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DETECTING PHASE TRANSITION FOR GIBBS MEASURES

By Francis Comets1

University of California, Irvine

We propose a new empirical procedure for detecting phase transition
from a single sample of a Gibbs–Markov random field. The method is based
on frequencies for large deviations when the whole sample is divided in
smaller blocks and estimates for the rate function. We relate our approach
to an almost sure large deviation principle.

1. Introduction. Phase transition and phase multiplicity in Markov ran-
dom fields—or equivalently, Gibbs measures—are long-range dependence phe-
nomena. Detecting such a phenomenon from a single sample is a natural ques-
tion, both on physical grounds and on mathematical and statistical ones.

In the probabilistic theory of Markov fields there exist sufficient conditions
for uniqueness, as Dobrushin’s and Simon’s conditions, but conditions for ex-
istence of multiple phases are much harder to obtain [Georgii (1988), Prum
(1986)]. The Pigorov–Sinaı̈ theory is a rather qualitative approach, viewing
the low temperature case as a smooth perturbation of the zero temperature
case and of the set of ground states. So it is natural to look for an empirical
criterion rather than an analytical one.

In the statistical analysis of Markov fields, such a criterion would be most
useful to justify the use of Gaussian asymptotics for estimates, confidence
intervals and hypothesis testing (Guyon, 1992); indeed, phase transition re-
flects on the validity of the central limit theorem and on the limit behav-
ior of the maximum likelihood estimator. This paper presents such empirical
criteria.

Let X = �Xi�i∈Zd be a Markov random field with finite range, translation
invariant interaction and distribution P. Assume that we observe a single
realization of X in the cubic box 3n = �−n;n�d. In the spirit of Erdős–Rényi
laws and large deviation inequalities, we proved recently that one can estimate
(consistently if n→ ∞) the set Gs of all stationary Gibbs measures with the
same potential as P [Comets (1994)]; more precisely, the estimate is the set
of empirical distributions based on smaller boxes with specified size moving
inside the box 3n of observation. This is a statistical way to detect multiplicity
of phases based on multiscale analysis, the different resolution scales being
here the different sizes for the moving boxes.

This idea was used later by Dai Pra (1994) to detect nonergodicity in spin-
flip processes, using space-time empirical distributions. For practical purposes,
we also considered in our previous paper the question of estimating the in-
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AMS 1991 subject classifications. Primary 60G60; secondary 60F10, 62M30, 82B26.
Key words and phrases. Gibbs measures, Markov random fields, phase transition, large

deviations.

545



546 F. COMETS

terval Af = �
∫
fdQyQ ∈ Gs� with a suitable real function f defined on the

configuration space, chosen so as to spread out the different Gibbs measures
when many exist. The set Af reduces to a single point when uniqueness of
the Gibbs measure holds; otherwise, it is a nontrivial interval for suitable
functions f. In this previous work we noted from simulation experiments that
estimates for Af converge very slowly. However, we note also that it is much
more informative to estimate the rate function If�·� for large deviations itself
and then to use the fact that Af is the set of zeros of If. In such a way we can
use some a priori information like convexity on If. The estimation procedure
there requires inverting some functional estimator, which causes f to fix; this
is a serious drawback in a number of examples when it is not clear what
are the suitable functions f are. Another drawback is that the maximum of
moving averages used in the estimation is highly sensitive to outliers; it may
indeed happen in applications that in some subwindow of 3n the data are
pervaded with systematic error.

In the present paper we propose a new method for estimating Gs, Af and
If based on the natural idea of using frequencies, avoiding thus the inversion
procedure. Hence this time it is compatible with a parallel search for suitable
f’s (in the sense of maximal spreading of the data) and gives in addition
much smoother estimates. Another application of our results is in comparing
statistical estimators on the basis of their inacuracy rates in the asymptotic
approach of Bahadur. Csőrgö (1979) developed similar ideas for independent
variables. In our case this rate can be expressed in terms of values of such
If for a large set of functions f [see (5.3) in Comets (1992)]. This rate cannot
be computed analytically, but it can be estimated with the method we develop
below. Note that in general the f functions under consideration in this case
are vector valued.

The paper is organized as follows. For simplicity, we will consider the case of
finite state space, finite range interaction Gibbs measures. Nevertheless it is
straightforward to extend all results to general Gibbs measures as in Comets
(1994); some remarks are set forth in this direction. In the next two sections
we give the basic definitions and state our main result. Section 4 recalls the
necessary tools, entropy and large deviation estimates. In Section 5 we study
the asymptotics of frequency estimates and we prove the main result. Next
we show a large deviation principle which is hidden behind our result as well
as the Erdős–Rényi laws. In Section 7, we present simulation experiments to
illustrate the method.

2. Markov random fields. Let X0 be a finite set, d some positive integer
and X the product space X = X Zd

0 . Let P �X � be the set of random fields on
X0, that is, of probability measures on X with its natural product σ-field.
Viewing X0 as a discrete topological space, the space P �X �, endowed with
the topology of weak convergence, is itself a compact metrizable space. For
i ∈ Zd we denote by θi the shift operator on X defined by �θix�j = xi+j with
x = �xi�i∈Zd ∈ X and j ∈ Zd. Let Ps�X � be the set of stationary random fields
(i.e., invariant under the shift operators) and let Pe�X � be the set of stationary
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ergodic ones (i.e., those achieving only values 0 on 1 or the events which are
shift invariant).

A general translation invariant, finite range interaction potential may be
described with a single function as follows. Let V be a finite subset of Zd
containing the origin 0 and let φx X V

0 −→ R be a real function; V will be
called the support of φ and φ the interaction function. For any finite subset
3 of the lattice, define the energy inside 3 of the configuration x ∈ X as the
sum of the self-interaction inside 3 and of the interaction across the boundary
of 3; that is,

U3�x� =
∑

ix �i+V�∩3 6=\

φ�θix�; x ∈ X :(2.1)

For x; z ∈ X we write

�xi�i∈3 = x3; �xi�i6∈3 = 3x

and by x3 ∨ z the element of X equal to x on 3 and to z on 3c. For simplicity
we will also use the same symbol x3 for a local configuration �xi�i∈3 (even
when xi is not defined for i 6∈ 3�.

Corresponding to the interaction function φ the specification π is the family
of transition probability kernels 53 indexed by the finite subsets 3 of Zd;
53 x X 3c

0 7→ P �X 3
0 �;
53�x3/3x� = �Z3�3x��−1 exp�U3�x��;(2.2)

Z3�3x� =
∑

z3∈X 3
0

exp�U3�z3 ∨ x��:(2.3)

A random field P ∈ P �X � is called a Gibbs measure (or a Markov random
field) with interaction φ if, for all finite subsets 3 of Zd, 53 is a regular version
of the conditional distribution P3 of P given 3x; that is,

P3�x3�3z� = 53�x3�3z� for P-a.e. z:(2.4)

Equations (2.4) are called the Dobrushin–Lanford–Ruelle equations. The
set G of all Gibbs measures is a convex, compact, nonempty subset of P �X �;
G coincides with the closed convex hull of all limit points of 53�·�3z� as 3↗ Zd
for all possible boundary conditions z. The set Gs = G ∩Ps�X � is also convex
and compact and we have \ 6= Ge x= G ∩Pe�X � ⊂ Gs ⊂ G . First order phase
transition (or multiplicity of phases) occurs when G contains more than one
element. Then Ge and Gs themselves contain more than one element, some
Gibbs measures are not ergodic and furthermore it may occur that some are
not even stationary. For a rather complete study of Gibbs measures, see Georgii
(1988). Note that phase uniqueness is equivalent to Gs reducing to a single
point.

Example. The nearest neighbor Ising model with inverse temperature β
and external field h is given by X0 = �−1;+1�, φ�x� = βx0

∑d
k=1 xek + hx0,

where �e1; : : : ; ed� is the canonical basis of Zd. Then uniqueness holds iff h 6= 0
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or β ≤ βc�d�. In dimension d = 2, βc�2� = 1
2 ln�1+

√
2� ' 0:441. In dimension

d ≥ 3, Gs 6= G for large enough β.

3. Estimating the rate function. Let f be a numerical function on X
that is local. That is, f�x� depends only on the restriction xW of x to some
finite subset W of Zd. With the notations 3n = �−n;n�d and � 3 � for the
cardinality of a set 3, define for y ∈ R the rate function

If�y� = − lim
ε→0

lim sup
n→∞

1
� 3n �

lnP
{

1
� 3n �

∑
i∈3n

f◦θi�x� ∈ �y− ε; y+ ε�
}

(3.1)

By monotonicity in ε , the above limit is well defined in �0;+∞�. In formula
(5.7) in Section 5, we will obtain a different expression for If and check from
it that If does not depend on P ∈ G , that If is a lower semicontinuous convex
function and that

If�y� = 0 ⇔ ∃ Q ∈ Gsx
∫
fdQ = y:(3.2)

This statement has the following important meaning. Multiplicity of phases
occurs if and only if the convex function If achieves its minimum value 0 in
more than one point, for some function f. Hence detecting phase transition
amounts to detecting a flat bottom for If.

Let us state our main result, which we will prove in Section 5. Recall that
the domain of the convex function If is defined as Dom If = �y ∈ Ry If�y� <
+∞�; here Dom If is a compact interval, and Dom If = �

∫
fdQy Q ∈ Ps�X ��.

We will denote by ∂Dom If its boundary.

Theorem 3.1. Let t > 0 and let l�n� be a nondecreasing sequence of integers
such that l�n� ∼ 1

2��d/t� lnn�1/d as n→∞. Define

mn =
∣∣ {i ∈ Zdy i+ 3l�n� +W ⊂ 3n

} ∣∣

and the random functions

M′n�y� =
∣∣∣∣
{
i ∈ Zdy i+ 3l�n� +W ⊂ 3n; � 3l�n� �−1 ∑

j∈i+3l�n�
f◦θj ≥ y

} ∣∣∣∣;

Mn�y� =M′n�y� if 1 ≤M′n�y� ≤mn − 1;

Mn�y� = 1 if M′n�y� = 0;

Mn�y� =mn − 1 if M′n�y� =mn:

Then, for all P ∈ G and y 6∈ ∂Dom If,

lim
n→∞
�lnmn�−1 ln

{
Mn�y�
mn

[
1− Mn�y�

mn

]}
= −min�t−1If�y�;1�; P-a.s.(3.3)

The convergence is P-a.s. uniform on closed subsets not intersecting the
boundary of the domain of If. In particular, if t ≤ min�If�y�y y ∈ ∂Dom If�,
the convergence is uniform on R.
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In this result we introduce a consistent estimator for �t−1If� ∧ 1 based on
the truncated frequency Mn/mn of the averages of f on small (but increasing)
boxes contained in the observation region 3n. This yields an estimate for If
itself up to the level t, and according to (3.2) this is enough for estimating the
interval Af = �

∫
fdQy Q ∈ Gs� and deciding whether it reduces to a single

point or not.
We emphasize that the theorem holds for any P ∈ G , hence it applies to

samples from any distribution in G . One could also be interested in a slightly
different situation, where the available data x3n change with n and are from
the specification 53n�·�3nz�n�� with boundary conditions z�n� changing with n;
in this case, the method still works with minor changes and the convergence
stated in Theorem 3.1 holds in probability.

As mentioned in the introduction, choosing a suitable f for maximal spread-
ing of the set Gs when this set does not reduce to a single point is an important
problem. Some hints may be grasped from the inspection of the ground states,
which are, loosely speaking, the configurations minimizing the “infinite vol-
ume energy UZd” [see Prum (1986) for a more precise definition]. But a more
refined choice should also use the data themselves; the estimator proposed in
the theorem lends itself to such a procedure, as opposed to the one proposed
in Comets (1994) which requires some inversion step for each f.

Also, this estimator is more robust than the previous one. Let us simply
remark that its minimum 0 is achieved at the median y of the moving averages
of f, though it is achieved for the previous estimator at the mean of f on the
whole domain 3n. This indicates the robustness property, at least close to the
minimum.

We end this section with a remark on the precise behavior of M′n�y� when
f depends on only one coordinate. The Erdős–Rényi law governs the largest
moving average, that is, the largest y such that M′n�y� 6= 0. In the case of
independent variables, Deheuvels, Devroye and Lynch (1986) give the exact
rate of convergence for it; this reflects on sharp asymptotics for M′n�y� itself
for y such that If�y� = t. In this case similar considerations would also yield a
finer approximation for M′n�y� than the logarithmic equivalent, but of course
this seems out of reach in the Gibbsian case as well as when f depends on
many coordinates.

4. Entropy and large deviations. The entropy rate of a stationary ran-
dom field Q ∈ Ps�X �,

H�Q� = lim
n→∞

� 3n �−1
∫
�− lnQ�x3n��dQ�x� ∈ �0; ln � X0 ��;(4.1)

exists, as well as the relative entropy rate (information gain) of Q ∈ Ps�X �
with respect to the Markov field P ∈ G :

I�Q� = lim
n→∞

� 3n �−1
∫

ln
Q�x3n�
P�x3n�

dQ�x�;
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which also depends on the interaction function φ but not on the particular
element P ∈ G . They are related to one another via

I�Q� = −H�Q� −
∫
φdQ+ p�φ�;

p�φ� x= lim
n→∞

� 3n �−1 lnZ3n
�z� = max

R∈Ps�X �

{∫
φdR+H�R�

}
;

(4.2)

where in the last formula—called the Gibbs variational formula—the limit is
uniform in z ∈ X . The Gibbs variational principle, due to Ruelle, states that

I�Q� = 0 ⇔ Q ∈ Gs:(4.3)

The functional I is nonnegative, bounded, affine and lower semicontinuous on
Ps�X �; in particular the level sets

0t = �R ∈ Ps�X �y I�R� ≤ t�; t ≥ 0;

are convex and compact. Note in addition that (4.3) can be rephrased as 00 =
Gs. These facts are developed in Georgii (1988).

Let us fix from now on an arbitrary z̄ ∈ X . We define the empirical field
based on a configuration x ∈ X observed in a shifted window i + 3n (i ∈
Zd; n ≥ 1) as the random field

Ri; n; x =
1
� 3n �

∑
j∈i+3n

δθj�xi+3n∨z̄�:(4.4)

As n→∞, Ri; n; x ∈ P �X � gets closer and closer to the set Ps�X � and the
dependence on z̄ gets smaller; heuristically Ri; nyx is an “almost stationary”
empirical distribution from the observation xi+3n , completing the missing
data with z̄. If Q ∈ Pe�X �, the pointwise ergodic theorem states that
limn→∞ Ri; n; x = Q for Q-a.e. x, and for every i ∈ Zd.

The basic tool in this paper is a uniform large deviation principle for em-
pirical fields of Gibbs measures, which turns out to be related to the relative
entropy rate; for all sets A in P �X �,

−I�Å� ≤ lim inf
n→∞

inf
z; z̄∈X

1
� 3n �

ln53n�Rn;x ∈ A�3nz�

≤ lim sup
n→∞

sup
z; z̄∈X

1
� 3n �

ln53n�Rn;x ∈ A�3nz�

≤ −I�Ā�

(4.5)

with the notation I�A� = inf�I�Q�y Q ∈ A∩Ps�X �� andRn;x = R0; n; x. Recall
that z denotes the boundary condition for 5 and that z̄ is used to define the
empirical field and complete the data. A more general framework for these
estimates is given in Theorem 2.2 of Comets (1994) with references therein.
Our particular choice (4.4) of the empirical fields clearly does not change the
asymptotics [as in Föllmer and Orey (1988) who use nonperiodic versions].
The estimates (4.5) are uniform with respect to the boundary conditions z;
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then they also hold if we replace the specification 5 with any P ∈ G . A re-
cent and general account for the large deviation principle for Gibbs measures
is given in Georgii (1993). The problem of large deviations inside the set of
Gibbs measures is more difficult, and was solved by Dobrushin, Kotecký and
Shlosman (1992).

5. Estimates based on frequencies. For 1 ≤ l ≤ n let us define the set
of empirical fields based on the translates of 3l which are included in 3n:

1n; l�x� = �Ri; l; xy i+ 3l ⊂ 3n�

and, for A ⊂ P �X �, define the random variable N�n; l;A�—depending on
x—equal to the number of such fields belonging to A:

N�n; l;A��x� =� 1n; l�x� ∩A � :

We will describe the asymptotics of this variable as n and l tend to infinity.

Theorem 5.1. Let t > 0 and let l�n� be an increasing sequence of integers
such that � 3l�n� �∼ t−1 ln � 3n �. Then, for all P ∈ G and all A ⊂ P �X � we
have P-a.s.,

�1− t−1I�Å��+ ≤ lim inf
n→∞

�ln � 3n ��−1 ln�N�n; l�n�;A� + 1�

≤ lim sup
n→∞

�ln � 3n ��−1 ln�N�n; l�n�;A� + 1�

≤ �1− t−1I�Ā��+

with the notation y+ = y ∨ 0 for y ∈ R.

Remark 5.1. (i) This result is related to Theorem 3.1 in Comets (1994).
We consider N�n; l;A�+1 instead of N�n; l;A� in the statement to avoid the
case N�n; l;A� = 0. Note that when 1 − t−1I�Ā� < 0, we already know from
our previous paper that N�n; l;A� = 0 for large enough n with probability 1.

(ii) The sets A with I�Å� = I�Ā� are of particular interest, for instance
closed half-spaces of the form A = �R ∈ P �X �y

∫
fdR ≥ c� for some bounded

continuous function f, with nonempty interior. Indeed, letting then Q0 be ar-
bitrary in Å = �R ∈ P �X �y

∫
fdR > c�, for any R ∈ Ā the segment �Q0;R�

is included in Å and the limit of I�Q� as Q tends to R along this segment
is I�R� since I is affine and bounded; hence I�Ā� ≥ I�Å�, which implies the
equality. This example is all that we need below. More general classes of (con-
vex) sets A with I�Å� = I�Ā� can be given [Seppäläinen (1996)]; they involve
conditions in the vector space of all signed measures on X . See Seppäläinen
(1995), page 556, for a flavor of these conditions at the level of the empirical
measure.

As in our previous paper, we start with two lemmas.
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Lemma 5.1. Let l�n� be an sequence of nondecreasing integers tending to in-
finity, such that ln �3l�n�� = o�ln �3n�� and such that t x= limn→∞ �3l�n��−1 ln �3n�
exists. Then for all P ∈ G and all closed sets A in P �X � we have

lim sup
n→∞

�ln �3n��−1 lnN�n; l�n�;A� ≤ �1− t−1I�A��+; P-a.s.

with the convention t−1I�A� = 0 if t = I�A� = 0.

Proof. We will write Nn instead of N�n; l�n�;A� to keep the notation
simple. Since Nn ≤ �3n�, we only need to consider the case when I�A� > 0
and t <∞. We start with the case t > 0. It is then enough to consider I�A� ≤ t
since Nn is increasing with A. Let α x= 1 − t−1I�A� ∈ �0;1� and ε > 0 with
tε/2 < I�A�; ε < 1− α.

We look first for a maximal subset of 1n; l�n��x� ∩A corresponding to small
windows mutually separated by corridors of width V (recall that V is the
support of the interaction function φ). We proceed as follows. We will say that
a collection s = �i1 + 3l�n�; : : : ; i�s� + 3l�n�� is well separated if � ik − ik′ �∞>
2l�n�+1+diam�V� for k; k′ ≤ �s�, k 6= k′ and of course if ik+3l�n� ⊂ 3n�k ≤ �s��.
Let Sn be the set of all well separated s; using the lexicographic order and
viewing also s as ��s�; i1; : : : ; i�s��, Sn is totally ordered in a natural way. Given
a configuration x we consider now the set Sn�A;x� of all s ∈ Sn such that
Ri; l�n�;x ∈ A for i = i1; : : : ; i�s�, and we denote by S�x� its maximal element
for the order on Sn. In particular S�x� has maximal cardinality in Sn�A;x�,
and corresponds to the desired subset of 1n; l�n��x� ∩A.

The maximal cardinality property of S = S�x� implies that any window
contributing to Nn is within a distance diam�V� from S and therefore,

Nn ≤� S � 2d�2l�n� + 1+ diam�V��d:(5.1)

Let s ∈ Sn and 3 = ⋃k≤�s��ik + 3l�n��; we have

P�S = s� ≤ P
( �s�⋂
k=1

�Rik; l�n�; x ∈ A�
)

=
∫
53

( �s�⋂
k=1

�Rik; l�n�; x ∈ A��3x
)
dP�x�

=
∫ �s�∏
k=1

53�Rik; l�n�; x ∈ A�3x�dP�x�

≤
[
sup
z∈X

53l�n��Rik; l�n�; x ∈ A�3l�n�z�
]�s�

(5.2)

using (2.4), the well separate property and conditional independence. Then
the large deviation upper bound (4.5) implies that the inequality

P�S = s� ≤ exp�− � s � � 3l�n� � �I�A� − tε/2��(5.3)

holds for large enough n.
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Denoting by kn (kn ≤ �3n�) the integer part of �3n�α+ε2−d�2l�n� + 1 +
diam�V��−d, it follows from (5.1) that

��ln �3n��−1 lnNn > α+ ε� ⊂
⋃
k≥kn

⋃

s∈Sn; �s�=k
�S = s�

and from (5.3) that for large n

P��ln �3n��−1 lnNn > α+ ε� ≤
∑
k≥kn

∑

�s�=k
P�S = s�

≤
�3n�∑
k=kn

(�3n�
k

)
exp�−k �3l�n�� �I�A� − tε/2��

= �1− pn�−�3n�Prob.�B��3n�; pn� ≥ kn�

(5.4)

where B�m;p� is a binomial variable with parameters m and p, and
pn = exp�−�3l�n�� �I�A� − tε/2��. One easily checks that ln��3n�pn� ∼
t�α + ε/2��3l�n��, lnkn ∼ t�α + ε��3l�n��; hence Cramér’s inequality for the bi-
nomial distribution [e.g., Dembo and Zeitouni (1993), Example 2.2.23] yields,
for every n,

ln Prob.�B��3n�; pn� ≥ kn� ≤ −kn ln
kn
�3n�pn

− ��3n� − kn� ln
1− kn/�3n�

1− pn

∼ −kn ln
kn
�3n�pn

∼ −kn�3l�n��tε/2:
Coming back to (5.4), one also checks that �3n� ln�1−pn� = o�kn� and since

�3n�γ = o�kn� for 0 < γ < α + ε, we have finally P�ln �3n�−1 lnNn > α + ε� ≤
exp−�3n�γ for large n.

So the Borel–Cantelli lemma implies Lemma 5.1 when t > 0.
In the case t = 0 and I�A� > 0, we first choose an open set A′ containing

00 = Gs with A ∩A′ = \, from a compactness argument. Then Lemma 3.2 in
Comets (1994) states that N�n; l�n�;A′� = 0 for large enough n, P-a.s.; hence
Nn = 0 also holds, and implies our statement. 2

Lemma 5.2. Let an be a positive sequence such that

lim inf
n→∞

�ln �3n��−1 lnan > 0;

let A ⊂ P �X � and let

b = − lim inf
n→∞

a−1
n ln inf

z; z̄∈X
53n�Rn;x ∈ A�3nz� ≥ 0:

Then for any nondecreasing sequence of integers l�n� with al�n� ∼ ln �3n�, we
have

lim inf
n→∞

�ln �3n��−1 ln�N�n; l�n�;A� + 1� ≥ �1− b�+; P-a.s.
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Proof. We assume b < 1 without loss of generality and we let α = �1 −
b�+ = 1− b and 0 < ε < α. We fix an element sn of maximal cardinality in the
set Sn previously defined and we denote by 1′n; l�n��x� the subset of 1n; l�n��x�
composed of the corresponding empirical fields. In particular we have

�sn� = �1′n; l�n��x�� ∼ �3n�/�3l�n�� as n→∞
Bn x= �xy �ln �3n��−1 ln�Nn + 1� < α− ε�
⊂ ��ln �3n��−1 ln�N′n + 1� < α− ε�

(5.5)

with the notations Nn =N�n; l�n�;A� and N′n = �1′n; l�n��x� ∩A�.
Since sn is well separated, these empirical fields are conditionally indepen-

dent underP given 3c [defined below (5.1) with s = sn]; henceN′n is the sum of
�sn� conditionally independent Bernoulli variables, with different parameters
but nevertheless bounded from below by pn = inf z∈X 53l�n��Rl�n�;x ∈ A/3l�n�z�.
Denoting again by B�m;p� a binomial variable, it follows that N′n is stochas-
tically larger than B��sn�; pn� and then

P�Bn� ≤ Prob.�B��sn�; pn� < �3n�α−ε�(5.6)

by the assumption pn ≥ �3n�−b−ε/2 for large n. Then �sn�pn > �3n�α−ε, which
entitles us to use Cramér’s inequality: for every such n it holds that

P�Bn� ≤ exp
[
−�sn�

{ �3n�α−ε
�sn�

ln
�3n�α−ε
�sn�pn

+
(

1− �3n�
α−ε

�sn�

)
ln

1− �3n�α−ε/�sn�
1− pn

}]
:

When pn ranges over ��3n�−b−ε/2;1�, the previous bound is maximized at
the leftmost point; next, the previous bound is certainly less than the one
replacing the ratio �3n�α−ε/�sn� by �3n�α−ε/�3n�1−ε/3 = �3n�−b−2ε/3 and therefore
we have, for large n,

P�Bn�≤ exp
[
−�sn�

{
−ε

6
�3n�−b−2ε/3 ln �3n� + �1− �3n�−b−2ε/3� ln 1− �3n�−b−2ε/3

1− �3n�−b−ε/2
}]

= exp
[
−�sn�

{
�1− �3n�−b−2ε/3� ln 1

1− �3n�−b−ε/2
+O��3n�−b−2ε/3 ln �3n��

}]

≤ exp�−�3n�α−ε�:
Then the lemma follows from the Borel–Cantelli lemma. 2

Proof of Theorem 5.1. The upper bound is a direct application of Lemma
5.1, and the lower bound of Lemma 5.2 with an = t�3n� together with (4.5). 2

Remark 5.2. The finite range property of the interaction allows here the
use of the Markov property (conditional independence). In the infinite range
case the strategy developed in Lemma 3.3 of Comets (1994) can be used
instead.

We now focus on the framework of Section 3. The contraction principle
applied with the continuous functional Q 7→

∫
fdQ on P �X � transforms the
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large deviation principle with rate function I for the empirical field stated in
Section 3 into a large deviation principle for the space averages of f, and the
new rate function is y 7→ inf�I�Q�y

∫
fdQ = y�. Since I has compact level

sets, the right-hand side of (3.1) has to coincide with this rate function,

If�y� = inf
{
I�Q�y Q ∈ Ps�X �;

∫
fdQ = y

}
;(5.7)

with the convention that the infimum is +∞ if the set is empty. Since If is the
minimum of a lower semicontinous (l.s.c.) affine function under a linear contin-
uous constraint, If is a l.s.c. and convex function of the constraint value. Note
finally that (3.2) follows from lower semicontinuity of If, from compactness
and from (4.3).

Proof of Theorem 3.1. Note that the condition on l�n� in the statement
of the theorem is equivalent to �3l�n�� ∼ t−1�3n�. Let A = �R ∈ P �X �y

∫
fdR ≥

y�. If n0 denotes the diameter of W, then of course �3n�; �3n−n0
�;mn are equiv-

alent as n→∞, and N�n−n0; l�n�;A� ≤Mn�y� ≤N�n; l�n�;A�. Then, using
Theorem 5.1 twice [once with n; l�n� and once with n− n0; l�n�], we obtain

lim
n→∞
�lnmn�−1 lnMn�y� = �1− t−1I�A��+; P-a.s.;(5.8)

provided that I�Å� = I�Ā�. Here A is a half-space, and from Remark 5.2(ii),
the equality may fail only when Å = \, and of course A 6= \, or equivalently
only when y is on the boundary of Dom If. We may apply the same arguments
to the set Ac instead of A, and we then get

lim
n→∞
�lnmn�−1 ln�mn −Mn�y�� = �1− t−1I�Ac��+; P-a.s.;(5.9)

for y 6= minf. Clearly one of the two numbers I�A� and I�Ac� is 0 and the
other one is If�y�, and so we have proved the pointwise convergence statement
of the theorem. To obtain uniform convergence, it is enough to notice that in
both (5.8) and (5.9) we have P-a.s. convergence on a dense countable subset
of R of a sequence of monotone functions to a bounded continuous limit and
to use Dini’s theorem. 2

Remark 5.3. In the case when y belongs to the boundary of Dom If, we be-
lieve that Theorem 3.1 holds true, but we could not prove it. Clearly Dom If ⊂
�minf;maxf� but these sets are different in general; for instance we may
have, for l ≥ 2,

max
{
�3l�−1 ∑

j∈3l
f◦θj�x�yx ∈ X

}
< maxf:(5.10)

On the other hand, we study in the next result a particular but interesting
case where the equality holds in (5.10) as well as the convergence in (3.3) with
y ∈ ∂Dom If = �minf;maxf�.
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Proposition 5.1. Let fx X → R, depending only on a single coordinate.
Under the assumptions and notations of Theorem 3.1 we have for all P ∈ G
and all y ∈ R:

lim
n→∞
�lnmn�−1 ln

{
Mn�y�
mn

[
1−Mn�y�

mn

]}
= −min�t−1If�y�;1�; P-a.s.(5.11)

Moreover the convergence is P-a.s. uniform on closed intervals where the limit
is continuous.

This result applies in particular to estimating the large deviation rate func-
tion for the magnetization in the Ising model; see the example in Section 2
and the simulations in Section 7.

Proof. We can assume that f�x� depends only on x0. Define X [
0 = �x0 ∈

X0yf�x� = maxf�. Following the proof of Theorem 5.1, we see that it is enough
to prove a.s. convergence when y = maxf. Acording to Theorem 5.1 this will
follow from

lim inf
n→∞

�3n�−1 ln inf
z∈X

53n�x3n ∈ �X
[

0 �3n �3nz� ≥ −If�y�:

From (2.3) we have

53n�x3n ∈ �X
[

0 �3n/3nz� = �Z3n
�3nz��

−1 ∑

x3n∈�X [
0 �3n

exp�U3n
�x3n ∨ z��

= �Z3n
�3nz��

−1 Z[
3n
�3nz�

with the notations Z[; p[ when using X [ = �X [
0 �Z

d

as state space instead of
X . From (4.2) we have

lim inf
n→∞

�3n�−1 ln inf
z∈X

53n�x3n ∈ �X
[

0 �3n �3nz�

= −p�φ� + p[�φ�

= −p�φ� +max
{∫

φdQ+H�Q�y Q ∈ Ps�X �; Q�X [� = 1
}

= −min
{
I�Q�y Q ∈ Ps�X �;

∫
fdQ = y

}

= −If�y�;
using (4.1) and (4.2), which is the desired result. 2

We now consider the vector case, which is of interest for applications as
emphasized in the introduction. Let f be a local function from X to Rν; ν ≥ 1,
depending only on the restriction xW of x to some finite set W ⊂ Zd, and we
define again

If�v� = min
{
I�Q�yQ ∈ Ps�X �;

∫
fdQ = v

}
; v ∈ Rν:
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Then Dom If x= �v ∈ Rνy If�v� < ∞� coincides with �
∫
fdQy Q ∈ Ps�X ��; it

is a convex subset of Rν and

If�v� = max�Iu·f�u · v�y u ∈ S �

with S the unit sphere in Rν. Similarly to Theorem 3.1 we will consider the
random variables

M′n;u�y� =
∣∣∣∣
{
i ∈ Zdy i+ 3l�n� +W ⊂ 3n; � 3l�n� �−1 ∑

j∈i+3l�n�
u · f◦θj ≥ y

} ∣∣∣∣

for y real, and Mn;u�y� = �M′n;u�y� ∨ 1� ∧ �mn − 1� with mn as before.

Theorem 5.2. Let l�n� be a nondecreasing sequence of integers with
�3l�n�� ∼ t−1 ln �3n�, t > 0. For all P ∈ G and v not belonging to the boundary
∂Dom If of the domain of If we have, P-a.s.,

lim
n→∞
�lnmn�−1 min

u∈S
ln
Mn;u�u · v�

mn

= −min�t−1If�v�;1�:(5.12)

Even though it looks somewhat different, (5.12) is exactly the extension of
Theorem 3.1. From the elementary facts �1/2��p∧�1−p�� ≤ p�1−p� ≤ p∧�1−
p�; p ∈ �0;1� and minu�pu∧�1−pu�� = minupu∧minu�1−pu�; pu ∈ �0;1�,
we have indeed

1
2
≤ min

u∈S

{
Mn;u

mn

[
1− Mn;u

mn

]} / (
min
u∈S

Mn;u

mn

∧min
u∈S

[
1− Mn;u

mn

])
≤ 1;

where Mn;u is a shorthand for Mn;u�u ·v�. On the other hand, we can see from
the proof below that (5.12) still holds with 1−Mn;u/mn instead of Mn;u/mn

(in fact they yield very close values for minu∈S in (5.12) since S is symmetric
with respect to 0). Hence (5.12) also holds when replacing Mn;u with Mn;u�1−
Mn;u/mn�, which is our claim.

Proof. Define A�u;y� = �Q ∈ P �X �y u·
∫
fdQ ≥ y�; u ∈ S ; y ∈

R. From Lemma 5.1 with A = A�u;u · v� it follows immediately that
lim supn→∞�lnmn�−1 minu∈S ln�Mn;u�u · v�/mn� is not larger than the right-
hand side of (5.12). For the reverse inequality, we may assume that v belongs
to the interior of Dom If. We start by proving that ∀ δ > 0; ∃ k0 ≥ 1 and
u1; : : : ; uk0

∈ S such that ∀ u ∈ S ; ∃ k ≤ k0:

�w ∈ Dom Ify ukw ≥ ukv+ δ� ⊂ �w ∈ Dom Ify uw ≥ uv�:(5.13)

Since f is bounded, we can find r < ∞ such that Dom If is contained in the
ball with center v and radius r. Let u1; : : : ; uk0

∈ S such that the balls with
radius δ/r and center uk; k ≤ k0 cover the sphere S . Then for u ∈ S and uk
with �u − uk� < δ/r, the inequality uk�w − v� ≥ +δ implies u�w − v� ≥ 0 for
any w ∈ Dom If. This proves (5.13). 2
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Recall that Mn;u�y� ≥N�n− n0; l�n�;A�u;y�� with n0 = diamV and note
that

∫
fdQ ∈ Dom If for all Q. The relation (5.13) implies that

min
u∈S

Mn;u�uv� ≥ min
k≤k0

N�n− n0; l�n�;A�uk; ukv+ δ��:(5.14)

According to Theorem 5.1 we have, P-a.s. for large n,

lim inf
n→∞

�lnmn�−1 ln�N�n; l�n�;A� + 1� ≥ �1− t−1I�Å��+(5.15)

for A = A�uk; uk · v+ δ�; k ≤ k0. Since v belongs to the interior of Dom If, we
have

lim
δ→0

I�Å�uk; uk · v+ δ�� = I�A�uk; uk · v�� ≤ If�v�:

This together with (5.14) and (5.15) implies that P-a.s.,

lim
n→∞
�lnmn�−1 min

u∈S
ln�Mn;u�u · v�/mn� = −t−1If�v�: 2

We investigate now the critical case l�n� ∼ �lnn�α with α ∈�1/d;1/�d− 1��.

Theorem 5.3. Assume d ≥ 2. Let l�n� be a nondecreasing sequence of in-
tegers such that �3l�n��/ ln �3n� → ∞ and �3l�n��/�ln �3n��d/�d−1� → 0. Then, for
all P ∈ G and A ⊂ P �X �, we have P-a.s.,

|Å∩Gs 6=\ ≤ lim inf
n→∞

�ln �3n��−1 ln�N�n; l�n�;A� + 1�

≤ lim sup
n→∞

�ln �3n��−1 ln�N�n; l�n�;A� + 1�

≤ |Ā∩Gs 6=\

with the notation |A6=\ = 1 if A 6= \, |A6=\ = 0 if A = \; �A ⊂ P �X ��.

Proof. The upper bound follows directly from Lemma 5.1 with t = 0. In
order to prove the lower bound, we can restrict ourselves to the case when
Å∩Gs contains at least one element Q. By assumption on l�n�, we can find a
sequence �al�l≥1 which coincides with ln �3n� when l = l�n�; n ≥ 1, and such

that an = o��3n�� and �3n� = o�a
d/�d−1�
n �. Then

b = − lim inf
n→∞

a−1
n ln inf

z; z̄∈X
53n�Rn;x ∈ A/3nz�

is equal to zero, from Lemma 4.2(b) in Comets (1994), for large deviation inside
the set of Gibbs measures. Then our Lemma 5.2 applies and implies the lower
bound. 2
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6. Large deviation principle for an empirical measure. We want to
stress the large deviation principle which is behind our results as well as the
Erdős–Rényi law (1970). Let

µ̂n = µ̂n�x�
be the uniform measure of the set of “moving” empirical fields 1n; l�n��x�:

µ̂n = ��iy i+ 3l�n� ⊂ 3n��−1 ∑
ix i+3l�n�⊂3n

δRi; l�n�; x :(6.1)

Then µ̂n is a probability measure on P �X � and we have

µ̂n�A� = ��iy i+ 3l�n� ⊂ 3n��−1N�n; l�n�;A�:(6.2)

We consider again a nondecreasing sequence of integers l�n� with �3l�n�� ∼
t−1 ln �3n� for some t > 0. Note that the functional

J�Q� = I�Q� if I�Q� ≤ t;
J�Q� = +∞ if I�Q� > t

is lower semicontinuous from the compact space Ps�X � to �0;+∞�. We set as
above J�A� = inf�J�Q�y Q ∈ A⋂Ps�X ��.

Theorem 6.1. For any P ∈ G , the sequence µ̂n obeys an almost sure large
deviation principle in the scale �3l�n�� with rate function J. More precisely, for
P-a.e. x, we have, for all A ⊂ P �X �,

−J�Å� ≤ lim inf
n→∞

� 3l�n� �−1 ln µ̂n�A�

≤ lim sup
n→∞

� 3l�n� �−1 ln µ̂n�A�

≤ −J�Ā�:

(6.3)

See also Torrent (1996) for related results and a more systematic study.
This theorem complements Theorem 3.1 in Comets (1994), which states that
the support 1n; l�n��x� of µ̂n converges in the Hausdorff distance to the level
set 0t = �Q ∈ Ps�X �y I�Q� ≤ t� = �Q ∈ Ps�X �y J�Q� <∞�.

Proof. We first prove that (6.3) holds P-a.s. for any given A.
Since lnx ≤ ln�x+1�; x ≥ 0, the upper bound in (6.3) follows from Theorem

3.1 when I�Ā� ≤ t, and from Remark 5.1(i) when I�Ā� > t.
It is enough to prove the lower bound when J�Å� < +∞, that is, when

I�Q� ≤ t for some Q ∈ Å. Then there exists also some R ∈ Å with I�R� < t

since I is affine, and so I�Å� = J�Å� < t. We have 1 − t−1I�Å� > 0, and with
the elementary bound ln�1 + x� ≤ ln 2 + lnx; x ≥ 1 we see that the lower
bound in (6.3) follows from Theorem 3.1.

To complete the proof, we now check that we can interchange “∀A” and “P-
a.s.” Since P �X � is a separable metric space, we can perform the interchange
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for the lower bound. As for the upper bound, we define the level set 0s = �Q ∈
Ps�X �y J�Q� ≤ s�; s ≥ 0, and its ε-neighborhood 0s; ε in the Prohorov metrics
on P �X �. Then J�0cs; ε� < s, and the set

X ′ =
{
x ∈ X y ∀ ε ∈ Q∗+ ∀ s ∈ Q+; lim sup

n→∞
� 3l�n� �−1 ln µ̂n�0cs; ε� ≤ −s

}

has P-probability 1. Let A with J�Ā� > 0; for all s ∈ �0;J�Ā�� we can choose
ε ∈ Q∗+ with A

⋂
0s; ε = \, and therefore we have

lim sup
n→∞

� 3l�n� �−1 ln µ̂n�A� ≤ lim sup
n→∞

� 3l�n� �−1 ln µ̂n�A�

≤ −s

Fig. 1. h = 0 and high temperature: β = 0:35 (solid line), β = 0:40 (dotted line), β = 0:42 (dashed
line).
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for all x ∈ X ′. Hence the upper bound is valid on the set X ′ which has full
measure. 2

7. Simulation experiments. We illustrate now the practical interest of
the method. Samples from the two-dimensional nearest neighbor Ising model
[see the example in Section 2] were simulated via the Gibbs sampler algorithm
with precomputed transition probabilities. We have used periodic boundary
conditions on square boxes 3n = �−n;n�2 with n = 200 in general. The well-
known finite-size effects lead to an “experimental critical inverse temperature”
lower than the real value βc�2� = 0:4406868 : : : : For the function of interest
we have taken the magnetization f�x� = x0.

Fig. 2. Low temperature: h = 0 and β = 0:44 (solid line), β = 0:442 with n = 200 (dotted line),
β = 0:442 with n = 800 (short dashes), β = 0:445 (medium dashes); high temperature and external
field; h = 0:03 and β = 0:35 (large dashes).
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Fig. 3. Zoom on the critical region at low temperature, zero external field: β = 0:44 (solid line),
β = 0:441 (large dashes), β = 0:442 and n = 200 (dotted line), β = 0:442 and n = 800 (small
dashes). This indicates the amplitude of fluctuations.

In Figures 1–3 we show estimates of If from simulations with various val-
ues of the parameters. More precisely, we plot the function of y:

−�lnmn�−1t

{
ln
{
Mn�y�
mn

[
1− Mn�y�

mn

]}
+ 2 ln�2�

}
;

which is the estimator from Section 3, with the slight modification of adding
2 ln 2 to reduce the bias at the bottom of the curve. This does not change
the asymptotics of Theorem 3.1, and it converges to min�t−1If�y�;1�. The
parameter t was taken as 0:05. In general our estimates “look like” a convex
function. For small values of β and h = 0 the curvature is large close to
the bottom. As β increases the bottom part becomes flatter and flatter. At
criticality and after, the spontaneous magnetization appears and reflects in
the minimum of the estimate. A flat part seems to extend from this value to
its opposite. At the critical point, a drastic change occurs in the curvature of
the estimate close to its minimum.

The present figures should be compared with those in Comets (1994). The
ones here are much smoother and closer to convexity; they are obtained via
a single sample, though an average of over ten samples was performed in
our previous paper. They show a significant improvement compared to the
previous results, and they could be suitable for hypothesis testing of phase
transition, based on the curvature of the estimate for If. Note that our choice
of t here is arbitrary.
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