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1 Introduction
Ideas of distance in geometry have mostly been developments of the Euclidean

axiom that the shortest path between two points is a straight line. The distance between
these points is then defined as the length of this line. Following the developments which
enable us to define what is meant by a straight line in spaces more complex than Euclid’s
plane, we find that we pass through most of the history of geometry itself. This journey
takes us via Pythagoras’ theorem, Newton’s calculus, Gauss’s differential geometry and
Euler’s calculus of variations to Einstein’s use of geometry in physics. Throughout this
long history runs the central theme that we measure the separation of two points by
finding the shortest path between them. In particular, this use of minimum path lengths
provided the intuitive basis for the now familiar metric axioms:

(M1) Nonnegativity. The only paths of zero length are the trivial ones from a point
to itself, whence d a,b 0 with equality if and only if a b;

(M2) Symmetry. The reverse of every path from a to b is a path from b to a of the
same length, whence d a,b d b,a ;

and:
(M3) The triangle inequality. Every path from a to b of length l a,b followed by a

path from b to c of length l b,c produces a path from a to c of length l a,b l b,c ,
whence d a,b d b,c d a,c .

Metrics in the above sense are related to, but distinct from, metrics – more fully,
metric tensors – on manifolds. Such tensors define geodesic distances. They lie at the
heart of Riemannian geometry and formed the basis for the first work on differential
geometry in statistics (Rao, 1945). This field has undergone rapid expansion in recent
years and forms the natural backdrop to the present paper.

A little geometric background is given in Section 2, which may be referred back to at
any point as required. Here, as throughout the paper, technical details are kept to a
minimum so as to improve accessibility and focus on the key ideas involved. In
particular, technical results from our earlier papers, which we draw on as appropriate, are
cited without proof and woven into an overall discussion.

The plan (and arrangement) of the rest of the paper are as follows. A succinct account
of main ideas and key references in differential geometry in statistics is offered (Section
3) and some points of tension between these disciplines noted (Section 4). The preferred
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point nature of much of statistics is described and suggests the adoption of a
corresponding geometry which reduces these tensions (Section 5). Applications of
preferred point geometry in statistics are then reviewed (Sections 6 and 7). These
geometries bring attractive benefits. For example, the nonmetric connections, so
important for statistical calculations, are given a conceptually simple metric connection
interpretation. This interpretation also provides more insight into the statistical relevance
of the key duality results associated with statistical manifolds. Further, the properties of
statistically natural divergence functions, which at first sight appear unappealing
geometrically (asymmetry and lack of a triangle inequality), turn out to be entirely
natural geometrically in a preferred point geometric context. Equivalences between a
number of new expected preferred point geometries are also established and a new
characterisation of total flatness shown. Section 8 briefly indicates future research in the
direction of establishing a preferred point geometry of influence analysis.

2 A little geometrical background
Manifold. Under standard regularity conditions (Amari (1990, p.16)), a finite

dimensional parametric statistical model p x, : has the form of a manifold, M
say.

Metric tensor and curve (path) length. Adding a metric (tensor) to M enables us to
define lengths and angles in the tangent space to M at each point and hence, by
integration, the length of any curve (path) in the manifold and, directly, the angle
between any two intersecting curves. Moreover, all this is done in a way that is
automatically invariant to changes of coordinate system (reparameterisations) .

Matrix representation of a metric. A metric (tensor) is specified by the inner
product which it places on each tangent space. That is, by associating to each point of
M a positive definite symmetric matrix which transforms appropriately (as a
covariant 2-tensor) under .

Connection and geodesic (straight path). Adding a connection to M enables us to
define geodesics (straight paths) in a way that is similarly invariant. There is a natural
Riemannian or metric connection induced by a metric tensor, whose geodesics are paths
of minimum length. There is no notion of minimum path length associated with the
geodesics of any other, nonmetric, connection.

Flat manifold and affine coordinate system. A manifold M with a connection is
called flat if there is a coordinate system (parameterisation) on M in which its
geodesics are line segments. That is, in which the geodesic joining two points 1 and

2 is just the set of all their convex combinations 1 1 2 , 0 1 . Such
a coordinate system is called affine and is unique up to nonsingular affine transformation.

Example. For example, the usual 3-D Euclidean geometry is flat with Cartesian
coordinates as affine, whereas cylindrical or spherical coordinates are not affine. Again,
the surface of a Euclidean sphere is curved (not flat).

Riemannian geometry. Riemannian geometries M, are natural generalisations of
Euclidean geometry to curved spaces in which the metric tensor determines the whole
geometry when, as we assume, the induced metric connection is used.

Flat metric. It can be shown that an affine coordinate system on a flat Riemannian
manifold is one in which the metric is constant at all points of M. A metric which admits
such a coordinate system is called a flat metric.

Example. For example, the usual Euclidean metric is flat since, in Cartesian
coordinates, it is represented by the same matrix (the identity) at each point of En.

3 An overview of differential geometry in statistics

3.1 A core question
A core question in the geometrisation of statistics is:
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Given a manifold M identified with a parametric statistical model p x, : ,
and given a particular statistical purpose,
precisely what extra structure is it appropriate to add to M?
It will be helpful to keep this core question in mind throughout the paper.

3.2 Rao’s Riemannian geometry based on Fisher information
The origins of recent research at the interface between differential geometry and

statistics can be traced back some 55 years. As Amari (1990, p.3) writes,
“It was Rao (1945), in his early twenties, who first noticed the importance of the

differential-geometric approach. He introduced the Riemannian metric in a statistical
manifold by using the Fisher information matrix and calculated the geodesics between
two distributions for various statistical models.”

That is, Rao proposed adding the metric defined by I , the Fisher
information matrix, to produce a Riemannian geometry M, in which to answer the
natural question:

“How far apart are two distributions?”
His answers, Rao distances, are the geodesic distances induced by this natural choice

of metric. They are appropriate to any two distributions in M.

3.3 Kullback and Leibler’s divergence geometry
This natural question was also addressed, at about the same time, by Bhattacharrya

(1943, 1946), Jeffreys (1948) and Kullback and Leibler (1951) from a variety of
directions. In particular, Kullback and Leibler (1951) placed their divergence on M
resulting in the divergence geometry M,dKL .

3.4 Statistical manifolds
Independent work by Chentsov (1972) (translated into English from the Russian in

1982) and Efron (1975, 1978) extended Riemannian geometries for statistics by
introducing a whole family of connections, rather than just the Riemannian or metric
connection used earlier. Efron also introduced the central idea of statistical curvature.

Since then there has been an explosion of research activity. In particular, these
advances inspired the development of new geometries for statistics, including the
minimum contrast geometry of Eguchi (1983), the expected geometry of Amari (1990,
(first edition 1985)), and the observed geometry of Barndorff-Nielsen (1987a, 1988).

These three geometries are all instances of a single elegant structure. A statistical
manifold is a triple M, ,T in which the extra ingredient, the skewness tensor T,
transforms appropriately (as a covariant 3-tensor) under reparameterisation. Early
mathematical accounts of this unifying structure were provided by Amari (1990, (first
edition 1985)) and Lauritzen (1987).

There is a one parameter family of connections, called the -connections R ,
associated with a statistical manifold. The 0-connection is the metric connection. There
is an important formal duality between the and connections: for every R, a
statistical manifold is -flat (i.e. flat with respect to the -connection) if and only if it is

-flat.

3.5 Important advances and key references
Overall, the study of differential geometry in statistics has led to important advances

in a variety of fields, including the development of new geometries for statistics, higher
order asymptotic theory, invariant asymptotic expansions and inference in nonlinear
regression and curved exponential families.

Some further key references are Amari (1982a, 1982b), Amari, Barndorff-Nielsen,
Kass, Lauritzen and Rao (1987), Amari and Kumon (1983, 1988), Atkinson and Mitchell
(1981), Barndorff-Nielsen (1983, 1986, 1987b), Barndorff-Nielsen and Cox (1989,
1994), Barndorff-Nielsen, Cox and Reid (1986), Bates and Watts (1980, 1981), Burbea
and Rao (1982a, 1982b), Dawid (1975, 1977), Eguchi (1984, 1991), Kass (1984, 1989,
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1990), Kass and Vos (1997), Murray and Rice (1993), Oller and Corcuera (1995), Oller
and Cuadras (1985), Pistone and Sempi (1995), Rao (1961, 1962, 1963, 1987), Rao,
Sinha and Subramanyam (1982) and Vos (1989, 1991a, 1992).

3.6 A natural and fruitful marriage?
The overall goal of this activity could be said to be the establishing of a natural and

fruitful marriage between differential geometry and statistical modelling which
appropriately applies and extends the former so as to deepen our understanding and
capabilities in the latter.

Some of the attractions are obvious. The two disciplines are compatible in a
fundamental sense: in many situations, it is required that statistical inferences do not
depend on the way that the statistical model has been parameterised, while one definition
of geometry is the study of those things which are invariant under a change of
coordinates. The geometric approach is well-suited for use in such inferential situations:
coordinates are merely labels for points in the same way that parameters are merely
labels for distributions. Again, many statistical procedures have very natural geometric
interpretations. Three important examples are regression, dimension reduction of a
statistic and minimisation of a statistical objective function under a smooth constraint.
Further, with such procedures, the intuition which a picture gives can be an invaluable
explanatory tool.

At the same time, there are points of tension in this developing relationship, as we
review in the following section. Preferred point geometry (Marriott (1989), Critchley,
Marriott and Salmon (1992, 1993, 1994, 1999)) is being developed as an attempt to ease
these points of tension.

3.7 Yoke geometry
A variety of other approaches have also been developed since the mid-1980’s.

Prominent among these is that based on the concept of a yoke, first introduced in
Barndorff-Nielsen (1987b). Yoke geometry shares several attractive features with
preferred point geometry. In particular, the observed and expected yokes are natural
statistically, while their associated geometries also extend statistical manifolds beyond
third order.

3.8 Preferred point geometry
Our geometrical approach is distinguished by its emphasis on metric connections and

by its preferred point nature. This latter is appropriate since, as we discuss in Section 5,
much of statistics itself is preferred point in nature.

One profitable future research direction appears to be the development of points of
contact between preferred point geometry and yoke geometry.

4 Points of tension
Not all geometrisations of statistics produce affirmative answers to the following key

questions:
(T1) Geometrically simple? Notwithstanding their elegant formal properties, the

mixing of metric and nonmetric connections can prove to be a large conceptual leap for
statistical practitioners. For many people connections corresponding to minimum
distance geodesics have an immediate, physically based, intuitive appeal (cf. Section 3.6)
and so it can be helpful if the dual connections of Amari and others can be reformulated
in such a framework.

(T2) Statistically natural? Barndorff-Nielsen, Cox and Reid (1986) end their review
paper on the rôle of differential geometry in statistical theory with the following remark:

“While the introduction of more specifically geometrical notions has considerable
potential, it remains a challenging task to introduce such ideas in a way that is
statistically wholly natural”;
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(T3) Statistically interpretable? The interesting formal duality structure of
statistical manifolds and, in particular, of Amari’s expected geometry is not
well-understood statistically. By linearity, it will suffice to understand 1 duality;

and:
(T4) Are divergences and geodesic distances at least locally compatible? The

metric properties of Rao’s geodesic distance contrast sharply with those of
Kullback-Leibler divergence dKL , defined by

dKL , : E ln p x, ln p x, . (1)

This measure, and many other proposed divergence or discrimination measures, appear
quite different from the more geometric ideas of distance based on minimum path length.
In particular, they do not obey either symmetry (M2) or the triangle inequality (M3). At
the same time, they arise naturally in statistics. Can this apparent incompatibility be
understood and resolved, at least locally, in a natural way? (After the necessary
preliminaries, a formal definition of the local compatibility of a divergence and a
preferred point metric is given in Section 7.2 below.)

Preferred point geometry seeks to provide affirmative answers to the above questions.
The following section discusses the preferred point nature of much of statistics itself.
Accordingly, adopting a corresponding preferred point geometrisation of statistics
provides an affirmative answer to (T2). The fact that a simple (indeed, Riemannian-like)
preferred point geometry of statistics is sufficient for many purposes – in particular, for
providing a metric-based understanding of how the nonmetric connections associated
with statistical manifolds arise – means that (T1) is also answered in the affirmative.
Overall, responding positively to (T1) and (T2) is embodied in the founding principles
(P1) and (P2) of the preferred point approach to the geometrisation of statistics,
announced at the end of Section 5. Finally, Section 6.1 tackles (T3), while (T4) is
addressed next and, again, in Section 7.

5 The preferred point nature of much of statistics
From a preferred point perspective, it is sometimes natural statistically that the

symmetry condition (M2) should fail and that the triangle inequality (M3) should be of
less than central importance.

Consider first (M2). Asymmetry is natural statistically when we think of the
‘preferred’ or ‘distinct’ status given to some particular distribution as representing the
true or hypothesised distribution. For example, the power of the Neyman-Pearson test of
(any) fixed size between two simple hypotheses changes when the rôles of null and
alternative are reversed. Otherwise said, how far apart H1 and H2 appear depends on
which of them is regarded as specifying the true distribution.

Consider now the triangle inequality (M3). In many cases the “a” in d a,b is a
preferred point fixed by external considerations and so we are effectively only concerned
with the function da of a single argument defined by da b : d a,b . Leading
instances of this arise as follows:

(PP1) We may take the preferred point a to represent the true or hypothesised
distribution, and b a candidate distribution allowed by the model. For example, in a
parametric likelihood context, we may assess the separation of a from a general
parameter value b in terms of the single argument Kullback-Leibler divergence
function da dKL defined by

dKL : dKL , . (2)

Or, in the same context and still taking a , we may instead take b to be the maximum
likelihood estimator and work with the deviance function da X2 defined
by
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X2 : 2 ln p x, ln p x, (3)

whose observed values are the familiar asymptotic 2 test statistics;
and:
(PP2) The preferred point a may represent the data and b any candidate from within a

class specified by the model. For example, in linear least-squares regression, the
separation (squared distance) between the observed vector of responses a y and any
point b X in the range space of the covariate matrix X is judged by the least squares
function da LSy defined by

LSy X : ||y X ||E
2 (4)

where || ||E denotes the usual Euclidean norm. Again, in parametric likelihood inference,
we may take a to be the maximum likelihood estimate and assess a general parameter

value b in terms of the log-likelihood ratio function da LLR defined by

LLR : ln p x, ln p x, . (5)

In all such cases, the triangle inequality (M3) is not of central importance, since it is
not then directly relevant to consider all comparisons among general triples of points.
Rather, in much of statistics, attention is naturally restricted to triples, written a; b1,b2 ,
which contain the preferred point a and in which interest centres on comparisons, in
terms of a suitable function da , between the preferred point a and each of b1 and b2.
Direct comparisons between b1 and b2 are not of central interest here. Rather, comparing
them indirectly via a – specifically, via the values of da b1 and da b2 – will frequently
be of interest.

The principal reason why the apparent incompatibility noted above arises is now
clear. In the geometric tradition, all points in a manifold are treated equally. No point is
singled out for special treatment, in which case we call the geometry homogeneous.
Other geometrisations of statistics have followed this homogeneous approach. From
some points of view, this is natural statistically. For example, all points in the
parameter space share the possibility of being the unknown true parameter giving
rise to the data. From other points of view, it is not. As we have seen, much of statistics
has a preferred point nature, with the special point corresponding to the (hypothesised)
true value or a (constrained) parameter estimate.

This diagnosis directly suggests a possible cure. In particular, a resolution of the
apparent incompatibility noted in (T4). In such cases, why not define a geometry on the
whole manifold which reflects the special status of the preferred point?

The definition and use of such a preferred point geometry are guided by twin
principles:

(P1) Be as natural and simple (parsimonious) as possible from both the statistical and
geometric perspectives;

and:
(P2) Where appropriate (as indicated above), reflect in a natural way the special

status of the preferred point.

6 Preferred point geometry and statistical manifolds

6.1 Preferred point extensions of statistical manifolds and
interpretation of duality in Amari’s expected geometry

Following Marriott (1989), Critchley, Marriott and Salmon (1993) introduced a
preferred point geometry M, . This is a Riemannian-like structure but one in which
the metric depends smoothly on the preferred point M. This dependence is natural

6



statistically in the many cases reviewed in the previous section where we are principally
interested in geodesic distances away from the preferred point .

An essential feature of preferred point geometry is that the distance between two
points will typically depend upon which of them is taken as preferred. This happens
because, in general, both the geodesic path joining a and b, and its length, will be
different in the a and the b geometries. Thus, the lack of symmetry (M2) and of
a triangle inequality (M3) found in core statistical divergence functions, but not in
standard geometry, are mirrored naturally in preferred point geometry. This collapses the
tension (T4).

Any preferred point geometry has a homogeneous geometry associated with it,
obtained by restricting attention to the diagonal where . A symmetry condition
characterises when this homogeneous geometry subsumes a statistical manifold. At the
same time, it provides a natural higher order extension of such structures. Details are
given in Critchley, Marriott and Salmon (1993). There are corresponding links with
strings (Barndorff-Nielsen and Blaesild (1987a, 1987b, 1988)).

In an expected geometry in which denotes the true parameter, three statistically
natural choices of the preferred point metric – to be denoted by g , h and k
respectively – are as follows:

(PPM 1) g : cov s x, , the -covariance matrix of the score vector

s x, : ln p x, / | ;

(PPM 2) The -expectation of minus the hessian of the log-likelihood at does not
transform appropriately under reparameterisation and so cannot be used as a
preferred point metric. However, using the standard differential geometrical way to fix
this, the g -covariant version of this -expected negative hessian – denoted h -
defines our second preferred point metric;

and:
(PPM 3) The usual derivation of the asymptotic distribution of the maximum

likelihood estimator as n
a
~ N 0, I 1 is based on applying the central limit

theorem to the score vector s x, at the true value which occurs on the right hand side
of the asymptotic linear relation

n I 1/ n s x, . (6)

Alternatively, we may consider the asymptotic distribution of for any value of
using the score vector s x, at . Expanding the score vector in a covariant Taylor
expansion about leads to the improved approximation to the asymptotic distribution of

locally to ,

n
a
~ N n I 1 ,k 1 (7)

where

: E s x, (8)

and k : h g 1h . (9)

We interpret (9) as saying that g and k are dual with respect to h . That is, (9)
expresses a certain natural general duality between the score vector and the maximum
likelihood estimator in terms of their preferred point metrics g and k defined as
above. In this duality, the hessian of the log-likelihood plays a central (pivotal) rôle via
h . In particular, rearranging (9), we have g h k 1h . See Critchley,
Marriott and Salmon (1993) for details, and for duality theorems for arbitrary preferred
point geometries.
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When , the matrices associated with each of g , h and k reduce to the Fisher
information matrix I . Their metric connections reduce there, respectively, to Amari’s

1, 0 and -1 connections. In full exponential families, the g and k metric connections
agree everywhere with Amari’s 1 and -1 connections respectively. In this way, the 1
duality of Amari’s geometry, previously rather ineluctable statistically (T3), can now be
interpreted as reflecting the above duality between the score vector and the maximum
likelihood estimator. Natural extensions to duality have been studied by Zhu and Wei
(1997a, b).

6.2 Full exponential family examples
Consider a full exponential family whose density with respect to some carrier

measure can be written

p x, exp xT

where is the canonical (or natural) parameter. Recall that the expectation parameter
: E x and the Fisher information matrix are given respectively by

and I .
Observe also that, in this full exponential family case, the -mean score and the

expectation parameterisations are affinely related by .
We also have:
(a) In -coordinates, g I , a constant independent of .
(b) In -coordinates, k I 1 , a constant independent of .
(c) In -coordinates, h I , which varies with .
In particular, whatever the preferred point , the canonical parameterisation is

g -affine while the expectation parameterisation is k -affine.
Properties (a) and (b) respectively subsume the celebrated results that:
(a) the full exponential family is 1-flat and the canonical -coordinates are

1-affine;
and:
(b) the full exponential family is -1-flat and the expectation -coordinates are

-1-affine.

6.3 Equivalence of expected preferred point geometries
Critchley, Marriott and Salmon (1994) considered the statistically natural preferred

point geometry M, ,g defined by and g , the -mean and the -covariance
respectively of the score vector s x, . We observe here that this geometry is equivalent
to (contains the same information as) three other statistically natural expected preferred
point geometries. Insightful in itself, this result will also be useful later (Section 7.3).

In a mild abuse of notation we write, for example, M,g ,h for the pair of
Riemannian preferred point geometries M,g , M,h . Denoting equivalences
between geometries by ‘ ’, we have:

M, ,g M,g ,h M,g ,h ,k M,h ,k .

The proof is straightforward. For the first equivalence we need to show that, given
g , h . But follows by g -covariant differentiation, while follows by
integration and the boundary condition 0. The second and third equivalences are
immediate from (9).

7 Divergence functions

7.1 Definition
Following Critchley, Marriott and Salmon (1994), we define a divergence function

d , to be a smooth function on pairs of points in M which satisfies:
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(D1) d , 0 with equality if and only if ;
(D2) id , | id , | 0 where i / i and i / i;
and:
(D3) i jd , | I ij.

The divergences of Chentsov (1972) and Amari (1990) are special cases in which the
evaluation at in (D3) is dropped, it being assumed that a parameterisation with this
stronger property exists.

These conditions imply that, for in a neighbourhood of any given point , a
divergence function behaves quadratically with hessian the Fisher information at . That
is, locally to ,

d , 1
2

TI .

This definition is close to that of a normed yoke (Barndorff-Nielsen, 1989) where
condition (D3) is relaxed to nonsingularity of the hessian.

We observe that, apart from smoothness, condition (D1) – which is exactly the
nonnegativity metric axiom (M1) – is the only essential condition. Condition (D2) can be
achieved with any function satisfying (D1) by squaring it if necessary. Condition (D3)
can be achieved by rescaling, provided the hessian is nonsingular. In this sense,
divergences can be thought of as regular extensions of metrics in which the symmetry
(M2) and triangle inequality (M3) axioms are dropped. The local quadratic nature of
divergences means that they are analogues – not of distances – but of (half) squared
distances. Thus, we would not expect the triangle inequality (M3) to hold for them.
Rather, under analogues of orthogonality, it is natural to look for Pythagorean
relationships between divergences (see Section 7.4).

Well-known examples of divergence functions include the Kullback-Leibler
divergence defined above, the Hellinger ‘distance’ and Renyi -information (see Amari,
1990, p.88).

7.2 The local differential geometry of the Kullback-Leibler divergence
Amari’s celebrated projection theorem (Amari, 1990, p.90) states that the point in a

submanifold M of a full exponential family M which minimises the Kullback-Leibler

divergence from a given point M is joined to by a -1-geodesic which cuts M
orthogonally in Rao’s Fisher metric at .

It is important to note, however, that there is no concept of geodesic distance
involved here, since the connection concerned is nonmetric. Thus, this projection
theorem does not establish a relationship between the divergence function and a squared
geodesic distance. To get this, we use preferred point geometry.

Critchley, Marriott and Salmon (1994) use preferred point geometry ideas to
investigate the local differential geometry of divergence functions, focusing especially on
the Kullback-Leibler divergence.

A first result is that, given any divergence function, there exists a preferred point
metric locally compatible with it. That is, for all points in a neighbourhood of the
preferred point , half the squared preferred point metric’s geodesic distance from to
equals d , .

However, such a locally compatible metric is far from unique. We concentrate now
on local compatibility of the Kullback-Leibler divergence and the statistically natural
preferred point metric g defined above. As we observe here (in Section 7.3), it turns out
that h also plays an important rôle.

Now, dKL , is in fact well-defined on infinite dimensional spaces of densities of
the form N : p x , the set of all mutually absolutely continuous regular densities on
the sample space x with respect to some fixed measure P. Although we do not develop
its implications here, we note in passing that the preferred point can be in N rather than
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M. This important fact is of interest, for example, in studying mis-specified models.
This simple observation enables us to draw an important basic distinction:

Kullback-Leibler divergences measure separations of points in N;
(preferred point) geodesic distances measure separations of points in M.

The Kullback-Leibler divergence dKL , is purely a function of the distributions
labelled by and . It is independent of the particular manifold M considered. In
contrast, any geodesic distance between and depends not only on the distributions
they label but also on the particular, finite dimensional manifold M in which they are
considered to lie.

This dependence on the manifold M means that the preferred point metric g will not,
in general, be locally compatible with dKL. There are two geometries on M which do not
in general agree: its intrinsic geometry M,g and what, reflecting M N, we might
call its embedding geometry M,dKL , (cf. Sections 3.2 and 3.3 above respectively). Some
extra condition will therefore be needed for local compatibility. Intuitively, if M itself is
intrinsically “flat” (that is, if M is g -flat), it will be enough if M then also “sits flat”
inside N in some sense. The idea of total flatness cashes this intuition.

Again, re-considering Amari’s projection theorem in the light of this flatness
intuition, we can now interpret it as stating that the concepts of minimising dKL in N and
g -geodesic projection in M coincide because of a particular flatness (zero curvature)
property of the full exponential family.

Defining the preferred point geometry M, ,g to be totally flat if there is a single
coordinate system with the property that, for every preferred point , simultaneously
both g is constant as varies and is a linear function of , Critchley,
Marriott and Salmon (1994) prove the following result.

Let M,g be g -flat and let -coordinates be g -affine. Then the following three
statements are equivalent:

(i) Locally to , the manifold M is totally flat.
(ii) Locally to , the Kullback-Leibler divergence dKL , equals half the squared

g -geodesic distance from to .
(iii) Locally to , the Kullback-Leibler divergence is an exact quadratic function of

the -coordinates given by dKL , 1
2

TI .

An important corollary of this result is that, whenever a manifold is not totally flat,
minimising Kullback-Leibler divergence will not in general be equivalent to minimising
the g -geodesic distance. The choice between these measures will then matter. Clearly,
the former enjoys certain robustness properties, being independent of the parametric
manifold considered, while the latter might be expected to be more efficient when the
data generation process does lie in or close to the chosen parametric manifold. Caveat
emptor! See also the discussion on influence analysis in Section 8.

It is clear that total flatness is a strong condition. It is of interest to enquire which full
exponential families are totally flat. It follows from the above that, if M is a full
exponential family induced by some fixed measure P, then the following three statements
are equivalent:

(i) M is totally flat.
(ii) The covariance of the canonical statistic does not depend upon the canonical

parameter.
(iii) The log-likelihood is a quadratic function of the canonical parameter.
In particular, taking P to be Lebesgue measure, the family of p-variate normal

distributions with (any) constant covariance matrix is totally flat.

7.3 The rôle of h in total flatness
Here, we consider instead the preferred point geometry M,g ,h and say that it is
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totally flat if there exists a single coordinate system with the property of being, for every
preferred point , simultaneously affine for both g and h . We call such a coordinate
system co-affine.

The two preferred point geometries M, ,g and M,g ,h are equivalent
(Section 6.3). Again, these two definitions of total flatness are also equivalent. The
former implies the latter by covariant g -differentiation. The reverse implication follows
by integration and the boundary condition (D2).

The latter definition has the advantage that, in view of the duality relation (9), it
follows straightforwardly that total flatness is logically equivalent to the existence of a
coordinate system that is simultaneously affine for all three preferred point metrics g , h
and k (or, again, just for h and k ). Thus, in co-affine coordinates in a totally flat
manifold, all three preferred point geometries M, reduce to the Euclidean geometry
determined by the Fisher information matrix evaluated at the preferred point . In
particular, their geodesics are line segments (convex combinations) in -coordinates and
the g , h and k squared geodesics from to are all simply TI . This
observation gives, at once, obvious alternative forms of the above result characterising
total flatness.

Again, defining total flatness in terms of h enables us to quantify the extent to which
minimisation of dKL and of g differ. Let M be g -flat and let -coordinates be g -affine.
Then, differences between dKL , and 1

2
TI reflect departures from

constancy in -coordinates of the metric h locally to . There is a natural geometric way
to quantify such departures (namely, the corresponding Christoffel symbols for the metric
h : see Amari, (1990, p.41-42)). These measures of total curvature (departure from total
flatness) provide the information sought.

7.4 Preferred point Pythagoras theorem
As Amari, Kurata and Nagaoka (1990) affirm, the projection theorem (see above)

and the generalised Pythagorean theorem for divergences (Amari, 1990, p.86) are the
highlights of the theory of dually flat manifolds, such as Amari’s expected -geometries.

A preferred point Pythagoras theorem established in Critchley, Marriott and Salmon
(1994) provides a strengthening of this latter result.

8 Preferred point geometry of influence analysis
Following Critchley (1998), we briefly indicate how a general preferred point

geometry of influence analysis in statistics might be developed. We hope to report more
fully on this work in progress in the near future. For related work, see Vos (1991b, 1994)
and Kass and Vos (1997).

Statistical science often proceeds by adopting a working formulation of a problem.
We may stylise this as follows. Having defined a question of interest, the
scientist/statistician team decide on an appropriate statistical model for the context
involving one or more unknown parameters and on an associated inference method,
collect an optimal feasible set of relevant data, and then use their working problem
formulation:

PF (Q, data, model, inference method)

to provide an answer A to the question of interest Q.
Now, it is natural to think of such a formulation as a preferred point formulation:

preferred because it represents the team’s current best shot at a ‘good’ (parsimonious yet
realistic, ...) description of the problem and point because it will only ever be one of
many possible (neighbouring) problem formulations. Perturbations of problem
formulation are always pertinent. Accordingly, sensitivity analyses are sensible.

In this broad conception, the rôle of influence analysis is to explore interesting
alternative problem formulations PF and their effect – if any – on the answer provided to
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the question of interest. With denoting the null case of a perturbation parameter vector
, a change brings a change PF PF in problem formulation. Its effect

A A on the answer provided to the question of interest is monitored by tracking the
induced change in a suitable target function . In particular contexts this
may, for example, be Cook’s likelihood displacement function

LD 2 l ; l ; (10)

reflecting the change where maximises the perturbed log-likelihood
l ; and : , the Kullback-Leibler divergence between posterior distributions
under and , or (the expected utility of) the optimal decision procedure under and

. Overall, we wish to compare the size of the perturbation to the size of the
change it causes. Invariance of such influence analyses to
reparameterisations of the perturbation is highly desirable, since is merely a
label for a problem formulation. Unfortunately, as Loynes (1986) pointed out, Cook’s
(1986) analysis does not have this property.

In this rather general set up, it is not immediately obvious what it means to go
‘straight’ from one problem formulation to another, nor how large such a perturbation is.
A geometrically natural way to answer these questions invariantly is to put an appropriate
metric tensor on perturbation space and to use the geodesics of the Riemannian
preferred point geometry , that it induces. The preferred point nature of the metric

reflects the preferred nature of the working problem formulation PF . Preliminary
work along these lines has been encouraging.
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