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Diagram Representations of Logic Functions 
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Abstmet-We give an example of a class of functions with 2n + log 
(n) inputs that have two-level or sum-of-products representations con- 
taining n2 product terms and ordered binary decision diagram repre- 
sentations that have at least Q(t"/*) vertices under any possible vari- 
able ordering. 

I. INTRODUCTION 

Sum-of-product or two-level representations of logic functions 
have been used widely in the area of logic optimization and veri- 
fication. There are many families of logic functions, commonly 
used in VLSI circuits, that have sum-of-product representations that 
grow exponentially with the number of inputs to the function. The 
Achilles Heel function 111, the parity function, and the multiply 
function over n inputs are popular examples of Boolean functions 
with exponentially growing sum-of-product representations. 

Reduced ordered binary decision diagrams (OBDD's), proposed 
by Bryant in 1986 [2], have emerged as another useful represen- 
tation of logic functions, especially so for logic verification appli- 
cations. Many functions like the Achilles Heel and parity have lin- 
ear-sized OBDD representations, under certain variable orderings. 
In [3] it was shown that a n-bit multiplier requires Q( 1.09") ver- 
tices, under any possible variable ordering. 

In this paper, we give an example of a function with 2n + log 
(n) inputs that has n2 product terms in a sum-of-products represen- 
tation, and using the theoretical framework developed in [3], we 
show that the function has Q(2"/') vertices in an OBDD represen- 
tation, under any possible variable ordering. 

11. DEFINITIONS 

For standard logic synthesis and ordered binary decision diagram 
(OBDD) terminology, the reader is referred to [l] and [2] respec- 
tively. We define some terms relating to VLSI complexity that are 
necessary for our proofs. These definitions have been taken from 
[3] or modified from [4]. 

Let f denote a family of single-output Boolean functions pa- 
rameterized by problem size n. The set of inputs is denoted by x. 
An input assignment x :  X + (0, 1)  is an assignment of Boolean 
values to the inputs. Given an input assignment x ,  the resulting 
output is denotedf(x) E {O, 1).  

In an OBDD, all vertex labels must occur according to a total 
ordering of the variables. That is, for a set of input variables X, we 
assign each variable an "index" according to a bijection T :  X --t 
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{ I ,  . * , 1x1). The variable ordering given by 'K is written as the 
sequence [ T - ' ( I ) ,  *-'(2), . * - , T - ' ( ~ x ~ ) I .  

The lower bound arguments for OBDD complexity as described 
in [3] have a general form as follows: Some subset of inputs Y E 
X is designated as the set of "key" inputs, and a real-valued bal- 
ance parameter w between 0 and l is specified. A balanced parti- 
tioning is defined as any partitioning of X into subsets L and R such 
that the fraction of Y in L equals U. For our purposes w = 0.5. 

Proving a lower bound involves showing that for every balanced 
partition, computingfrequires that a certain amount of information 
about the assignment to inputs in L must be combined with a certain 
amount of information about the assignment to inputs in R. In the 
case of an OBDD, this information implies that the graph must 
have a certain number of arcs crossing from vertices labeled by 
variables in L to vertices labeled by variables in R. A lower bound 
on information transfer is established by creating a fooling set for 
the input partition; i.e., a set of input assignments no two elements 
of which can be computed by communicating the same information 
across the partition. 

For a particular partitioning, define a left (right) input assign- 
ment I :  L + {0, l ) (r :  R + {O, I } )  as an assignment of Boolean 
values to the inputs in L(R). Let 1 . r denote the complete input 
assignment resulting from the left input assignment 1 and right in- 
put assignment r.  

For OBDD's, a fooling set consists of left input assignments. 
That is, for partition (L, R), a set of left input assignments A,,,&, 
R) is a fooling set if it satisfies the following property: For any two 
distinct 1 and I' in AoBDD there exists a right input assignment r 
such thatf(1' * r) f f(1 r). Such a right assignment is said to 
distinguish between 1 and 1' .  

The main result we use is given below: 
Lemma: (Lemma 2 in [3]): If for every balanced partition (L, 

R), functionfhas a fooling set AoeDD(L, R) containing at least C" 

elements, for some c > 1, then any OBDD forfmust have Q(c") 
vertices. 

111. THE LOGIC FUNCTION AND ITS PROPERTIES 

The logic function we will analyze is given below. The function 
has 2n + [log (n1 inputs, corresponding to ao, . . . t a n  - I 9 bo, 

, b,- I and m u , ,  . . . 9 mux riog(n)l  . . . .  
f = g, if value(muxl, * . . , mux r l o g ( n ) l )  = i ,  where function 

value( ) returns the integer value of the input binary combination. 
The g, are defined as follows: 

n - I  

g,, 0 5 i < n = (al . b(l+,),, ,d,,).  / = o  

Each g, function has n product terms. There are n such functions, 
and each function is ANDed by an input combination over the muxl's, 
resulting in the f function having n2 product terms. 

We now show that any OBDD representation for f will have 
Q(2n/2) vertices (under any possible variable ordering). 

Theorem: Any OBDD representation off  requires Q(2"I2) ver- 
tices. 

Proofi We will select the key inputs Y to be the 2n inputs 
corresponding to ao, . . . , a, - I and bo, . . . , b,- I .  Choose w = 
0.5. We therefore have a partition (15, R) wherein L has n inputs 
that are some a, or 6/, and so does R. The mux, variables may be 
contained in L or R or may be distributed across both. 

In the sequel, we will constmct a fooling set AoB,D(L, R) that 
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has 2“/’ elements. Assume that there are p variables corresponding 
to the a,’s and q variables corresponding to the bJ’s in L.  We know 
that 0 I p I n, 0 I q I n ,  and p + q = n. Further, we have q 
a, variables in R and p b, variables in R. 

We will show that for any partition (L, R), we will always be 
able to pick a g, such that r n / 2  terms in g, satisfy the property 
that the a, variable in the term belongs to L ,  and the bJ variable to 
R, or vice versa. That is, these terms will be split across the par- 
tition. The number of terms in all the &’s, where any term a, . b, 
has a, E L and bJ E L is p q .  Similarly the number of terms in all the 
gk’s a, - b, such that a, E R and bJ E R is p q .  We thus have 2pq 
terms that are not split across the partition. Given that p + q = n ,  
the maximum of 2pq occurs at p = q = n / 2 .  Since the total num- 
ber of terms inf is  n’, the number of terms split across the partition 
is Zn’ - 2 ( n / 2 ) ( n / 2 )  = n 2 / 2 .  In general for different selections 
of L and R, these terms will be contained in different gk’s. Given 
there are ngk’s we will always have at least one g, which will have 
at least (1 / n )  ( n 2 / 2 )  terms split across the partition.’ 

Now that we have a selected g,, we use the settings for the mu, 
variables that makef = g,. We will now show that we have a fool- 
ing set AoBDD(L, R) forfthat is of cardinality 2“/*.  The fooling set 
corresponds to all possible settings of the n / 2  a,’s or b,’s in L that 
are contained in terms of g, split across the partition. The a, and bJ 
variables in L not in the n / 2  terms that are split across the partition 
are set to constant 0 values for all possible settings of the variables 
that are in the split terms. 

Assume we have two settings of the variables in L, namely 1 and 
2 ‘ .  We pick a, such that 2(a,) # l’(a,). The term am . b, belongs 
to g,, such that b, E R. We set the values of all a, and bJ variables 
in R to 0, except for b, = 1. Call this assignment (along with the 
mu, variable assignment) r. Because b, = 1 and all terms in g, 
except a, * b, have been set to 0, g,(l . r) # g,(f’ . r). Therefore, 
f ( 2  * r) # f ( 2 ’  r). We can pick a b, instead of a, above and use 
similar arguments to show that two settings 1 and 2’ that differ in 
b, can be differentiated. Thus, we can differentiate any two mem- 
bers of the constructed fooling set. 

Given that we have a fooling set AOBDD(L, R) with 2”/’ elements 
0 invoking the lemma above gives us the desired result. 

IV. SUMMARY 

Families of logic functions having OBDD representations that 
grow linearly with the number of inputs (under particular order- 
ings), but sum-of-product representations that grow exponentially 
with the number of inputs, have been known for a long time. We 
have provided an example of a function that has a quadratic-sized 
sum-of-product representation, but an exponential-sized OBDD 
representation, under any possible variable ordering. A larger class 
of functions similar to the one above, wherefis a multiplexor com- 
position of n / k  functions (k is a constant) that have nk product 
terms and f2(2“/2k) vertices in any OBDD representation, can be 
derived. 
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‘In fact, the minimum corresponds to the case where all the g,’s have 
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Physical Models and Efficient Algorithms for Over- 
the-Cell Routing in Standard Cell Design 

Jason Cong, Bryan Preas, and C. L. Liu 

Absfracf-When an over-the-cell routing layer is available for stan- 
dard cell layout, elfieient utilization of that routing space over the cells 
can significantly reduce layout area. In this paper, we present three 
physical models to utilize the area over the cells for routing in standard 
cell designs. We also present efficient algorithms to choose and to route 
a planar subset of nets over the cells so that the resulting channel den- 
sity is reduced as much as possible. For each of the physical models, 
we show how to arrange inter-cell routing, over-the-cell routing, and 
powerlground buses to achieve valid routing solutions. Each algorithm 
exploits the particular arrangement in the corresponding physical 
model and produces provably good results in polynomial time. We 
tested our algorithms on two industrial standard cell designs. In these 
tests, this method reduces total channel density by as much as 21%. 

I. INTRODUCTION 

Standard cells are widely used in the design of VLSI circuits. 
After the cells are placed in rows and necessary feedthroughs in- 
serted, a channel router completes the interconnections in the chan- 
nels among the cells (Fig. I ) .  Conventional channel routers are 
restricted to utilizing two routing layers in the channels for inter- 
connections. The conventional channel routing problem has been 
extensively studied, and there are several channel routers which 
can produce solutions using at most one or two tracks more than 
channel density for most practical problems (for example, see [7], 
[23], [20], [l] ,  [19]). To further reduce the channel routing area, 
some channel routers use the extra routing area over the cells for 
interconnections [9], [15], [21], [14], [3], [5]. These routers are 
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