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NOTE ON NONNEGATIVE MATRICES 

ABSTRACT.Let A be a n0nnegatij.e square matrix and B =  
DlAD2 where Dl and D2 are diagonal matrices with positive diag- 
onal entries. Several proofs are known for the following theorem: 
If A is fully indecomposable then Dl and D2 can be chosen so that B 
is doubly stochastic. Moreover, Dl and Dz are unique up to a scalar 
factor. I t  is shown that these results can be easily obtained by con- 
sidering a minimum of a certain rational function of several vari- 
ables. 

Several recent papers [ I ] ,  [2], [3], [4 ]  were devoted to the follow- 
ing problem: Given a nonnegative square matrix A ,  find the condi- 
tions for the existence of two diagonal matrices Dl and Dz such that  
DIADz is doubly stochastic. We shall show that  it is related to a 
simple minimum problem. This leads to a short proof of Theorem 
(6.1) of [ I ]  which avoids the use of Rlenon's operator. 

We begin with some definitions. An n X n  ( n h 2 )  matrix A is re- 
ducible if there exists a permutation matrix P such that  

where A1 is a k X k matrix, 1 5k5 n-1. Otherwise we say that  A is ir- 
reducible. 

An n X n  ( n 22 )  matrix A is fully indecomposable if there do not 
exist permutation matrices P and Q such that  

where A1 is a kXk matrix, 1 6 k 5 n - 1 .  

THEOREM.Let A be a nonnegative nX nfully  indecomposable matr ix .  
Then  there exist diagonal matrices Dl and Dz wi th  positive diagonals 
such that DlADz i s  doubly stochastic. Moreover Dl and Dz are uniquely 
determined u p  to scalar multiples. 

For the proof we need the following 
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LEMMA.Let A be a nonnegative n X n  matrix. Then A is  fully inde- 
~omposableif and only zf there exist permutation matrices P and Q such 
that P A Q  has a positive main diagonal and is  irreducible. 

A short proof of this lemma appears in [I]. 
PROOFOF THE THEOREM. By the lemma we can assume that  

A = (aij) has positive main diagonal and is irreducible. Let 

the variables being restricted by 

Let (bi) be a boundary point of the region (1) and, for instance, 
bl = . . =b, =0, bk >0 (S <k 5n). Since A is irreducible we infer that  
a t  least one entry aij>O for 1 S i S s ,  s < j 6 n .  This implies that  
f(x1, . - , xn)++ 00 when (xk)-+(bk). Therefore f attains its mini- 
mum in some point (ck) of the region (1). The  partial derivatives of 
f vanish a t  (ck) since f is homogeneous. Hence, 

which proves the first assertion of the theorem. 
For the uniqueness it is sufficient to prove the following assertion: If 

the matrices X=(xij) ,  Dl=diag(d;, . . ,d;), Dz=diag(d:', . . . ,d:) 
satisfy 

(i) X is irreducible doubly stochastic with positive elements on 
the main diagonal; 

(ii) d:>O, dil>O ( 1 6 i S n ) ;  
(iii) DIXDz is doubly stochastic, then Dl and Dz are scalar matrices. 
Since 

n 

d[xijdjlt = 1 * (maxd/)(min d/') 5 1, 
j- 1 

5 dl  rod/' = 1* (max d[)(min d:') 2 1. 
i- 1 

we conclude that  none of these inequalities is strict. This implies that  
x,, =0 whenever d: =max di and d:' >min dj' or d: <max d; and 
d;' =min d;'. This contradicts (i) unless Dl and Dz are scalar matrices. 

T h e  proof is completed. 
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