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ADDITIVE AND MULTIPLICATIVE MODELS AND INTERACTIONS 

The Flinders University of South Australia and C.S.I.R.O. 

A unified treatment is given of the classical additive models for complete 
factorial experiments and of multiplicative models and Lancaster-additive 
models for multi-dimensional contingency tables. The models are character- 
ised by properties of being simplest subject to having a prescribed set of 
marginals. It  is shown that, by using averaging operators and the notion of a 
generalised interaction, the interaction properties of these models can be 
derived very simply. 

1. Introduction. Interaction models provide simplXied structures for the arrays of 
unknown parameters which arise in factorial experiment! and in multidimensional contin- 
gency tables. These two fields of application will be considered side by side, rather more 
attention being given to contingency tables. 

In a factorial experiment there are, say, s factors Al, . . . , A, and a single response y. If 
the factors have rl ,  . . . , r, levels there are rl x . . . Xrs different combinations of levels 
called cells. The expected value Ey = 7 of the response varies from cell to cell and 
inferential attention is focused on the array 7 of the rl x . . . xr, values of 7. 

In a pure response s-dimensional contingency table there are s categorical variables 
XI, . . . , X, taking rl, . . . , r, values. This time the unknown parameter at  each cell is the 
probability p of that particular combination of response values. The following discussion 
also applies to s-dimensional contingency tables in which some of the dimensions corre- 
spond to factors and the remainder to responses. The probability p is then the probability 
of the response values given the factor levels. There remains one further model for 
contingency tables. In it the rl x . . . x r, frequencies are independent Poisson variables 
and the theory of this paper is applied to the array of their mean values p. 

The standard models for 7, p, p or some function of them are defined by linear 
subspaces of @.: where 

They are usually obtained by introducing a system of interactions and then requiring that 
a subset of these interactions vanish. This may be quite appropriate with additive models 
for factorial experiments, where the individual interactions can have a practical interpre- 
tation, but it is not necessarily so with multiplicative models for contingency tables. One 
of the aims of this paper is to give a simple account of an alternative approach in which we 
define models first (Section 2) and interactions later (Section 4). In doing so we take the 
opportunity to compare and contrast additive and multiplicative models, and to note the 
similarities and differences between two widely used parametrizations. 

There is a certain amount of overlap in subject matter between this paper and the work 
of Haberman (1974, 1975) but the mathematical treatments of the common material are 
substantially different. Andersen (1975) gives a very clear summary of the general prop- 
erties of interaction subspaces, applicable either to additive or multiplicative models, 
whilst other general treatments are by Mann (1949), Good (1958, 1963), Kurkjian and 
Zelen (1962), Grizzle, Starmer and Koch (1969), Goodman (1970) and Davidson (1973). 
Writings which concentrate upon multiplicative models for probabilities include several 
books: Haberman (1974,1978,1979), Bishop, Fienberg and Holland (1975), Fienberg (1977), 
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Gokhale and Kullback (1978), and Plackett (1981). Lancaster's theory of interaction and 
generalised correlation can be found in his book (1969), although the formulation given 
here (for finitely-valued random variables) is slightly different from his, being chosen to 
facilitate comparisons with other models. Further literature references are given in the 
body of the paper. 

Inference matters are not discussed apart from a few comments on least-squares, 
sufficient reductions and maximum likelihood estimation. There is also no discussion of 
experimental design questions. A number of the results in this paper are new but in general 
the emphasis is on unifying existing results and on proving them by elementary methods. 

2. Models and marginals. In this section we introduce the models which will be the 
main topic of the paper. The s factors or responses will be labeled by elements of S = 
{1,2, . . . ,s), subsets of which will be denoted by a, b, c, d. As in the introduction a E Sis 
supposed to have r, values (levels or response categories), and we write 9 f o r  the set of 
cells i; precisely 9={i = (i,) :i r i, Ir,, a E S). More generally we write ia for the sub- 
tuple i, = (i,: a E a),a E S. 

2.1 The models. Let d be a collection of subsets of S. The linear subspace 52d of 
52 = @-@is defined by the property that the function f = ( f(i) :i E 9)belongs to if and 
only if 

for some functions {A, :a E d ) .  Having defined ad,  the model Md for f is simply the 
propetty that f belongs to ad.The collection d i s  called the generating class of the model. 
Given d l e t  d*denote the sub-collection of elements of dwhich are maximal with respect 
to inclusion. It is clear that Md* is the same model as Md because if b a, then A, (i,) + 
A*(&)  = y,(i,). Whilst it is economical in practice to work with d * ,  the theory does not 
require us to do so. 

EXAMPLE All our examples will have s 5 4 and for convenience, we will write i, j, 2.1. 
k and 1 instead of il, iz, i3 and id. Whenever no confusion is possible, we will use subscripts 
and omit the set describing the relevant indices. Thus we will write Aijk instead of X{l,2,3] (il, 
iz, i3). 

Suppose that s = 3 and d = {{I, 21, {2, 31, (3, 1)). Then consists of all arrays 
f = (fijk) representable in the form 

for Some arrays (aij), ( p j k )  and (Aki ). 0 

Of the following interpretations of Md, the first is applicable mainly to a factorial 
experiment with observations y = (y(i):i E 9)and expected values TJ = (q(i):i E9).The 
others are applicable to a contingency table with cell frequencies n = (n(i):i E 9)and 
probabilities p = (p( i ):i E 9)or expected frequencies y = (y(i):i E9). 

Additive model: 71 €fist. 

Multiplicative model: log p E Q.d, p positive. 


or log p E ad,p positive. 
Lancaster-additive model I: p/q E ad. 
Lancaster-additive model 11: P /Q E 

Here the function f = log p is defined by f ( i )  = log p ( i )  whilst f = p/q means f ( i )  = 
p (i l l9  (i)  where q (i)  = pl (il) . . . p, (is) is the product of the one-dimensional marginal 
probabilities from p. Finally f = P/Q means f(i)  = P(i)/Q(i) where P( i )  = CjSip(i) and 
similarly for Q, where j 5 i means j, r i,, a = 1, . . . ,s. Additive and multiplicative models 
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are commonly called linear and log-linear models, respectively. The general resulb below 
apply also to any generalised linear model; see Nelder and Wedderburn (1972), Baker and 
Nelder (1978). 

Why should we study additive, multiplicative and Lancaster-additive models? In the 
first place, the way in which they combine linearity and economy has an obvious appeal. 
Less obvious is that they can be characterised by attractive properties relating them to 
their &-marginal functions; these are given in the following section. Their best-known 
properties are the no-interaction ones by which they are usually characterised, and these 
are given in Section 4. 

Suppose that f is known or assumed to satisfy M.d so that f ( i )  is representable as the 
sum of parameters A,(I,). Leaving aside the trivial case when the generating class d 
contains only one element, it is always possible to choose more than one parametric 
representation off.  That is the parameters ha(i,) are not uniquely determined by f. The 
extent to which they are unique is discussed in Section 4. 

Generally speaking, the parameters ha (i,) have little more than a mathematical exist- 
ence but, on rare occasions, they also have a physical meahing. 

EXAMPLE2.2. Let i index the cities of a country, let j index age-categories of brides 
and let k index age-categories of bridegrooms. Let Pijk be the expected number of marriages, 
in a given year, in city i between brides of age j and bridegrooms of age k. Then 

Mi,, Nik being the numbers of eligible women of age j, men of age k in city i at  the 
beginning of the year, and where pijk is the rate of marriages in city i between women of 
age j and men of age k. It may be very reasonable to assume that pijk = pjk so that 

Thus we have an instance of the model of Example 2.1 in which the parameters (atj),(P jk ) ,  

( y i k )  can be given a physical interpretation. O 

2.2 Marginals. For an arbitrary element 5 = (.((i) : i E9)E W and a subset a S we 
write 5,(i,) = Ci,.((i), the sum being over all i, = 1,. . ., r,, o e a '  -S - a, and call (,, the 
(unweighted) a-marginal of 5. The sf-marginals of 5 are {Q: a E d ) .  Now let m(i) be a 
positive weight attached to cell i, where Ci m(i) = 1.It is necessary in much of what follows 
to work with weight functions different from the uniform weight function m(i) = (II,r,)-'. 
We define the (m-weighted) a-marginal mean ij, of q E W by 

and the d-marginal means of q are (11,:a E sf).  The (m-weighted) inner product 
(4 ,  q),of 5 , ~EStis defined by 

(2.3) (5, 7 )m = xim(i)t(i)v(i), 

and its associated norm (length) is 11 5 1 I m  = ((5, Om) 

Additive models. In terms of these notions we can now characterise the additive 
model Ma. We begin with a lemma. 

LEMMA2.1. Fix 5, qo E W and consider the set of all q with the same d-marginal 
means as  and the squared distance 11 q - 5112, of each such q from (. Suppose that, in 
this set, there exists q1 satisfving q1 - 6E Skd. Then q1 uniquely minimizes 11 q - t11k. 

PROOF.The condition that 70 have the same d-marginal means is q - lrnad,where 
orthogonality 1, is with respect to the inner product (2.3). Therefore I)- q1 1, !Jd since 
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77.- v o l m  adand 91 -901~Qa. But q1 - 5 Eadand so (q  -71,171- =0. Rearrangement 
Sves 

which establishes the truth of the Lemma. O 

Note that if e is the unit function e(i) = 1and 5 = ke, k constant, then 5 E Q d  and it 
seems appropriate to describe 5as uniform. The characterisation of the additive model can 
now be stated: any q E Qd is simplest in the sense that it is closest to being uniform 
amongst all arrays with the same d-marginal means. Closeness is measured by 11 . 11% and 
simplest means that k is uniform. There is thus a separate characterisation for each positive 
weight function m. 

The above discussion has not involved the question of existence, given qo, 5, of q1 
satisfying 

but this question is well-known to have an affimative answer. For ql - 5 is the projection 
of q0 - onto ),;..,(orthogonal with respect to equivalently, qo - q1 is the orthogonal 
projection of qo - 5 onto 52.5, the orthogonal complement of Qd. 

Multiplicative models. The analogous characterisation of the multiplicative model 
Md, which is due to Good (1963) and Ku and. Kullback (1968), closely resembles the 
previous one. Let the (unweighted) d-marginal5 of the probability p be fixed at those of po 
and measure the difference between p and a positive probability a by the Kullback 
discriminatory information 

(2.5) K(p, a )  = xip( i )  log p( i ) /d i )  = (P, log PIT) 
where ( 5 ;  q )  = & ((i)q(i)is the unweighted inner product. 

LEMMA2.2. Suppose that, among a l lp  with the same d-marginals as  po, there exists 
pl satisfiing log pl ln  E ad. Thenpl uniquely minimises K(p, a). 

PROOF.Sincep -poI Qd,pl -PO1 52d and log p ~ l aE Qa, we deduce that (P -PI, 
log p,/n) = 0.Rearranging this gives (p, log pla ) - (PI ,  log p ~ l a) = (P, 1% P/PI), i.e. 
K(p, a) -K(p1, a )  = K(p, pl), from which the lemma follows. !J 

Taking a to be the uniform probability function gives the following characterisation: 
any p satisfying the multiplicative model log p E Qa is simplest in the sense that it 
maximises -Cip(i) logp(i) among all probabilities having the same d-marginals. Assuming 
that U (a :a E d )  =S,we may take a = go, the product of the one-dimensional marginals 
of po and obtain the conclusion that any p satisfying the multiplicative model Md is closest 
to being independent amongst all probabilities with the same d-marginals, closeness being 
measured by K. 

The existence of pl satisfying 

(2.6) PI -PO1ad,  log pl/n E i2.d 

is assured provided that the d-marginals ofpo admit a positive probability, see Haberman 
(1974), Barndo*-Nielsen (1978). Darroch and Ratcliff (1972) proved that, with this proviso 
and for any subspace w of Q, it is possible to construct pl givenp,, nand w by generalised 
iterative scaling. When w = &then iterative proportional scaling can be used. 

Lancaster-additive Model I. The results concerning additive models can be adapted 
to provide a characterisation of the Lancaster-additive model I and because it is very 
similar to the two preceding ones, we only give a brief outline. 

Suppose that the unweighted d-marginals of p are held fixed at those of PO, and that 
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),,.,.(orthogonal with respect to 
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U {a: a E d }  = S.Then all of the univariate marginals p, are also held fixed and so too is 
q = IIp,, equal to qo say. If we put m = go and q =p/q =p/qo in (2.2) we find that holding 
pafixed is equivalent to holding ii, fixed. With 5 = e the difference 11 17 - 5 1): simplifies to 

the Pearson Chi squared measure of difference between p and go. Lemma 2.1 may be 
translated to apply in this context and using that we obtain the following characterisation: 
any p satisfying the Lancaster-additive model I with adis simplest in the sense of being 
closest to independent among all probabilities having the same d-marginals, closeness 
being measured by +2. 

The equations that pl satisfies are 

where I here denotes orthogonality with respect to the unweighted inner product. The 
existence of p1 given PO, that is, of a probability function having prescribed d-marginals 
and satisfying the Lancaster additive model I is not now guaranteed; see Darroch (1974) 
for a counter-example when d = {{I, 21, (2, 31, (3, I)) ,  and for further comparisons 
between these models and the analogous multiplicative models. 

2.3 Fitting the models. Let us suppose that data y = ( y (i) :i E 4 )  from a factorial 
experiment has a normal distribution with mean q E ad and covariance matrix 
a2diag(m)-', the diagonal matrix with value m (i) -'in the ith position. Then a sufficient 
reduction of y is to the pair (q1, 11 q1 - q01)k) where ql, the projection of y = q0 onto ad 

satisfies (2.4) with 5 = 0.We have already seen that 
171 is completely determined by its &-marginal means, and these coincide with those of y. 
If we further suppose that m is completely multiplicative in that it can be written 

where for each a E S, m,(i,) r 0, Ci,m,(i,) = 1and k is a constant, then we can express 
q1 in terms of the d-marginal means of y via formula (3.6) below. Thus (when m is 
completely multiplicative) the set of &-marginal means is not only a sufficient reduction 
of y under the additive model Md, but also there is a closed-form solution of the least- 
squares (= maximum likelihood) estimation problem. 

We turn now to the contingency table n = (n(i): i  E 4 ) ,  supposing that n has a 
multinomial distribution with probability parameter p satisfying the multiplicative model 
Md and total sample size N = C,n(i) .  The (unweighted) d-marginal totals {na:a E &) 
constitute a sufficient reduction of n and, provided these marginals admit a positive table, 
the log-likelihood (n,  log p )  is maximised, or K((l/N)n, p) is minimised, subject to 
log p/a E ad(normally a is uniform) when p = p1satisfies (2.6) with po= (l/N)n. That 
these equations give the unique maximum likelihood solution is immediately verified on 
noting that (logpl - logp, ( l /N)n -pl ) = 0 and on rearranging the term on the left-hand 
side of this equation to give K(( l /N)n,p)-  K(( l /N)n,pl)  = K(pl ,p ) .  As was noted in 2.2 
above, the equations (2.6) can be solved by the well-known iterative proportional scaling 
procedure. 

To our knowledge there is no exact maximum-likelihood theory for the fitting of 
Lancaster-additive multinornial models to contingency tables, although a number of 
authors have discussed asymptotic theory for likelihood-ratio tests under the independence 
alternative, see Lancaster (1969) for details. 

3. Generalised interactions. Denote by Md the model for f = (f (i) :i E 4 )  defined 
by 

M,: f E a,. 
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The function f will be variously interpreted as q, logp, p /q  or P/Q. In 3.2 below Md will be 
formulated as imposing zero generalised &-interaction, where generalised interactions are 
defined very simply by repeatedly averaging over the values f ( i )off: 

3.1 Averaging operators. Let w, be a weight function defined on (1, 2, . . . , r,), i.e. 
Ci,w,(iO)= 1. The numbers w,(i,) will be thought of as non-negative although there is no 
strict need for them to be so. Write S - {a) = S - a. Then the averaging operator Ts-, 
operating on f is defined by 

(Ts- , f ) ( i )= CiVw,(i,)f(i). 

Thus Ts-, takes weighted averages over the 0th coordinate and leaves a function which 
depends on i through is-, only. For a C S let Tabe the operator which takes averages over 
all coordinates with indices in a' = S - a. In other words, 

For example, if S = {1,2,3),then T{l l  = When a = S we define TS= Ts-2 T s - ~  T{1,3) T{1,2).  
= I, the identity operator. An alternative definition of Ta is possible via (2.2): Taq = ii, 
where this average is weighted with respect to the completely multiplicative weight 
function w ( i )= noes  w,(i,). It  is immediate that Tais a linear operator on 8,that T i  = Ta 
and, more generally that 

where for a, b C S we write a n b = ab. 
Two particular weight functions w are of special interest. One is the uniform weight 

function defined by 

The other is the substitution weight function defined by 

The resulting substitution operator T ,  has the defining property ( T a n  ( i )  = f (iara,)where . . 
j = cara,denotes the cell with j, = i, if a E a and j, = r,, if a E a'. Thus T ,  substitutes r, for 
i,, a E a'. Of course any other fixed reference cell could be used instead of r. It will be 
convenient to denote f(i,r,,) by f',(ia). 

EXAMPLE3.1. Let s = 4 and a = (1, 2).  When w is the uniform weight function the 
transformation f + T a freplaces f i , k ~by fi,.. where, as usual, - denotes uniform average. 
When w is the substitution weight function f i ,k l  is replaced under T ,  by f,,,,. U 

Much of the theory in this paper is obtained using only the simple algebraic equipment 
of averaging operators. The same ground may be covered using sums and products of 
linear subspaces and their orthogonal projections. Little will be said about this approach 
here because it is part of this paper's aim to demonstrate the feasibility of the more 
elementary approach. It will suffice to show that Ta is an orthogonal projection operator. 

We have already noted that T :  = Taand so Tais a projection operator. Since Taf = f 
iff f ( i )  = X(ia) it follows that Ta projects onto the subspace 8, of 8 defined by this 
property. Further, Tais self-adjoint with respect to ( - , . ), since 
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Finally, Tais orthogonal with respect to ( . , . ) because ( ( I  - Ta)f ,Taf ), = ( Ta( I  - Ta)f ,  
f ) w  = (0, f ) ,  = 0. 

3.2 Zero generalised interaction. Given a generating class d of subsets of S, define 
the generalised d-interaction operator I - Td by 

By (3.1) the terms on the right-hand side of (3.2) can be multiplied together in any 
order and so, on expanding it, we find 

where the sums are over all a E d ,  distinct pairs a,  b E d ,  etc. Another useful expression 
for Td results from ordering the elements of das al,  az, .. ,a,, namely 

PROPOSITION3.1. The function f satisfies Md i f  and only if 

PROOF. I f f  satisfiesM,d then for some functions {A,: a E d )  we can write f =CaBdL. 
Now ( I  - Ta)Aa= 0 for each a E xf, and so it follows that IIaBd(I- T a )C a E d A a  = 0; that 
is, Tdf = f. 

Conversely, if T d f  = f then, by (3.4), 

which is of the form CaB,Ja .O 
Since the {T,) are orthogonal projections onto the subspaces ($la), it follows that TH 

is the orthogonal projection onto ad= ZaedSZa,although we do not use this fact in what 
follows. 

The proposition formulates Md as imposing zero generalised d-interaction, in that 
( I  - Tdlf = 0. 

As foreshadowed in Section 2.3 above, when the weight function is completely multi-
plicative we have an explicit formula for an element satisfying the additive model Md in 
terms of its d-marginal means, namely 

This result is an immediate consequence of (3.3)as soon as we recall that Taq= ii,. Using 
the substitution weight function we obtain the following special case of (3.6). 

q ( i )- C a  q:(ia) -18 q:b(iab) + ... T qL(intn).
a+ 

From (I- T d )log p = 0 when Tdis based upon the substitution weight function, the 
multiplicative model is seen to be expressible as 

The left-hand side of (3.7)is a generalised cross product ratio. 

EXAMPLE3.2. As in Example 2.1 let d= ( (1 ,21, (2,31, (3, 1 ) ) .Then (3.3)becomes 

Td = T(I ,z)+ T{2,3)+ T(3,1)- T ( I )- T(2)- T(3)+ T+. 
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Using the uniform weight function, (3.6) expresses Md as the familiar 

while (3.7) becomes the equally familiar cross-product ratio formulation of no three- 
dimensional interaction, namely 

Alternative formulations of the Lancaster-linear models Md:p/q E and P/Q E Qd, 
will now be given. First choose wa =pa .  Then 

Applying (3.3) the Lancaster-additive Model I is seen to be expressible was 

Turning now to the Lancaster-additive model 11, let Ta be based on the substitution 
weight function. Then 

Consequently the model here is 

It is now easy to see that the two Lancaster-additive models are equivalent. After 
multiplication of (3.8) by q(i) and (3.9) by Q(i), each term in (3.9) is seen to be the 
distribution function of the corresponding term in (3.8). 

3.3 Marginals and generalised interactions. A by-product of the model characteris- 
ations of 2.2 above is that, given f E ad, where f is q, log p, p lq  or PlQ, f is uniquely 
determined by its d-marginals, suitably interpreted as weighted means or unweighted 
sums. This is a special case of the result which we now prove that given its d-marginals 
and its generalised d-interaction, f is uniquely determined. 

There is almost nothing in the proof for q, p/q, PIQ. Thus, defining Td with respect to 
any completely multiplicative weight function w, we can write q = Tdq + (I- Td) q as the 
sum of the expansion (3.6), involving its d-marginals, and its generalised d-interaction. 
Similarly for plq, except that we now define Td with respect to w = q and use (3.8), and 
for P/Q where the substitution operators are used. 

There is no explicit demonstration of this uniqueness result for log p and it has to be 
proved using Lemma 2.2. Let us suppose that p is a positive probability and that 
(I- Td)logp = u. Define n = k exp u where k is the normalising constant making 2,n(i) 
= 1.Then T.dlogp/n = Td(logp - log k - u) = !&log p - log k = logp - log k - u by the 
definition of u and the fact that Tdu = 0.But this means that logp/n E adand by Lemma 
2.2 there is only one p with this property having given d-marginal sums, provided only 
that these marginals admit a positive probability. 

A postscript on this result is the following: it does not matter which (completely 
multiplicative) weight function w is used to define the generalised d-interaction function 
(I- Td)f because (I- Td)f defined with respect to one weight function is recoverable 
from (I- Td)f defined with respect to another. For, if {T,} and {pa} are defined with 
respect to w and 6, we see from F.T, = Ta, a E d ,  and (3.3) that p d ~ d= Td, i.e. that 
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Incidentally, this identity shows directly why T d f  = f i f f  Fdf  = f ,  a fact implicit in 
Proposition 3.1. 

4. Interactions. 
4.1 Interaction operators. In the previous section we saw that, given a weight function 

w and averaging operators T,, the operators Td and I - Td arise naturally from consid-
eration o f  the model Md. In the particular case d= { S  - a: a E S )  the operator I - Td 
= n O E s ( I- T s - ~ )will be denoted by  Us and called the S-interaction operator. Thus 

The  definitionis now extended to cover any subset b o f  S.  Define U, = T ,  and, otherwise 

T h e  operator Ubwill be called the b-interaction operator. Alternative ways of writing it 
are easily seen to be 

(4.1) ub= nbEb(1- T~-,,).T ~ ,  

EXAMPLE4.1. Again let s = 3. The  intertiction operator U(1,2,3)is identical to the 
operator I - T d ,with d={ { l , 2 ) ,{2,3),(3, I ) ) ,discussed in Example 3.2. T h e  interaction 
operator U(l,2)is expressible in various ways as 

Thus, for the uniform weight function, 

Interactions are usually introduced recursively and their recursive structure is clearly 
seen in the interaction operators. For example, when s = 3, 

T h e  second term on the right side is U(l , z )and gives (1, 2 )  interactions averaged over k .  
The  first term gives {1 ,2)  interactions within each level k.  Thus {1 ,2 ,3)  interactions are 
clearly seen to be differences of  {1 ,2)  interactions. 

Some basic results about interaction operators are collected together in the following 
lemma. 

LEMMA4.1 ( i )  T ,  Ub = 0 if b lt a. 

(ii) zi, wo(io)Ubf( i )= 0 if a E b. 

(iii) T,Ub = Ub if b L  a. 

(iv) zbca Ub = Ta.  

(v)  ug = u b .  

(vi)  U, Ub = 0 if a # b. 

(vii) Let bl, .. ,b,,, be distinct sets. Then 

z jkj  Ub,f = 0 implies that kj Ub, f = 0 for all j. 

(viii) Ubis self-adjoint with respect to the innerproduct ( ., a), . 
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PROOF(i)	Choose T E b - a. Since T ,  = II,,,,Ts-,, it follows that Ts-,(I - Ts-,) is a 
factor o f  T ,  Ub. 

(ii) By (i)  Ts-, Ub = 0, a E b. 
(iii)Apply (4.1) and (3.1). 
( iv)  First consider a = S. By (4.2) CbCs Ub = CbCs [II,,E~(I - T s - ~ )lIosb,T~-ol 

= II,,s[(I - T S - ~ )+ Ts-,I = l IOEsI= I. Having established that Ebcs Ub 
= I ,  we now multiply by T ,  to get C b E s  T ,  Ub = T,. Application of  ( i)  and 
(iii)now gives (iv). 

(v)  Ub is a product o f  idempotent operators which commute and hence is itself 
idempotent. 

(vi) Choose T E ( b- a )  U ( a  - b )  and reason as in the proof o f  (i). 
(vii)Multiply C kj Ub,f = 0 by Ub and apply ( v )  and (vi). 
(viii) By (4.3) Ub is a linear combination of  operators which are self-adjoint. 0 

W e  note that Ub is an orthogonal projection operator because it is idempotent and self- 
adjoint. Further Ub f(i)  = g(ib) say and for each a E b, X i ,  wb(i,)g(ib)= 0. Moreover, i f f  
is a function satisfying (a)  f ( i )  = h ( i b )  and (b)& w,(i,) f ( i )  = 0 for a E b, then, by (4.11, 
Ubf = f i  Thus Ub is the orthogonal projection operator onto the subspace Ob of  all functions 
satisfying (a) and (b ) ,  although we will not use this interpretation in the sequel. 

4.2 Hierarchical no-interaction models. Let the closure 2 of  a generating class & be 
defined by 

J = { b : b G a  forsome a € & } .  

T h e  complement o f  2 is 

2 ' =  { b :  b g a  forall a € & } .  

Note that the class d' is hierarchical. That is, i f  bl E 2' and bz 2 bl, then bz E 2 '  

PROOF. I t  is easier to prove that 

(4.4) 	 I - Td= Cbs?Ub 

from which the proposition follows. But this is a direct consequence of  our definitions and 
Lemma 4.1. For 

I - Td = &,&(I - T,) by the definition (3.2) 

= llaE.d(Cbg, Ub) by  (iv) o f  Lemma 4.1 

= Z b s ?  Ub by  ( v )  and (vi)  o f  Lemma 4.1, 

and the definition of  2'. 0 

Thus the model Md for f may now be expressed as 

(4.5) 	 f ( i )= C b s . z  U b f ( i )  

Formula (4.5) follows immediately from Proposition 4.1 and formula (4.6) by application 
of  (iv) with a = S and (vii) o f  Lemma 4.1. By virtue of  (4.6), Md may be called a 
hierarchical no-interaction model. Proposition 4.1 thus provides the link with the more 
common approach to  models and interactions which starts with interactions and then 
defines models by requiring that a hierarchical set o f  interactions are zero. 
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Models with equal sized generating sets are frequently used in searches for parsimonious 
fits to data and, for such models, there is a simple formula relating T,dto { T b :b E 2). 

EXAMPLE4.2. Let s = 5 and consider d = {12, 13, 14, 15,23,24,25,34,35,45) where 
12 denotes {1 ,2)  etc. We shall prove that 

T d =  [ T I Z  + + T45]- 3[Tl + + Ts] + 6T+. 0 

The general result is given in Proposition 4.2 below. It really belongs in Section 3 but 
its proof uses results of this section. 

PROPOSITION4.2. For 0 5 t < s let 

d=d;={ a C S : I a l  = t ) .  

Then 

PROOF. 

Td = z b : l b l s t  Ub = z b : I  b l s t  noEb(I - Ts-,) noEb,Tsa 

= z t 3 0  coefficient of zUin IJ,,s[z(I- Ts-,) + Ts-,I 

= coefficient of z t  in (1- 2)-' II,,s[zI + (1- z)Ts-,I 

= coefficient of z t  in (1- 2)-' zu ( l- z)"-" z b : l b l = u  Tb 

= coefficient of z t  inzt=oz U ( l- z)'-"-' zb:lbl=uTb 

4.3 Dimensions of models. Let us denote the rank of a linear operator T by r ( T ) ,and 
the dimension of a subspace w of D by dim w. The following are immediate consequences 
of the relevant definitions. 

dim Da = r (Ta)= l IaEaro.  

dim Ob = r(Ub)= lloEb(ro- 1). 

Our next result is an immediate consequence of Propositions 3.1,4.1, and the linearity of 
trace, as soon as we recall that r ( P )= trace ( P )for a projection operator P. 

PROPOSITION4.3. (i) For a generating class d 

dim = z a  IIosaro-14 II,,,ar, + . . . T n,Endr, = z b s 2  noEb(rU - 1).
a+ 

(ii) For any t satisfying 0 It < I S I = s 

dim ad;= (- 1)t-U ('i! l )  zb:lbl=unaebro~ 

4.4 Discussion. As an illustration of the use of the interaction operators with the 
additive model Md ,  consider the following simple method of deriving the least-squares 
estimates of the interactions Ubq(i)of q when we have data y = ( y ( i ,  j ) :  j = 1, . . . , n ( i ) ,  i 
E 9)with n ( i )observations made on cell i, and the cell frequencies n ( i )are proportional, 
that is, completely multiplicative 
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where N = Ci n(i). Condition (4.7) is of course most likely to be realised in practice when 
n(i)  is constant. If we denote the mean of y(i, j )  over j by y(i) then the sum of squared 
deviations of the observations from their expectations is Ci,, (y(i,j)- = C,,, (y(i, j)~ ( i ) ) ~  
-~ ( i ) ) ~  17(i))2,+ Ci n(i)(y(i)- SO that the least value has to be found of 

(4.8) xi n(i)(y(i)- ~ ( i ) ) '= C b L s  CLbnb(ib)(Uby(i)- U b ~ ( i ) ) ~ .  

Identity (4.8) follows from the calculation 

(z, z)w = (z, C b  Ubz)w = x b  (z, u E z ) ~  = C b  ( Ubz, Ubz)w, 

using Lemma 4.1 (iv), (v) and (viii), with z =y - 17 and w(i) = n(i)/N. Identity (4.8) shows 
that, for any no-interaction model (hierarchical or not), the least squares estimate of Ubv 
is Uby (when the cell frequencies are proportional) for every model in which this interaction 
is not assumed zero. 

Consider now the mult&licative model Md, i.e. log p E C2.d. Two particular weight 
functions have been widely used in the literature. Since Birch's (1963) paper, most authors 
have used the uniform weight function. In this case 

where p:(i,) is the geometric mean of all p(j)for which j, = i,, and we do not find these 
interactions easy to interpret. The system of interactions based upon the substitution 
weight function does seem easier to interpret with multiplicative models and has been 
used to effect by Plackett (1974). It was introduced by Mantel (1966), and is used more 
generally in GLIM, see Baker and Nelder (1978). Here 

which is the logarithm of a cross product ratio. Thus if d = 3 and b = (1, 21, the cross 
product ratio is 

Referring back to Section 2.3 above, we now turn to what may be called the estimated 
model interactions Ublogh, b €3,wherefi is the maximum likelihood estimate ofp under 
Md. No matter which w is chosen, Ublog $ does not share the attractive properties of 
Ubij when the cell frequencies are proportional, properties which stem from the equation 
Ubij= Uby. Thus Ublogfi does not depend only on the b-marginal table nb of n = (n(i): i 
E 9)but, in general, on all d-marginals. (An important exception occurs when the 
generating class is decomposable; see Haberman (1974), Darroch, Lauritzen and Speed 
(1980) and Lauritzen, Speed and Vijayan (1978).) Also it changes each time a different 
model (that is, a different d)is fitted. This is one of the most important differences 
between the additive and multiplicative models. Of course when b is one of the maximal 
elements of 4 that is b Ed *, then Ublogfi can be put to use since its magnitude, relative 
to its standard deviation, indicates whether or not the model obtained from Md by putting 
Ublog p = 0 is likely to be acceptable; see Baker and Nelder (1978). 

Finally we consider the implications of Proposition 4.1 for Lancaster-additive models. 
Using the weight function q (see Section 3.2) the b-interaction for model I is 

and using the substitution weight function the b-interaction for model I1 is 

It is easy to see (cf. Section 3.2) that the two definitions of no b-interaction obtained from 
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(4.9)and (4.10)are equivalent to each other and to Lancaster's (1969,page 256) definition, 
namely 

(4.11) HoEb(p,*(ia)- ps(ia))= 0, 

where the P,* are artificial functions multiplied according to the rule 

HoEcPZ(iG)= PC&). 

Zentgraf (1975)proved that, if (4.11)holds for all b with I b I > t ,  then 

(4.12) P ( i )  = (-1) t-" ( S  ;' )z b : q = .  Pa(ib)Qa(ia). 

This result, when combined with its converse, amounts to a special case of Proposition 4.2 

above. 


4.5 A uniqueness property of interactions. The mainqurpose of this paper has been 
to show that many general properties linking models and interactions can be easily stated 
and proved using interaction operators. We have seen that given any model Md and any 
multiplicative weight function w there corresponds a generalized interaction operator Td, 
that the interaction operators Ub provide a useful way of partitioning Tdand, finally, that 
M,dhas the "hierarchical no-interaction" property by which it is usually characterised. 

We conclude by returning to a question raised in Section 2.1, namely: given that f 
satisfies M,d, to what extent are the parameters h a ( & )uniquely determined by f? The 
answer, as shown in the following proposition, is that interactions and only interactions of 
X a  are uniquely determined. 

PROPOSITION Assume4.4. 

(4.13) f ( i )= zae.dXa(ia) 

and let c Ed.The extent to which A, is determined by f is defined by the equations 

(4.14) UbXc(ic)= Ubf(i)  for all b E2-
where %? = d - { c )  and where the Ub are defined with respect to any multiplicative 
weight function. 

PROOF. Since 

f ( i )- X a ( i a )Mic)= E ~ E w  

therefore 

Ub( f(i)  - hc( ic))= 0 for all b E @' 

However Ubf(i)= UbXc(i,)= 0 for all b E2'.Thus, given (4.13),A ,  certainly satisfies 
(4.14). 

We now prove that equations (4.14) define all that is uniquely determined about X ,  
from a knowledge off This is done by showing that the information about A, contained in 
(4.14) is sufficient for us to construct a A,, AT say, such that 

Simply define 

AT = zbE.d-~ Ubf 

Then 

f ( i )- = z b e ~ ;Ubf(i)  
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and, by  Proposition 4.1, the right side can b e  written in  t h e  form 

A . 0 

EXAMPLE2.2 (continued). W e  have s = 3 a n d  d = ((1, 21, (2, 31, (3, 1)) .  
Let  c = (2, 3) so t h a t  2- @ = ((2, 3)) .  Using the substitution weight function for 
convenience, we find that t h e  tota l  information abou t  the marriage ra tes  p jk  t h a t  can be  
determined from a knowledge of t h e  expected numbers  of marriages p ~ kis contained in  t h e  
equations 

Likewise, all t h a t  can  b e  determined about  t h e  numbers  Mij of eligible women is contained 
in  t h e  equations 
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