladenić (1993) present and compare
a variety of such algorithms, ranging from an entirely random search to an
approach based on Markovian neural networks (Kovačič 1991). The latter
algorithm has later been generalized into a first-order framework (Kovačič
1994b). The resulting system, MILP, performs a stochastic hill-climbing
search with simulated annealing. Whenever it reaches a local optimum, it
backtracks to a previous rule, whose successors have not yet been examined,
in order to get a new starting point. A similar approach is implemented in the
SFOIL algorithm (Pompe et al. 1993).

Another family of stochastic separate-and-conquer rule learning algorithms
choose agenetic algorithm(Goldberg 1989) for finding good rules. One
such system, SIA (Venturini 1993), selects a random starting example and
searches for a suitable generalization in a bottom-up fashion. It maintains
a set of candidate rules – ageneration– which is initialized with random
generalizations of the selected examples. The next generation is obtained by
randomly generating new rules, randomly generalizing old rules, or randomly
exchanging conditions between rules. The resulting rules are evaluated using
a weighted average of their accuracy and complexity, and a fixed number of
them are retained to form the next generation. This process is repeated until
the best rule remains stable for a certain number of generations. A similar
approach was used in GA-SMART for learning first-order rules in a top-down
fashion (Giordana and Sale 1992).

4.2. Search strategy

An important decision that has to be made is in which direction the hypothesis
space will be searched. Rules can be organized into agenerality lattice, where
rule A is considered to be more general than ruleB iff A covers all instances
that are covered byB.B is then said to be more specific thanA. A separate-and-
conquer rule-learning algorithm can employ different strategies for searching
this lattice:top-down(general-to-specific),bottom-up(specific-to-general),
andbidirectional. These options can be implemented into the REFINERULE

procedure of Figure 4. After a rule has been initialized appropriately with
INITIALIZE RULE, REFINERULE will specialize it when a top-down strategy is
used and generalize it in the case of a bottom-up search strategy.

26 JOHANNES F̈URNKRANZ

4.2.1. Top-down search
Top-down search is most commonly used in separate-and-conquer learning
algorithms. The hypothesis space of possible rules is searched by repeatedly
specializing candidate rules. Typically, the list of candidate rules is initialized
with the rule with the sole conditiontrue, which usually is the most general
rule in the hypothesis space. Candidate rules are then refined using special-
ization operators, most typically by adding conditions as in Figure 3. Most
declarative bias formalisms like DLAB and ADG (see section 3.1.5) return
a specialization refinement operator that can be used in the REFINERULE

procedure.
AQ, for example, selects a random example and repeatedly specializes

the most general rule until it still covers the selected example, but none of
the negative examples. Later algorithms, like CN2 and FOIL do not aim at
covering a specific positive example, but specialize the most general rule with
the goal of covering as many positive examples as possible without covering
a negative example. Most recently, the ILP system PROGOL (Muggleton
1995) has returned to using a starting example for defining a lower bound on
the search space. Starting with the most general clause, PROGOL searches
in a top-down fashion for a good rule which is more general than the most
specific clause in the hypothesis space that still covers the selected positive
starting example.

4.2.2. Bottom-up search
In bottom-up search, the hypothesis space is examined by repeatedly general-
izing a most specific rule. In the propositional case this can simply be a
randomly chosen positive example, while first-order systems usually con-
struct astarting clausethat is more specific than any other clause that entails
this example. Usually this clause is constructed by adding all ground facts
that can be deduced from the background knowledge as conditions to the
body of a rule that has a generalization of a randomly chosen example as its
head. This starting rule is then generalized to increase the number of covered
examples.

GOLEM (Muggleton and Feng 1990), for example, forms a starting clause
by computing therelative least general generalization(Plotkin 1971) of a
randomly chosen pair of positive examples. This starting clause is succes-
sively generalized by greedily selecting additional positive examples that will
be used for building therlgg. ITOU (Rouveirol 1992) constructs a starting
clause by adding all conditions that can be proved from the background knowl-
edge (saturation). A representation change calledflatteningthat removes all
function symbols from the examples and the background knowledge allows
to implement generalization with a single operator that drops literals from

SEPARATE-AND-CONQUER RULE LEARNING 27

rules (truncation) (Rouveirol 1994). NINA (Ad́e et al. 1995) is a bottom-
up first-order separate-and-conquer algorithm that unifies several bottom-up
ILP algorithms such as GOLEM (Muggleton and Feng 1990), ITOU (Rou-
veirol 1992), and CLINT (De Raedt 1992). As the most specific clauses can
be exponentially large, even infinite in the case of general first-order horn-
clause logic (Plotkin 1971), the hypothesis space has to be restricted to a
subset of first-order logic using syntactic (section 3.1.3) or semantic (section
4.3.6) restrictions.

There are only a few propositional bottom-up separate-and-conquer learn-
ing algorithms. One such example is SIA (Venturini 1993) which uses a
genetic algorithm for searching the space of generalizations of a randomly
selected example. However, the stochastic search does not progress in a
strictly bottom-up fashion. Another propositional rule learning system, DLG
(Webb 1992), successively generalizes a starting example by constructing
a propositional least generalization of the current rule and the next positive
example. If the resulting rule covers more positive examples without covering
any negative examples it is retained.

4.2.3. Bidirectional search
the third option for searching the hypothesis space is to combine the previous
approaches into abidirectional search algorithm, which can employ both
specialization and generalization operators during the search for good rules.
For example, the basic induction algorithm of the SWAP-1 rule learning
system (Weiss and Indurkhya 1991) checks whether dropping or replacing
a previously learned condition can improve a rule’s purity before it tries to
improve it by adding a new condition. Similarly, IBL-SMART (Widmer 1993)
can perform a generalization step by dropping a condition whenever its top-
down search leads to a rule that covers too few positive examples (according
to some predefined threshold). However, both algorithms preserve an overall
top-down tendency in their search.

The JOJO algorithm (Fensel and Wiese 1993) on the other hand starts
the search at an arbitrary point in the hypothesis space (e.g., a randomly
generated rule) and improves it by applying generalization and specialization
operators, i.e., by adding or dropping conditions. Recent additions allow the
system to directly replace conditions in rules (Fensel and Wiese 1994) and to
use general first-order literals (Wiese 1996). The ATRIS rule learning shell
(Mladeníc 1993) allows to perform a similar bidirectional search, but replaces
JOJO’s hill-climbing search with less myopic stochastic search procedures as
in (Kononenko and Kovǎcič 1992) or a generalized hill-climbing technique
that allows to perform a fixed number of refinement operations at a time.

28 JOHANNES F̈URNKRANZ

4.3. Search heuristics

The most influential bias is the search heuristic, which estimates the quality of
rules found in the search space and ideally guides the search algorithms into
the right regions of the hypothesis space. In this section we describe several
commonly used heuristics, which can be implemented into the EVALUATE -
RULE subroutine, and the intuitions behind them.

In general the search heuristics used in separate-and-conquer rule learning
are similar to the heuristics used in other inductive learning algorithms like
those discussed in (Mingers 1989; Buntine and Niblett 1992). The major
difference between heuristics for rule learning and heuristics for decision tree
learning is that the latter evaluate the average quality of a number of disjoint
sets (one for each value of the attribute that is tested), while rule learning
approaches only evaluate the quality of the set of examples that is covered by
the candidate rule.

All common heuristics are based on determining several basic properties
of a candidate rule, like the number of positive and negative examples that
it covers. Minor variations in counting are possible, for example in FOIL
(Quinlan 1990) which does not rely oncounting instancesbut instead counts
the number of different instantiations of the rule body that allow to infer
a given example (counting proofs). The relative merits of these approaches
have not yet been evaluated.

In subsequent sections we will use the following notational conventions:

P : : : the total number of positive examples

N : : : the total number of negative examples

r : : : the candidate rule

r 0 : : : the predecessor ofr, i.e.,r 2 REFINERULE(r0)

p : : : the number of positive examples covered byr

n : : : the number of negative examples covered byr

l : : : number of conditions inr

x 0 : : : denotes the value ofx for r0

4.3.1. Basic heuristics
As the goal of the FINDBESTRULE procedure is to find a rule that covers as
many positive examples while covering as few negative examples as possible,
most search heuristics try to find a trade-off between these two conditions.
The most commonly used among them are:

SEPARATE-AND-CONQUER RULE LEARNING 29

Accuracy:

A(r) =
p+ (N � n)

P +N
�= p� n

This measure evaluates the accuracy ofr as a theory containing only one
rule. It computes the percentage of correctly classified examples, i.e.,
the positive examples covered by the rule plus the negative examples
not covered by the rule. AsP andN are constant for all candidate rules,
maximizing accuracy amounts to maximizingp� n. In this form it is part
of the admissible search heuristic used in PROGOL (Muggleton 1995).
It is also used in I-REP (F̈urnkranz and Widmer 1994), which will be
discussed in section 5.4, where we will also mention some deficiencies
of this measure.

Purity :

P (r) =
p

p+ n

The simplest approach is to evaluate rules with their purity, i.e., the
percentage of positive examples among the examples covered by the rule.
This measure will attain its optimal value when no negative examples are
covered. However, it does not aim at covering many positive examples.
It is used in the GREEDY3 (Pagallo and Haussler 1990) and SWAP-1
(Weiss and Indurkhya 1991) algorithms.

Information content :

IC(r) = �log
p

p+ n

Sometimes the logarithm of the rule’s purity is used, which measures the
amount of information contained in the classification of the covered
examples. This estimate is essentially used in PRISM (Cendrowska
1987). It is basically equivalent to the purity estimate in the sense that
a set of rules ordered by ascending information content will exhibit the
same order as when ordered by descending purity. Thus its disadvantages
apply here as well. The main advantage of using a logarithmic scale is
that it tends to assign higher penalties to less frequent events.

Entropy :

E(r) = �
p

p+ n
log

p

p+ n
�

n

p+ n
log

n

p+ n

30 JOHANNES F̈URNKRANZ

The entropy is the weighted average of the information content of the
positive and negative class. Originating from the ID3 decision tree learn-
ing system (Quinlan 1983), this measure has been used in early versions
of the CN2 learning algorithm (Clark and Niblett 1989). However, it
suffers from similar deficiencies as purity and information content and
has later been replaced by the Laplace estimate (Clark and Boswell 1991).

Cross entropy:

CE(r) = �
p

p+ n
log

p
p+n

P
P+N

�
n

p+ n
log

n
p+n

N
P+N

The cross entropy is an information theoretic measure for the distance
between thea priori distribution of examples and thea posterioridistri-
bution of the examples that are covered byr. It has been used in the
J-measure (Goodman and Smyth 1988) and in the significance tests for
rules used in CN2 (Clark and Niblett 1989). Both will be discussedbelow.

Laplace estimate:

LAP (r) =
p+ 1

p+ n+ 2

The Laplace estimate penalizes rules with low coverage. If a rule covers
no examples, its Laplace will be12 (random guessing). On the other hand,
if the rule’s coverage goes to infinity,LAP(r) converges towardsP(r).7

Because of its simplicity this heuristic is quite popular and is used in CN2
(Clark and Boswell 1991),mFOIL (Džeroski and Bratko 1992), CLASS
(Webb 1993), BEXA (Theron and Cloete 1996) and several others.

m-estimate:

M(r) =
p+m P

P+N

p+ n+m

The m-estimate generalizes the Laplace so that rules with 0-coverage
will be evaluated with thea priori probability of the positive examples
in the training set instead of12. The parameterm can be used to control
the influence of thea priori probability. The Laplace estimate can be
obtained from them-estimate form = 2 in problems with an equal
number of positive and negative examples. Both, the Laplace and them-
estimate can also be used for estimating probabilities in more complicated
formulas. Them-estimate is primarily used in CN2 (Clark and Boswell
1991) andmFOIL (Džeroski and Bratko 1992).

SEPARATE-AND-CONQUER RULE LEARNING 31

ls-content:

LS(r) =

p+1
P+2
n+1
N+2

�=
p+ 1
n+ 1

In its general form thels-content divides the proportion of positive exam-
ples that are covered by the current rule by the proportion of covered
negative examples, both estimated with the Laplace correction. As the
denominatorsP + 2 andN + 2 remain constant inside the FINDBESTRULE

procedure, they can be omitted without changing the behavior of the
program. In its more general form, thels-content is used in HYDRA
(Ali and Pazzani 1993) for assessing the quality of rules in multi-class
problems.

�-coefficient:

PHI(r) =
p � �n� �p � np

(p+ �p) � (n+ �n) � (p+ n) � (�p+ �n)

The�-coefficient measures the correlation between two events with two
outcomes, tabulated into a 2�2 contingency table. Its use has been
suggested in (F̈urnkranz 1994b, 1997)8 for computing the correlation
between the true classification of the positive and negative examples
covered by ruler0 and the classification suggested by its refinementr =
r0 [c. Of the examples covered byr0, r will correctly classifypas positive
and will rightly leaven̄ = n0� n negative examples uncovered. On the
other hand, it will falsely classifyn negative examples as positive, while
leavingp̄ = p0� p positive examples uncovered. The result ofPHI(r) is
a value between�1 and+1. Negative values indicate a negative corre-
lation, which suggests to consider to add the negation of the conditionc
to r0. For a discussion of the advantages of this heuristic we have to refer
the reader to (F̈urnkranz 1994b).

4.3.2. Complexity estimates
There are a variety of heuristics for measuring the complexity of candidate
rules. Among them are:

Rule length:

L(r) = l

This simple measure estimates the complexity of a rule with the number
of its conditions. For example it is used in components of the search
heuristics of PROGOL (Muggleton 1995).

32 JOHANNES F̈URNKRANZ

Positive coverage:

C(r) = p

This measure for the complexity of a rule is based on the assumption
that shorter rules are more general and thus cover a higher number of
positive examples. DLG (Webb 1992) employs it as a search heuristic,
but it is more often used as a weighting function (as e.g. in FOIL (Quinlan
1990)).

Abductivity :

ABD(r) = 1�
lG

lS

This measure has been used in various versions of the SMART family
of algorithms (Botta and Giordana 1993). It aims at measuring how well
r is explained by the available background knowledge. For this purpose,
it computesrG, a generalization ofr that can be obtained by repeatedly
replacingconditions ofr that match the body of a rule in the background
knowledge with the head of this rule (absorption). Similarly, it computes
rS, a specialization ofr that can be obtained byaddingthese rule heads
to r (saturation). ABD(r) is the percentage of conditions that appear in
rS, but not inrG. If no background knowledge is availablelG = lS = l
and thusABD(r) = 0. For details we refer to (Botta and Giordana 1993).
In some versionslG is approximated byl. lS can be approximated with
the length of thelanguage templateused in GA-SMART (see section
3.1.5). Venturini (1993) uses a propositional version of this estimate that
computes the proportion of attributes that are not tested in the body of
the rule.

Minimum description length :

MDL(H) = I(H) + I(EjH)

The minimum description length principle (Wallace and Boulton 1968;
Rissanen 1978) has recently gained popularity in inductive learning as a
heuristic that aims at finding a trade-off between the complexity and the
accuracy of a hypothesis (Georgeff and Wallace 1984). It is defined as the
amount of information needed to transmit a hypothesisH and the amount
of information needed to transmit a set of examplesE with the help of
this hypothesis. The latter task is usually reduced to transmitting only the
classification of the examples which basically amounts to transmitting

SEPARATE-AND-CONQUER RULE LEARNING 33

the exceptions to the theory. The goal is to minimize this measure. Unfor-
tunately, both terms are not computable and have to be approximated.
For various computable approximations for rule learning we refer to
(Kovačič 1994a, 1994b) and (Pfahringer 1995a, 1995b). FOIL (Quinlan
1990) uses a variant of the MDL principle as a stopping criterion (see
section 5.1), and another variant, in an experimental version, as a pruning
criterion (Quinlan 1994).

With the exception of variousMDL measures, which already incorporate
classification accuracy, complexity heuristics are rarely used on their own,
but usually form components of more complex heuristics that combine various
measures into one evaluation function so that different aspects of a candidate
rule can be taken into account. The most popular methods for combining
heuristics are described in the following sections.

4.3.3. Gain heuristics
Gain heuristics compute the difference in the heuristic estimates between the
candidate ruler and its predecessorr0, i.e., they compute the heuristic gain
that can be achieved by refiningr0 to r. This difference is often multiplied
with a weighting function,9 so that its general form is the following:

G(r) = W (r)(H(r)�H(r0))

Some examples for gain heuristics are:

Weighted information gain:

WIG(r) = �C(r)(IC(r)� IC(r0))

The classical example for a gain heuristic is theweighted information
gain heuristic used in FOIL (Quinlan 1990). Here the basic heuristic
is information content and the difference is weighted with the number
of covered positive examples. The sign has to be reversed asIC(r) is
a heuristic that has to be minimized so thatIC(r) � IC(r0) < 0 will
usually hold. In its original formulation (Quinlan 1990),IC(r) andIC(r0)
are computed by counting proofs, whileC(r) is computed by counting
instances.

Coverage gain:

CG(r) =
p� p0

P
�
n� n0

N

34 JOHANNES F̈URNKRANZ

This heuristic is used for pruning in the POSEIDON algorithm
(Bergadano et al. 1992). In the case of specialization operators, wherep0

� p andn0 � n, it measures the increase in uncovered negative exam-
ples minus the decrease in covered positive examples, for generalization
operators vice versa.

ls-Gain:

LSG(r) = C(r)LS(r)� C(r0)LS(r0)

HYDRA (Ali and Pazzani 1993) uses the gain inls-content times cover-
age between a rule and its refinement as a search heuristic.

4.3.4. Weighted heuristics
Many heuristics use weighting functions for combining several basic heuris-
tics or for adjusting the behavior of a single heuristic in a certain direction
(as for example in the weighted information gain heuristic discussed above).
The general form of weighted heuristics is the following:

WH(r) =
nX
i=1

Wi(r)Hi(r)

Some of the best-known weighted heuristics are:

J-measure:

J(r) = C(r)CE(r)

TheJ-measure has first been described in (Goodman and Smyth 1988)
and later used in the stochastic search experiments of (Kononenko and
Kovačič 1992). Its weights the cross entropy measure with the positive
coverage complexity estimate.

SMART+ :

SMART (r) = aWIG(r) + b
C(r)

P
P (r) + cABD(r)

This and similar measures have been used in various versions of the
ML-SMART and GA-SMART algorithms (Botta et al. 1992; Giordana
and Sale 1992) and their successor, the SMART+ learning tool (Botta
and Giordana 1993). It computes the weighted average of three terms,

SEPARATE-AND-CONQUER RULE LEARNING 35

the weighted information gain used in FOIL, a weighted consistency
measure based on purity, and the abductivity measure. The weightsa, b,
andc can be used to trade off the relative importance of the three factors
of the evaluation function. Venturini (1993) uses a similar measure with
a = 0.

4.3.5. Lexicographic evaluation functionals
Many heuristics are quite likely to evaluate different rules with the same or
almost the same value, so that additional criteria have to be used in order
to determine the best candidate. Lexicographic evaluation functionals (lefs)
(Michalski 1983) are a general mechanism for using a hierarchy of evalua-
tion functions. Alef is an ordered set of pairs (Hi(r), ti), where theHi are
heuristic functions and theti 2 [0,1] are tolerance thresholds. The heuristics
are evaluated in order. All candidate rules that have an optimal evaluation
(Hi(r) = Hi(ropt)) or are within the tolerance threshold (Hi(r) � tiHi(ropt))
are evaluated by the next pair (Hi+1(r), ti+1). This is continued until a unique
best candidate is determined.

In their general form,lefs are primarily used in the AQ-family of algorithms.
Michalski (1983) suggests the use of not covered negative examples and
covered positive examples as the basic heuristics for alef. The special case
whereti = 1 is often used for tie-breaking. PRISM (Cendrowska 1987) for
example evaluates rules with a variant of the information content heuristic
and breaks ties using positive coverage.

4.3.6. Determinate literals
Several inductive logic programming algorithms, like GOLEM (Muggleton
and Feng 1990), restrict the conditions that may be used in the body of
a rule todeterminate literals, i.e., to literals that have at most one valid
ground substitution for each combination of input variables. In this case the
counting-instances and counting-proofs methods discussed at the beginning
of this section produce identical results. In FOIL, such determinate literals
are added to the body of the rule when no other condition is given a high
evaluation by the search heuristic (Quinlan 1991). This is necessary, because
determinate literals usually have a low heuristic evaluation, because they
will typically have a valid ground instantiation for all positive and negative
training examples. Thus they will not exclude any negative examples and
a rule that is refined by adding such a literal consequently receives a low
heuristic value by most common heuristics.

This problem is also addressed by themerit heuristicused in CHAM
(Kijsirikul et al. 1991), which computes a weighted average of information
gain and a measure that computes the similarity of the instantiations of the

36 JOHANNES F̈URNKRANZ

variables used in the body of the rule with the output variables for a randomly
chosen seed example. This results in higher heuristic values for conditions
that introduce new variables whose values are similar to those of the output
variables.

5. Overfitting Avoidance Bias

The SIMPLESEPARATEANDCONQUERalgorithm of Figure 3 has a severe draw-
back: real-world data may be noisy. Noisy data are a problem for many learn-
ing algorithms, because it is hard to distinguish between rare exceptions and
erroneous examples. The algorithm forms a complete and consistent theory,
i.e., it tries to cover all of the positive and none of the negative examples. In
the presence of noise it will therefore attempt to add literals to rules in order
to exclude positive examples that have a negative classification in the training
set and add rules in order to cover negative examples that have erroneously
been classified as positive. Thus complete and consistent theories generated
from noisy examples are typically very complicated and exhibit low predic-
tive accuracy on classifying unseen examples. This problem is known as
overfitting the noise.

One remedy for the overfitting problem is to try to increase the predictive
accuracy by considering not only complete and consistent theories, but also
approximate, but simpler theories. A simple theory that covers most positive
examples and excludes most negative examples of the training set will often
be more predictive than a complete and consistent, but very complex theory.
Such a bias towards simpler theories has been termedoverfitting avoidance
bias(Schaffer 1993; Wolpert 1993).

Several algorithms, such as CLASS (Webb 1993), rely on the noise handling
capabilities of search heuristics like the Laplace-estimate, which can prefer
rules that cover only a few negative examples over clauses that cover no nega-
tive examples if the former cover more positive examples. Other algorithms
such as PROGOL (Muggleton 1995) can also rely on a severely constrained
hypothesis language which is unlikely to contain overfitting hypotheses. On
the other hand, a wide variety of algorithms employs techniques that are
specifically designed for overfitting avoidance. The remainder of this section
is devoted to a discussion of suchpruningheuristics and algorithms.

5.1. Pre-pruning

Pre-pruning methods deal with noise during concept generation. They are
implemented into the STOPPINGCRITERIONsubroutine of Figure 4. Their basic
idea is to stop the refinement of rules although they may still be over-general.

SEPARATE-AND-CONQUER RULE LEARNING 37

Thus, rules are allowed to cover a few negative examples if excluding the
negative examples is esteemed to be too costly by the stopping criterion.

The most commonly used stopping criteria are

� Minimum Purity Criterion: This simple criterion requires that a certain
percentage of the examples covered by the learned rules is positive. It
is for example used in the SFOIL algorithm (Pompe et al. 1993) as a
termination criterion for the stochastic search. In FOIL (Quinlan 1990)
this criterion is used as a RULESTOPPINGCRITERION: When the best rule
is below a certain purity threshold (usually 80%) it is rejected and the
learned theory is considered to be complete.

� Encoding Length Restriction: This heuristic use in the ILP algorithm
FOIL (Quinlan 1990) is based on the Minimum Description Length
principle (Rissanen 1978). It tries to avoid learning complicated rules
that cover only a few examples by making sure that the number of bits
that are needed to encode a clause is less than the number of bits needed
to encode the instances covered by it. For encodingp positive andn
negative training instances one needs at least log2(p+ n) + log2(

�
p+n
p

�
)

bits. Literals can be encoded by specifying one out ofr relations (log2(r)
bits), one out ofv variabilizations (log2(v) bits) and whether it is negated
or not (1 bit). The sum of these terms for alll literals of the clause has to
be reduced by log2(l!) since the ordering of literals within a clause is in
general irrelevant.

� Significance Testingwas first used as rule stopping criterion in the propo-
sitional CN2 induction algorithm (Clark and Niblett 1989) and later on
in the relational learnermFOIL (Džeroski and Bratko 1992). It tests for
significant differences between the distribution of positive and negative
examples covered by a rule and the overall distribution of positive and
negative examples. For this test is exploits the fact that the likelihood
ratio statistic that can be derived from theJ-measure asLRS(r) = 2(P+

N)J(r) isapproximatelydistributed�2 with 1 degree of freedom. Insignif-
icant rules can thus be rejected. In BEXA (Theron and Cloete 1996) this
test is also used for comparing the distribution of instances covered by a
rule to that of its direct predecessor. If the difference is insignificant, the
rule is discarded.

� The Cutoff Stopping Criterioncompares the heuristic evaluation of a
literal to a user-set threshold and only admits literals that have an eval-
uation above thiscutoff.10 It has been used in the relational separate-
and-conquer learning system FOSSIL (Fürnkranz 1994b). Under the
assumption that the search heuristic returns values between 0 and 1,
FOSSIL will fit all of the data atcutoff= 0 (no pre-pruning). On the other
hand,cutoff= 1 means that FOSSIL will learn an empty theory (maxi-

38 JOHANNES F̈URNKRANZ

mum pre-pruning). Values between 0 and 1 trade off the two extremes.
For the correlation heuristic, a value of 0.3 has been shown to yield
good results at different training set sizes and at differing levels of noise
(Fürnkranz 1994b) as well as across a variety of test domains (Fürnkranz
1997).

5.2. Post-pruning

While pre-pruning techniques try to account for the noise in the data while
constructing the final theory, post-pruning methods attempt to improve the
learned theory in a post-processing phase (subroutine POSTPROCESSof Figure
4). A commonly used post-processing technique aims at removing redundant
conditions from the body of a rule and removing unnecessary rules from the
concept. The latter technique has already been used in various versions of
the AQ algorithm (Michalski et al. 1986). The basic idea is to test whether
the removal of a single condition or even of an entire rule would lead to
a decrease in the quality of the concept description, usually measured in
terms of classification accuracy on the training set. If this is not the case, the
condition or rule will be removed.

This framework has later been generalized in the POSEIDON system
(Bergadano et al. 1992). POSEIDON can simplify a complete and consis-
tent concept description, which has been induced by AQ15 (Michalski et
al. 1986), by removing conditions and rules and by contracting and extend-
ing intervals and internal disjunctions. POSEIDON successively applies the
operator that results in the highest coverage gain (see section 4.3.3) as long
as the resulting theory increases some quality criterion.

This method can be easily adopted for avoiding overfitting of noisy data.
A frequently used approach is to maximize the predictive accuracy measured
on a separate set of data that has not been available to the learner during theory
construction. This method has been suggested in Pagallo and Haussler (1990)
based on similar algorithms for pruning decision trees (Quinlan 1987b).
Before learning a complete and consistent concept description, the train-
ing set is split into two subsets: agrowing set(usually 2/3) and apruning
set (1/3). The concept description that has been learned from the growing
set is subsequently simplified by greedily deleting conditions and rules from
the theory until any further deletion would result in a decrease of predictive
accuracy measured on the pruning set.

Figure 5 shows this algorithm in pseudo-code. The subroutine BEST-
SIMPLIFICATION selects the theory with the highest evaluation on the pruning
set from the set of simplifications of the current theory. Simplifications that
are usually tried are deleting an entire rule, or deleting the last condition of a
rule as inreduced error pruning(REP) (Brunk and Pazzani 1991). Other algo-

SEPARATE-AND-CONQUER RULE LEARNING 39

Figure 5. A post-pruning algorithm.

rithms employ additional simplification operators like deleting each condition
of a rule (F̈urnkranz and Widmer 1994), deleting a final sequence of condi-
tions (Cohen 1993), finding the best replacement for a condition (Weiss and
Indurkhya 1991), and extending and contracting internal disjunctions and
intervals (Bergadano et al. 1992). If the evaluation of the best simplification
is not below the evaluation of the unpruned theory, REP will continue to prune
the new theory. This is repeated until the evaluation of the best simplification
is below that of its predecessor.

Brunk and Pazzani (1991) have empirically shown that REP can learn more
accurate theories than FOIL, which uses pre-pruning. However, post-pruning
has also several disadvantages, most notably efficiency. Cohen (1993) has
shown that REP has a time complexity of
(n4) on purely random data.
Therefore he proposed GROW a new pruning algorithm based on a technique
used in the GROVE learning system (Pagallo and Haussler 1990). Like REP,
GROW first finds a theory that overfits the data. But instead of pruning
the intermediate theory until any further deletion results in a decrease of
accuracy on the pruning set, generalizations of rules from this theory are
successively selected to form the final concept description until no more rules
will improve predictive accuracy on the pruning set. Thus GROW performs a
top-down search in the space of pruned theories instead of REP’s bottom-up
search. However, Cameron-Jones (1996) has shown that for noisy data, the
asymptotic costs of this pruning algorithm are still somewhat higher than the
costs of the initial overfitting phase.

40 JOHANNES F̈URNKRANZ

5.3. Combining pre- and post-pruning

The advantages of pre- and post-pruning are typically complementary: While
pre-pruning is more efficient, post-pruning will often produce better results.
Although the GROW algorithm as described in the last section can drastically
reduce the costs of pruning an overly complex theory, its overall costs are
still unnecessarily high. The reason is that GROW, like REP, has to learn
an overfitting intermediate theory. An obvious improvement would therefore
be to limit the amount of overfitting by using pre-pruning heuristics inside
SEPARATEANDCONQUERprogram that is called in the algorithm of Figure 5.
Cohen (1993) improves the GROW algorithm in such a way by using two
weak MDL-based stopping criteria. These are not intended to entirely prevent
overfitting like the pre-pruning approaches of section 5.1, but to reduce the
amount of overfitting, so that the post-pruning phase can start with a better
theory and has to do less work. Similarly, the BEXA algorithm (Theron and
Cloete 1996) uses significance testing as a pre-pruning criterion and performs
an additional post-pruning phase where conditions and rules are pruned in
the way described in Quinlan (1987a).

However, there is always the danger that a predefined stopping criterion
will over-simplify the theory. To avoid this, F̈urnkranz (1994c) has developed
an algorithm calledTop-Down Pruning(TDP). This algorithm generates all
theories that can be learned with different settings of the cutoff parameter of
FOSSIL’s cutoff stopping criterion (F̈urnkranz 1994b). This series of theories
is generated in a top-down fashion. The most complex theory within one
standard error of classification of the most accurate theory is selected as a
starting point for the post-pruning phase.11 The hope is that this theory will
not be an over-simplification (it is more complex than the most accurate
theory found so far), but will also be close to the intended theory (its accuracy
is still close to the best so far). Thus only a limited amount of pruning has to
be performed. TDP’s implementation made use of several optimizations, so
that finding this theory is often cheaper than completely fitting the noise.

5.4. Integrating pre- and post-pruning

There is another fundamental problem with post-pruning in separate-and-
conquer algorithms, which was first pointed out in Fürnkranz and Widmer
(1994). Although the separate-and-conquerapproach shares many similarities
with the divide-and-conquer strategy, there is one important difference: Prun-
ing of branches in a decision tree will never affect the neighboring branches,
whereas pruning of conditions of a rule will affect all subsequent rules. Figure
6(a) illustrates how post-pruning works in decision tree learning. The right
half of the overfitting tree covers the sets C and D of the training instances.

SEPARATE-AND-CONQUER RULE LEARNING 41

(a)

(b)

Figure 6. Post-pruning in (a) divide-and-conquer and (b) separate-and-conquer learning algo-
rithms.

When the pruning algorithm decides to prune these two leaves, their ancestor
node becomes a leaf that now covers the examplesC[D. The left branch of
the decision tree is not influenced by this operation.

On the other hand, pruning a condition from a rule means that it will be
generalized, i.e., it will cover more positive and negative instances. Conse-
quently those additional positive and negative instances should be removed
from the training set so that they cannot influence the learning of subsequent
rules. In the example of Figure 6(b), the first of three rules is simplified and
now covers not only the examples its original version has covered, but also
all examples that the third rule has covered and several of the examples that
the second rule has covered. While the third rule could easily be removed by
a post-pruning algorithm, the situation is not as simple with the remaining set
of examples B2. The second rule will naturally cover all examples of the set
B2, because it has been learned in order to cover the examples of its superset
B. However, it might well be the case that a different rule could be more
appropriate for discriminating the positive examples in B2 from the remain-
ing negative examples. As pruning conditions from a rule can only generalize
the concept, i.e., increase the set of covered examples, a post-pruning algo-
rithm has no means for adjusting the second rule to this new situation. Thus

42 JOHANNES F̈URNKRANZ

the learner may be lead down a garden path, because the set of examples that
remain uncovered by the unpruned rules at the beginning of a theory may
yield a different evaluation of candidate conditions for subsequent rules than
the set of examples that remain uncovered by the pruned versions of these
rules.

Incremental reduced error pruning(I-REP) (F̈urnkranz and Widmer 1994)
addresses this problem by pruning each individual rule right after it has been
learned. This ensures that the algorithm can remove the training examples
that are covered by the pruned rule before subsequent rules are learned. Thus
it can be avoided that these examples influence the learning of subsequent
rules.

Figure 7 shows pseudo-code for this algorithm. As in REP the current
set of training examples is split into a growing and a pruning set. However,
not an entire theory, but only one rule is learned from the growing set.
Then conditions are deleted from this rule in a greedy fashion until any
further deletion would decrease the evaluation of this rule on the pruning set.
Single pruning steps can be performed by submitting a one-rule theory to the
same BESTSIMPLIFICATION subroutine used in REP. The best rule found by
repeatedly pruning the original rule is added to the concept description and
all covered positive and negative examples are removed from the training
– growing and pruning – set. The remaining training instances are then
redistributed into a new growing and a new pruning set to ensure that each of
the two sets contains the predefined percentage of the remaining examples.
The next rule is then learned from the new growing set and pruned on the new
pruning set. When the evaluation of the pruned rule is below the evaluation of
the empty rule (i.e. the rule with the bodyfail), the rule is not added to the
concept description and I-REP returns the learned rules. Thus the evaluation
of the pruned rules on the pruning set also serves as a stopping criterion.
Post-pruning methods are used as pre-pruning heuristics.

I-REP has been shown to outperform various other pruning algorithms in
a variety of noisy domains, in particular in terms of efficiency (Fürnkranz
and Widmer 1994; F̈urnkranz 1997). However, it has several weaknesses,
which have been addressed in subsequent work (Cohen 1995). First Cohen
(1995) has shown that I-REP’s heuristic for evaluating rules, ACCURACY, has
a high variance for low-coverage rules and therefore I-REP is likely to stop
prematurely and to over-generalize in domains that are susceptible to thesmall
disjuncts problem(Holte, Acker and Porter 1989). Second, the accuracy-based
pruning criterion used in I-REP basically optimizes the difference between
the positive and negative examples covered by a rule. Cohen (1995) points
out that this measure can lead to undesirable choices. For example it would
prefer a rule that covers 2000 positive and 1000 negative instances over a

SEPARATE-AND-CONQUER RULE LEARNING 43

Figure 7. Integrating pre- and post-pruning.

rule that covers 1000 positive and only 1 negative instance. As an alternative,
Cohen (1995) suggests to divide this difference by the total number of covered
examples and shows that this choice leads to significantly better results. In
addition he shows that an alternative rule stopping criterion based on theory
description length and an additional post-pruning phase can further improve
I-REP. The resulting algorithm, RIPPER, has been shown to be competitive
with C4.5rules (Quinlan 1993) without losing I-REP’s efficiency (Cohen
1995).

6. Related Work

In the literature one can also find a variety of separate-and-conquer learning
algorithms that tackle slightly different tasks than the inductive concept learn-
ing problem as defined in Figure 2. Mooney (1995), for example, describes
an algorithm that learns conjunctions of disjunctive rules by finding rules
that cover all positive examples and exclude some of the negative examples.
Such rules are added to the theory until all negative examples have been
excluded. Thus the algorithm is a dual to conventional separate-and-conquer

44 JOHANNES F̈URNKRANZ

algorithms in the sense that it learns by covering on the negative examples.
All algorithms and heuristics discussed in this paper can be applied to this
task as well with only slight modifications (e.g., to swap the role ofp andn
in the heuristics). ICL (De Raedt and Van Laer 1995) is a similar approach
that learns in a first-order logic framework. The basic entity that it covers are
not single examples, but ground models of the target theory.

Separate-and-conquer algorithms have also been used to tackleregression
problems, i.e., the prediction of real-valued instead of discrete class variables.
The key issue here is the definition of an appropriate evaluation criterion. This
is a non-trivial issue, because the real-valued prediction of a regression rule
will in a general never be identical to the true value. In IBL-SMART (Widmer
1993), another algorithm from the ML-SMART family, this problem is solved
by using a discretized class variable for learning. A numeric prediction for a
new example is then derived by finding a rule that covers the example and
using the numeric class variables of all other examples covered by that rule for
deriving a prediction. RULE (Weiss and Indurkhya 1995) and FORS (Karalič
1995) are able to directly use real-valued class variables. They employ a
top-down hill-climbing algorithm for finding a rule body that minimizes an
error function (like the mean squared error) on the prediction of the covered
examples. The problem here is that rules that cover only one example appear
to commit no error when they predict this value. FORS tries to solve this
problem of overfitting with the introduction of a variety of stopping criteria,
like a maximum rule length or a minimum number of examples that a rule
must cover.

There are also a variety of other rule learning approaches that do not use
separate-and-conquer frameworks. In particular, several algorithms that use
a bottom-up learning strategy start with a set of rules, each representing one
example, and successively generalize the entire rule set. RISE (Domingos
1996b) is a particularly successful system that uses such an approach, where
single rules are minimally generalized so that they cover the example that is
most similar to them. Domingos (1996b) has named this method “conquering
without separating”. A similar approach has also been taken in the induc-
tive logic programming algorithm CHILLIN (Zelle, Mooney and Konvisser
1994), where rules are generalized by forming theirleast general generaliza-
tion (Plotkin 1970) and, if necessary, successively specialized using top-down
hill-climbing as in FOIL. CWS (Domingos 1996a) interleaves the induction
of different rules by starting to induce the next rule in the same cycle as
the second condition of the current rule is learned. ITRULE (Goodman and
Smyth 1988) performs an efficient exhaustive search for a fixed number
of rules with a fixed maximum length. BBG (Van Horn and Martinez 1993)
learns a decision list by inserting a learned rule at appropriate places and eval-

SEPARATE-AND-CONQUER RULE LEARNING 45

Table 1. Biases of selected separate-and-conquer rule learning algorithms

46 JOHANNES F̈URNKRANZ

uating the quality of the resulting of the resulting decision list on the entire
training set. Last but not least, the C4.5 decision tree induction algorithm
has an option that allows to generate compact decision lists from decision
trees by turning a decision tree into a set of non-overlapping rules, pruning
these rules, and ordering the resulting overlapping rules into a decision list
(Quinlan 1987a, 1993).

7. Conclusion

In this paper we surveyed the family of separate-and-conquer or covering
learning algorithms. This learning strategy is now in use for almost 30 years.
Despite its age, it still enjoys a great popularity, so that we feel a survey of
this sort has been overdue.

We have mostly confined ourselves to binary concept learning tasks, which
can be defined with a number of positive and negative examples for the target
concept. A separate-and-conquer algorithm continues to learn rules until all
(or most) of the positive examples are covered without covering any (or only
few) negative examples. Table 1 shows the most important separate-and-
conquer concept learning algorithms discussed in this paper, together with
indicators for the most important biases they employ. References to papers
that describe the individual algorithms had to be omitted because of space
restrictions, but can be most quickly found in Figure 1.

Discussions of the pros and cons of each individual algorithm, empirical
comparisons of various bias options, and recommendations are beyond the
scope of this paper, and will depend on the task at hand. However, we hope
that this paper can help the practitioner to pick the right algorithm based on its
characteristics as well as guide the researcher to interesting research directions
and suggest possible bias combinations that still have to be explored.

Acknowledgements

This research is sponsored by the AustrianFonds zur F̈orderung der Wissen-
schaftlichen Forschung (FWF)under grant number P10489-MAT and J1443-
INF. Financial support for the Austrian Research Institution for Artificial
Intelligence is provided by the Austrian Federal Ministry of Science and
Research. I would like to thank my colleagues Gerhard Widmer, Bernhard
Pfahringer, Johann Petrak and Stefan Kramer for several enlightening discus-
sions and suggestions.

SEPARATE-AND-CONQUER RULE LEARNING 47

Notes

1 Strictly speaking an overfitting avoidance bias is another form of search bias. However, in
particular in the context of separate-and-conquer rule learning, there are often two separate
criteria for growing and simplifying hypotheses. Thus we feel that a separate treatment of these
two issues is justified.
2 Note that in the following we will use the term “refinement” for both specialization and
generalization.
3 Rules are often called (definite) clauses in logic programming terminology. In the remainder
of this paper we will use these terms interchangeably. In general we will follow the logic
programming terminology defined in Lloyd (1987).
4 The original attributes have depth 0. A new variable has depthi + 1, wherei is the maximum
depth of all old variables of the literal where the new variable is introduced.
5 The termwrapperis due to Kohavi (1995).
6 This clause length is computed dynamically using FOIL’s encoding length restriction (see
section 5.1).
7 In its general form the Laplace estimate has the number of classesc in its denominator, so
that it will return 1

c
for rules with no coverage.

8 The derivation of the correlation coefficient given in the cited works is rather lengthy
and the resulting formula a bit complicated, but it is equivalent to the simple definition of
the�-coefficient given here, which can be found in comprehensive statistical texts such as
(Mittenecker 1977).
9 H(r0) will often be constant for all candidate clauses (e.g. when using hill-climbing), so
that optimizingG(r) for a constant functionW(r) would produce the same behavior as directly
optimizingH(r).
10 Note that it differs from the minimum purity criterion in the way that it directly thresholds
the search heuristic instead of using purity as a separate criterion.
11 This method is inspired by the approach taken in CART (Breiman, Friedman, Olshen and
Stone 1984) where the most general decision tree within this standard error margin is selected
as a final theory.

References

Adé, H., De Raedt, L. & Bruynooghe, M. (1995). Declarative Bias for Specific-to-General
ILP Systems.Machine Learning20(1–2): 119–154. Special Issue on Bias Evaluation and
Selection.

Ali, K. M. & Pazzani, M. J. (1993). HYDRA: A Noise-Tolerant Relational Concept Learning
Algorithm. In Bajcsy, R. (ed.)Proceedings of the 13th International Joint Conference on
Artificial Intelligence (IJCAI-93), 1064–1071. Morgan Kaufmann: Chambèry, France.

Bain, M. (1991). Experiments in Non-Monotonic Learning. InProceedings of the 8th Interna-
tional Workshop on Machine Learning (ML-91), 380–384. Evanston, Illinois.

Bergadano, F. & Giordana, A. (1988). A Knowledge Intensive Approach to Concept Induction.
In Proceedings of the 5th International Conference on Machine Learning (ML-88), 305–
317. Ann Arbor, Michigan.

Bergadano, F., Giordana, A. & Ponsero, S. (1989). Deduction in Top-Down Inductive Learning.
In Proceedings of the 6th International Workshop on Machine Learning (ML-89), 23–25.

Bergadano, F., Giordana, A. & Saitta, L. (1988). Automated Concept Acquisition in Noisy
Environments.IEEE Transactions on Pattern Analysis and Machine Intelligence10: 555–
578.

48 JOHANNES F̈URNKRANZ

Bergadano, F. & Gunetti, D. (1993). An Interactive System to Learn Functional Logic Pro-
grams. In Bajcsy, R. (ed.)Proceedings of the 13th International Joint Conference on
Artificial Intelligence (IJCAI-93), 1044–1049. Morgan Kaufmann.

Bergadano, F. & Gunetti, D. (1995).Inductive Logic Programming – From Machine Learning
to Software Engineering. Logic Programming Series. The MIT Press: Cambridge, MA.

Bergadano, F., Matwin, S., Michalski, R. S. & Zhang, J. (1992). Learning Two-Tiered Descrip-
tions of Flexible Concepts: The POSEIDON System.Machine Learning8: 5–43.

Blockeel, H. & De Raedt, L. (1997). Top-Down Induction of Logical Decision Trees. Tech.
rep. CW 247, Katholieke Universiteit Leuven, Department of Computer Science, Leuven,
Belgium.

Bloedorn, E. & Michalski, R. S. (1991). Constructive Induction From Data in AQ17-DCI:
Further Experiments. Tech. rep. MLI 91-12, Artificial Intelligence Center, George Mason
University, Fairfax, VA.

Bloedorn, E., Michalski, R. S. & Wnek, J. (1993). Multistrategy Constructive Induction:
AQ17-MCI. InProceedings of the 2nd International Workshop on Multistrategy Learning,
188–203.

Bostr̈om, H. (1995). Covering vs. Divide-and-Conquer for Top-Down Induction of Logic
Programs. InProceedings of the 14th International Joint Conference on Artificial Intelli-
gence (IJCAI-95), 1194–1200.

Botta, M., Giordana, A. & Saitta, L. (1992). Comparison of Search Strategies in Learning
Relations. In Neumann, B. (ed.)Proceedings of the 10th European Conference on Artificial
Intelligence (ECAI-92), 451–455. John Wiley & Sons: Vienna, Austria.

Botta, M. & Giordana, A. (1993). SMART+: A Multi-Strategy Learning Tool. In Bajcsy, R.
(ed.) Proceedings of the 13th International Joint Conference on Artificial Intelligence
(IJCAI-93), 937–944. Morgan Kaufmann: Chambèry, France.

Breiman, L., Friedman, J., Olshen, R. & Stone, C. (1984).Classification and Regression Trees.
Wadsworth & Brooks: Pacific Grove, CA.

Brunk, C. A. & Pazzani, M. J. (1991). An Investigation of Noise-Tolerant Relational Con-
cept Learning Algorithms. InProceedings of the 8th International Workshop on Machine
Learning (ML-91), 389–393. Morgan Kaufmann: Evanston, Illinois.

Buntine, W. & Niblett, T. (1992). A Further Comparison of Splitting Rules for Decision-Tree
Induction.Machine Learning8: 75–85.

Cameron-Jones, R. M. (1996). The Complexity of Batch Approaches to Reduced Error Rule Set
Induction. In Foo, N. & Goebel, R. (eds.)Proceedings of the 4th Pacific Rim International
Conference on Artificial Intelligence (PRICAI-96), 348–359. Springer-Verlag: Cairns,
Australia.

Cameron-Jones, R. M. & Quinlan, J. R. (1993). Avoiding Pitfalls When Learning Recursive
Theories. In Bajcsy, R. (ed.)Proceedings of the 13th International Joint Conference on
Artificial Intelligence (IJCAI-93), 1050–1057. Chambèry, France.

Cendrowska, J. (1987). PRISM: An Algorithm for Inducing Modular Rules.International
Journal of Man-Machine Studies27: 349–370.

Clark, P. & Boswell, R. (1991). Rule Induction with CN2: Some Recent Improvements. In
Proceedings of the 5th European Working Session on Learning (EWSL-91), 151–163.
Springer-Verlag: Porto, Portugal.

Clark, P. & Niblett, T. (1989). The CN2 Induction Algorithm.Machine Learning3(4): 261–283.
Cohen, W. W. (1993). Efficient Pruning Methods for Separate-and-Conquer Rule Learning

Systems. InProceedings of the 13th International Joint Conference on Artificial Intelli-
gence (IJCAI-93), 988–994. Morgan Kaufmann: Chambèry, France.

Cohen, W. W. (1994). Grammatically Biased Learning: Learning Logic Programs Using an
Explicit Antecedent Description Language.Artificial Intelligence68(2): 303–366.

Cohen, W. W. (1995). Fast Effective Rule Induction. In Prieditis, A. & Russell, S. (eds.)
Proceedings of the 12th International Conference on Machine Learning (ML-95), 115–
123. Morgan Kaufmann: Lake Tahoe, CA.

SEPARATE-AND-CONQUER RULE LEARNING 49

De Raedt, L. (1992).Interactive Theory Revision: An Inductive Logic Programming Approach.
Academic Press.

De Raedt, L. (ed.) (1995).Advances in Inductive Logic Programming, Vol. 32 of Frontiers in
Artificial Intelligence and Applications. IOS Press.

De Raedt, L, & Bruynooghe, M. (1990). Indirect Relevance and Bias in Inductive Concept
Learning.Knowledge Acquisition2: 365–390.

De Raedt, L. & Van Laer, W. (1995). Inductive Constraint Logic. InProceedings of the 5th
Workshop on Algorithmic Learning Theory (ALT-95), 80–94. Springer-Verlag.

Dehaspe, L. & De Raedt, L. (1996). DLAB: A Declarative Language Bias Formalism. In
Proceedings of the International Symposium on Methodologies for Intelligent Systems
(ISMIS-96), 613–622.

Domingos, P. (1996a). Linear-Time Rule Induction. InProceedings of the 2nd International
Conference on Knowledge Discovery and Data Mining (KDD-96), 96–101. AAAI Press.

Domingos, P. (1996b). Unifying Instance-Based and Rule-Based Induction.Machine Learning
24: 141–168.

Džeroski, S. & Bratko, I. (1992). Handling Noise in Inductive Logic Programming. InProceed-
ings of the International Workshop on Inductive Logic Programming (ILP-92), 109–125.
Tokyo, Japan.

Džeroski, S., Schulze-Kremer, S., Heidtke, K. R., Siems, K. & Wettschereck, D. (1996).
Applying ILP to Diterpene Structure Elucidation from13C NMR Spectra. InProceedings
of the MLnet Familiarization Workshop on Data Mining with Inductive Logic Programming
(ILP for KDD), 12–24.

Fensel, D. & Wiese, M. (1993). Refinement of Rule Sets with JOJO. In Brazdil, P. (ed.)
Proceedings of the 6th European Conference on Machine Learning (ECML-93), No. 667
in Lecture Notes in Artificial Intelligence, 378–383. Springer-Verlag.

Fensel, D. & Wiese, M. (1994). From JOJO to Frog: Extending a Bidirectional Strategy to a
More Flexible Three-Directional Search. In Globig, C. & Althoff, K.-D. (eds.)Beiträge
zum 7. Fachgruppentreffen Maschinelles Lernen, Forschungbericht No. LSA-95-01, 37–
44. University of Kaiserslautern. Zentrum für Lernende Systeme und Anwendungen.

Fürnkranz, J. (1994a).Efficient Pruning Methods for Relational Learning. Ph.D. thesis, Vienna
University of Technology.

Fürnkranz, J. (1994b). FOSSIL: A Robust Relational Learner. In Bergadano, F. & De Raedt,
L. (eds.)Proceedings of the 7th European Conference on Machine Learning (ECML-94),
Vol. 784 of Lecture Notes in Artificial Intelligence, 122–137. Springer-Verlag: Catania,
Italy.

Fürnkranz, J. (1994c). Top-Down Pruning in Relational Learning. In Cohn, A. (ed.)Proceed-
ings of the 11th European Conference on Artificial Intelligence (ECAI-94), 453–457. John
Wiley & Sons: Amsterdam, The Netherlands.

Fürnkranz, J. (1995). A Tight Integration of Pruning and Learning (Extended Abstract). In
Lavrǎc, N. & Wrobel, S. (eds.)Proceedings of the 8th European Conference on Machine
Learning (EMCL-95), Vol. 912 of Lecture Notes in Artificial Intelligence, 291–294.
Springer-Verlag: Heraclion, Greece.

Fürnkranz, J. (1997). Pruning Algorithms for Rule Learning.Machine Learning27(2): 139–
171.

Fürnkranz, J. & Widmer, G. (1994). Incremental Reduced Error Pruning. In Cohen W. & Hirsh,
H. (eds.)Proceedings of the 11th International Conference on Machine Learning (ML-94),
70–77. Morgan Kaufmann: New Brunswick, NJ.

Georgeff, M. P. & Wallace, C. S. (1984). A General Criterion for Inductive Inference. In
O’Shea, T. (ed.)Proceedings of the Sixth European Conference on Artificial Intelligence
(ECAI-84), 473–482. Elsevier: Amsterdam.

Giordana, A. & Sale, C. (1992). Learning Structured Concepts Using Genetic Algorithms.
In Sleeman, D. & Edwards, P. (eds.)Proceedings of the 9th International Workshop on
Machine Learning (ML-92), 169–178. Morgan Kaufmann: Edinburgh.

50 JOHANNES F̈URNKRANZ

Goldberg, D. E. (1989).Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley: Reading, MA.

Goodman, R. M. & Smyth, P. (1988). Information-Theoretic Rule Induction. In Kodratoff, Y.
(ed.) Proceedings of the 8th European Conference on Artificial Intelligence (ECAI-88),
357–362. Pitman: London.

Grobelnik, M. (1992). Markus – An Optimized Model Inference System. In Rouveirol, C.
(ed.)Proceedings of the ECAI-92 Workshop on Logical Approaches to Machine Learning.
Vienna, Austria.

Hart, P. E., Nilsson, N. J. & Raphael, B. (1968). A Formal Basis for the Heuristic Determination
of Minimum Cost Paths.IEEE Transactions on Systems Science and Cybernetics4(2):
100–107.

Helft, N. (1989). Induction as Nonmonotonic Inference. InProceedings of the 1st International
Conference on Principles of Knowledge Representation and Reasoning, 149–156.

Holte, R., Acker L. & Porter, B. (1989). Concept Learning and the Problem of Small Disjuncts.
In Proceedings of the 11th International Joint Conference on Artificial Intelligence (IJCAI-
89), 813–818. Morgan Kaufmann: Detroit, MI.

Karalič, A. (1995).First Order Regression. Ph.D. thesis, University of Ljubljana, Faculty of
Electrical Engineering and Computer Science, Slovenia.

Kietz, J.-U. & Wrobel, S. (1992). Controlling the Complexity of Learning in Logic Through
Syntactic and Task-Oriented Models. In Muggleton, S. H. (ed.)Inductive Logic Program-
ming, chap. 16, 335–359. Academic Press Ltd.: London.

Kijsirikul, B., Numao, M. & Shimura, M. (1991). Efficient Learning of Logic Programs with
Non-Determinate, Non-Discriminating Literals. InProceedings of the 8th International
Workshop on Machine Learning (ML-91), 417–421. Evanston, Illinois.

Kijsirikul, B., Numao, M. & Shimura, M. (1992). Discrimination-Based Constructive Induc-
tion of Logic Programs. InProceedings of the 10th National Conference on Artificial
Intelligence (AAAI-92), 44–49.

Kirkpatrick, S., Gelatt, C. & Vecchi, M. (1983). Optimization by Simulated Annealing.Science
220: 671–680.

Kohavi, R. (1995).Wrappers for Performance Enhancement and Oblivious Decision Graphs.
Ph.D. thesis, Stanford University, Dept. of Computer Science.

Kohavi, R. & John, G. H. (1995). Automatic Parameter Selection by Minimizing Estimated
Error. In Prieditis, A. & Russell, S. (eds.)Proceedings of the 12th International Conference
on Machine Learning (ICML-95), 304–312. Morgan Kaufmann.

Kononenko, I. & Kovǎcič, M. (1992). Learning as Optimization: Stochastic Generation of
Multiple Knowledge. In Sleeman, D. & Edwards, P. (eds.)Proceedings of the 9th Interna-
tional Workshop on Machine Learning (ML-92), 257–262. Morgan Kaufmann.

Kovačič, M. (1991). Markovian Neural Networks.Biological Cybernetics64: 337–342.
Kovačič, M. (1994a). MDL-Heuristics in ILP Revised. InProceedings of the ML-COLT-94

Workshop on Applications of Descriptional Complexity to Inductive, Statistical, and Visual
Inference.

Kovačič, M. (1994b).Stochastic Inductive Logic Programming. Ph.D. thesis, Department of
Computer and Information Science, University of Ljubljana.

Kramer, S. (1994). CN2-MCI: A Two-Step Method for Constructive Induction. InProceedings
of the ML-COLT-94 Workshop on Constructive Induction and Change of Representation.

Kramer, S. (1996). Structural Regression Trees. InProceedings of the 13th National Conference
on Artificial Intelligence (AAAI-96), 812–819. AAAI Press.

Langley, P., Simon, H. A. & Bradshaw, G. L. (1987). Heuristics for Empirical Discovery. In
Bolc, L. (ed.)Computational Models of Learning. Springer-Verlag. Reprinted in Shavlik,
J. W. & Dietterich, T. G. (ed.)Reading in Machine Learning. Morgan Kaufmann, 1991.

Lavrǎc, N., Džeroski, S. & Grobelnik, M. (1991). Learning Nonrecursive Definitions of Rela-
tions with LINUS. In Proceedings of the 5th European Working Session on Learning
(EWSL-91), 265–281. Springer-Verlag: Porto, Portugal.

SEPARATE-AND-CONQUER RULE LEARNING 51

Lloyd, J. W. (1987).Foundations of Logic Programming(2nd, extended edition). Springer-
Verlag: Berlin.

Matheus, C. J. (1989). A Constructive Induction Framework. InProceedings of the 6th Inter-
national Workshop on Machine Learning, 474–475.

Michalski, R. S. (1969). On the Quasi-Minimal Solution of the Covering Problem. InProceed-
ings of the 5th International Symposium on Information Processing (FCIP-69), Vol. A3
(Switching Circuits), 125–128. Bled, Yugoslavia.

Michalski, R. S. (1973). AQVAL/1 – Computer Implementation of a Variable-Valued Logic
System VL1 and Examples of Its Application to Pattern Recognition. InProceedings of
the 1st International Joint Conference on Pattern Recognition, 3–17.

Michalski, R. S. (1980). Pattern Recognition and Rule-Guided Inference.IEEE Transactions
on Pattern Analysis and Machine Intelligence2: 349–361.

Michalski, R. S. (1983). A Theory and Methodology of Inductive Learning.Artificial Intelli-
gence20(2): 111–162.

Michalski, R. S., Mozetǐc, I., Hong, J. & Lavrǎc, N. (1986). The Multi-Purpose Incremental
Learning System AQ15 and Its Testing Application to Three Medical Domains. InProceed-
ings of the 5th National Conference on Artificial Intelligence (AAAI-86), 1041–1045.
Philadephia, PA.

Mingers, J. (1989). An Empirical Comparison of Selection Measures for Decision-Tree Induc-
tion. Machine Learning3: 319–342.

Mitchell, T. M. (1980). The Need for Biases in Learning Generalizations. Tech. rep., Computer
Science Department, Rutgers University, New Brunswick, MA. Reprinted in Shavlik, J.
W. & Dietterich, T. G. (eds.)Readings in Machine Learning. Morgan Kaufmann, 1991.

Mittenecker, E. (1977).Planung und statistische Auswertung von Experimenten(8th edition).
Verlag Franz Deuticke: Vienna, Austria. In German.

Mladeníc, D. (1993) Combinatorial Optimization in Inductive Concept Learning. InProceed-
ings of the 10th International Conference on Machine Learning (ML-93), 205–211. Morgan
Kaufmann.

Mooney, R. J. (1995). Encouraging Experimental Results on Learning CNF.Machine Learning
19: 79–92.

Mooney, R. J. & Califf, M. E. (1995). Induction of First-Order Decision Lists: Results on
Learning the Past Tense of English Verbs.Journal of Artificial Intelligence Research3:
1–24.

Muggleton, S., Bain, M., Hayes-Michie, J. & Michie, D. (1989). An Experimental Comparison
of Human and Machine Learning Formalisms. InProceedings of the 6th International
Workshop on Machine Learning (ML-93), 113–118. Morgan Kaufmann.

Muggleton, S. H. (ed.) (1992).Inductive Logic Programming. Academic Press Ltd.: London.
Muggleton, S. H. (1995). Inverse Entailment and Progol.New Generation Computing13(3,4):

245–286. Special Issue on Inductive Logic Programming.
Muggleton, S. H. & Feng, C. (1990). Efficient Induction of Logic Programs. InProceedings

of the 1st Conference on Algorithmic Learning Theory, 1–14. Tokyo, Japan.
Nédellec, C., Rouveirol, C., Ad́e, H., Bergadano, F. & Tausend, B. (1996). Declarative Bias in

ILP. In De Raedt, L. (ed.)Advances in Inductive Logic Programming, Vol. 32 ofFrontiers
in Artificial Intelligence and Applications, 82–103. IOS Press: Amsterdam.

Pagallo, G. & Haussler, D. (1990). Boolean Feature Discovery in Empirical Learning.Machine
Learning5: 71–99.

Pazzani, M. & Kibler, D. (1992). The Utility of Knowledge in Inductive Learning.Machine
Learning9: 57–94.

Pazzani, M., Merz, C., Murphy, P., Ali, K., Hume, T. & Brunk, C. (1994). Reducing Misclas-
sification Costs. In Cohen, W. W. & Hirsh, H. (eds.)Proceedings of the 11th International
Conference on Machine Learning (ML-94), 217–225. Morgan Kaufmann: New Brunswick.

Pfahringer, B. (1994a). Controlling Constructive Induction in CiPF: An MDL Approach. In
Brazdil, P. B. (ed.)Proceedings of the 7th European Conference on Machine Learning

52 JOHANNES F̈URNKRANZ

(ECML-94), Lecture Notes in Artificial Intelligence, 242–256. Springer-Verlag, Catania,
Sicily.

Pfahringer, B. (1994b). Robust Constructive Induction. In Nebel, B. & Dreschler-Fischer,
F. (eds.)Proceedings of the 18th German Annual Conference on Artificial Intelligence
(KI-94), Lecture Notes in Artificial Intelligence, 118–129. Springer-Verlag.

Pfahringer, B. (1995a). A New MDL Measure for Robust Rule Induction (Extended Abstract).
In Lavrǎc, N. & Wrobel, S. (eds.),Proceedings of the 8th European Conference on
Machine Learning (ECML-95), No. 912 in Lecture Notes in Artificial Intelligence, 331–
334. Springer-Verlag: Heraclion, Greece.

Pfahringer, B. (1995b).Practical Uses of the Minimum Description Length Principle in Induc-
tive Learning. Ph.D. thesis, Technische Universität Wien.

Plotkin, G. D. (1970). A Note on Inductive Generalisation. In Meltzer B. & Michie, D. (eds.)
Machine Intelligence5, 153–163. Elsevier North-Holland/New York.

Plotkin, G. D. (1971). A Further Note on Inductive Generalisation. In Meltzer B. & Michie,
D. (eds.)Machine Intelligence6, 101–124. Elsevier North-Holland/New York.

Pompe, U., Kovǎcič, M. & Kononenko, I. (1993). SFOIL: Stochastic Approach to Induc-
tive Logic Programming. InProceedings of the 2nd Slovenian Conference on Electrical
Engineering and Computer Science (ERK-93), Vol. B, 189–192. Portorǒz, Slovenia.

Quinlan, J. R. (1983). Learning Efficient Classification Procedures and Their Application to
Chess End Games. In Michalski, R. S., Carbonell, J. G. & Mitchell, T. M. (eds.)Machine
Learning. An Artificial Intelligence Approach, 463–482. Tioga: Palo Alto, CA.

Quinlan, J. R. (1986). Induction of Decision Trees.Machine Learning1: 81–106.
Quinlan, J. R. (1987a). Generating Production Rules from Decision Trees. InProceedings of

the 10th International Joint Conference on Artificial Intelligence (IJCAI-87), 304–307.
Morgan Kaufmann.

Quinlan, J. R. (1987b). Simplifying Decision Trees.International Journal of Man-Machine
Studies27: 221–234.

Quinlan, J. R. (1990). Learning Logical Definitions from Relations.Machine Learning5:
239–266.

Quinlan, J. R. (1991). Determinate Literals in Inductive Logic Programming. InProceedings
of the 8th International Workshop on Machine Learning (ML-91), 442–446.

Quinlan, J. R. (1993).C4.5: Programs for Machine Learning. Morgan Kaufmann: San Mateo,
CA.

Quinlan, J. R. (1994). The Minimum Description Length Principle and Categorical Theories.
In Cohen, W. & Hirsh, H. (eds.)Proceedings of the 11th International Conference on
Machine Learning (ML-94), 233–241. Morgan Kaufmann: New Brunswick, NJ.

Quinlan, J. R. (1996). Learning First-Order Definitions of Functions.Journal of Artificial
Intelligence Research5: 139–161.

Quinlan, J. R. & Cameron-Jones, R. M. (1995a). Induction of Logic Programs: FOIL and
Related Systems.New Generation Computing13(3,4): 287–312. Special Issue on Inductive
Logic Programming.

Quinlan, J. R. & Cameron-Jones, R. M. (1995b). Oversearching and Layered Search in Empir-
ical Learning. In Mellish, C. (ed.)Proceedings of the 14th International Joint Conference
on Artificial Intelligence (IJCAI-95), 1019–1024. Morgan Kaufmann.

Rissanen, J. (1978). Modeling by Shortest Data Description.Automatica14: 465-471.
Rivest, R. L. (1987). Learning Decision Lists.Machine Learning2: 229–246.
Rouveirol, C. (1992). Extensions of Inversion of Resolution Applied to Theory Completion.

In Muggleton, S. H. (ed.)Inductive Logic Programming, 63–92. Academic Press Ltd.:
London.

Rouveirol, C. (1994). Flattering and Saturation: Two Representation Changes for Gener-
alization. Machine Learning14: 219–232. Special Issue on Evaluating and Changing
Representation.

Saitta, L. & Bergadano, F. (1993). Pattern Recognition and Valiant’s Learning Framework.
IEEE Transactions on Pattern Analysis and Machine Intelligence15(2): 145–154.

SEPARATE-AND-CONQUER RULE LEARNING 53

Schaffer, C. (1993). Overfitting Avoidance as Bias.Machine Learning10: 153–178.
Segal, R. & Etzioni, O. (1994). Learning Decision Lists Using Homogeneous Rules. In

Proceedings of the 12th National Conference on Artificial Intelligence (AAAI-94), 619–
625. AAAI Press: Cambridge, MA.

Shapiro, E. Y. (1981). An Algorithm that Infers Theories from Facts. InProceedings of the 7th
International Joint Conference on Artificial Intelligence (IJCAI-81), 446–451.

Silverstein, G. & Pazzani, M. J. (1991). Relational Clichès: Constraining Constructive Induc-
tion During Relational Learning. InProceedings of the 8th International Workshop on
Machine Learning (ML-91), 203–207. Evanston, Illinois.

Silverstein, G. & Pazzani, M. J. (1993). Learning Relational Clichés. InProceedings of the
IJCAI-93 Workshop on Inductive Logic Programming, 71–82.

Srinivasan, A., Muggleton, S. H. & Bain, M. E. (1992). Distinguishing Noise from Exceptions
in Non-Monotonic Learning. InProceedings of the International Workshop on Inductive
Logic Programming (ILP-92), 97–107. Tokyo, Japan.

Theron, H. & Cloete, I. (1996). BEXA: A Covering Algorithm for Learning Propositional
Concept Descriptions.Machine Learning24: 5–40.

Utgoff, P. E. (1986). Shift of Bias for Inductive Concept Learning. In Michalski R., Carbonell,
J. & Mitchell T. (eds.)Machine Learning: An Artificial Intelligence Approach, Vol. II,
107–148. Morgan Kaufmann: Los Altos, CA.

Van Horn, K. S. & Martinez, T. R. (1993). The BBG Rule Induction Algorithm. InProceedings
of the 6th Australian Joint Conference on Artificial Intelligence, 348–355. Melbourne,
Australia.

Vapnik, V. N. & Chervonenkis, Y. A. (1971). On the Uniform Convergence of Relative
Frequencies to Their Probabilities.Theory of Probability and Its Applications16: 264–
280.

Vapnik, V. N. & Chervonenkis, Y. A. (1981). Necessary and Sufficient Conditions for the
Uniform Convergence of Means to Their Expectations.Theory of Probability and Its
Applications26: 532–553.

Venturini, G. (1993). SIA: A Supervised Inductive Algorithm with Genetic Search for Learning
Attributes Based Concepts. In Brazdil P (ed.),Proceedings of the 6th European Conference
on Machine Learning (ECML-93), Vol. 667 ofLecture Notes in Artificial Intelligence, 280–
296. Springer-Verlag: Vienna, Austria.

Wallace, C. S. & Boulton, D. M. (1968). An Information Measure for Classification.Computer
Journal11: 185–194.

Watanabe, L. & Rendell, L. (1991). Learning Structural Decision Trees from Examples. In
Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI-
91), 770–776.

Webb, G. I. (1992). Learning Disjunctive Class Descriptions by Least Generalisation. Tech. rep.
TR C92/9, Deakin University, School of Computing & Mathematics, Geelong, Australia.

Webb, G. I. (1993). Systematic Search for Categorical Attribute-Value Data-Driven Machine
Learning. In Rowles, C., Liu, H. & Foo, N. (eds.)Proceedings of the 6th Australian Joint
Conference on Artificial Intelligence (AI ’93), 342–347. World Scientific: Melbourne.

Webb, G. I. (1994). Recent Progress in Learning Decision Lists by Prepending Inferred Rules.
In Proceedings of the 2nd Singapore International Conference on Intelligent Systems,
B280–B285.

Webb, G. I. (1995). OPUS: An Efficient Admissible Algorithm for Unordered Search.Journal
of Artificial Intelligence Research5: 431–465.

Webb, G. I. & Agar, J. W. M. (1992). Inducing Diagnostic Rules for Glomerular Disease with
the DLG Machine Learning Algorithm.Artificial Intelligence in Medicine4: 419–430.

Webb, G. I. & Brkǐc, N. (1993). Learning Decision Lists by Prepending Inferred Rules. In
Proceedings of the AI ’93 Workshop on Machine Learning and Hybrid Systems. Melbourne,
Australia.

Weiss, S. M. & Indurkhya, N. (1991). Reduced Complexity Rule Induction. InProceedings of
the 12th International Joint Conference on Artificial Intelligence (IJCAI-91), 678–684.

54 JOHANNES F̈URNKRANZ

Weiss, S. M. & Indurkhya, N. (1993a). Optimized Rule Induction.IEEE Expert8(6): 61–69.
Weiss, S. M. & Indurkhya, N. (1993b). Rule-Based Regression. In Bajcsy, R. (ed.)Proceedings

of the 13th International Joint Conference on Artificial Intelligence (IJCAI-93), 1072–
1078.

Weiss, S. M. & Indurkhya, N. (1995). Rule-Based Machine Learning Methods for Functional
Prediction.Journal of Artificial Intelligence Research3: 383–403.

Widmer, G. (1993). Combining Knowledge-Based and Instance-Based Learning to Exploit
Quantitative Knowledge.Informatica17: 371–385. Special Issue on Multistrategy Learn-
ing.

Wiese, M. (1996). A Bidirectional ILP Algorithm. InProceedings of the MLnet Familiarization
Workshop on Data Mining with Inductive Logic Programming (ILP for KDD), 61–72.

Wnek, J. & Michalski, R. S. (1994). Hypothesis-Driven Constructive Induction in AQ17-
HCI: A Method and Experiments.Machine Learning14(2): 139–168. Special Issue on
Evaluating and Changing Representation.

Wolpert, D. H. (1993). On Overfitting Avoidance as Bias. Tech. rep. SFI TR 92-03-5001. The
Santa Fe Institute, Santa Fe, NM.

Zelle, J. M., Mooney, R. J. & Konvisser, J. B. (1994). Combining Top-Down and Bottom-Up
Techniques in Inductive Logic Programming. In Cohen, W. & Hirsh, H. (eds.)Proceedings
of the 11th International Conference on Machine Learning (ML-94), 343–351. Morgan
Kaufmann: New Brunswick, NJ.

