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No more things should be presumed to exist than are absolutely necessary.—
William of Occam

Everything should be made as simple as possible, but not simpler.—Albert
Einstein

This review provides a comprehensive understanding of regularization
theory from different perspectives, emphasizing smoothness and simplic-
ity principles. Using the tools of operator theory and Fourier analysis, it
is shown that the solution of the classical Tikhonov regularization prob-
lem can be derived from the regularized functional de�ned by a linear
differential (integral) operator in the spatial (Fourier) domain. State-of-
the-art research relevant to the regularization theory is reviewed, covering
Occam’s razor, minimum length description, Bayesian theory, pruning al-
gorithms, informational (entropy) theory, statistical learning theory, and
equivalent regularization. The universal principle of regularization in
terms of Kolmogorov complexity is discussed. Finally, some prospective
studies on regularization theory and beyond are suggested.

1 Introduction

Most of the inverse problems posed in science and engineering areas are ill
posed—computational vision (Poggio, Torre, & Koch, 1985; Bertero, Pog-
gio, & Torre, 1988), system identi�cation (Akaike, 1974; Johansen, 1997),
nonlinear dynamic reconstruction (Haykin, 1999), and density estimation
(Vapnik, 1998a), to name a few. In other words, given the available input
data, the solution to the problem is nonunique (one-to-many) or unsta-
ble. The classical regularization techniques, developed by Tikhonov in the
1960s (Tikhonov & Arsenin, 1977), have been shown to be powerful in mak-
ing the solution well posed and thus have been applied successfully in
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model selection and complexity control. Regularization theory was intro-
duced to the machine learning community (Poggio & Girosi, 1990a, 1990b;
Barron, 1991). Poggio and Girosi (1990a, 1990b) showed that a regulariza-
tion algorithm for learning is equivalent to a multilayer network with a
kernel in the form of a radial basis function (RBF), resulting in an RBF net-
work. The regularization solution was originally derived by a differential
linear operator and its Green’s function (Poggio & Girosi, 1990a, 1990b).
A large class of generalized regularization networks (RNs) is reviewed in
Girosi, Jones, and Poggio (1995). In the classical regularization theory, a
recent trend in studying the smoothness of the functional is to put the
functionals into the reproducing kernel Hilbert space (RKHS), which has
been well developed in different areas (Aronszajn, 1950; Parzen, 1961, 1963;
Yosida, 1978; Kailath, 1971; Wahba, 1990). By studying the properties of
the functionals in the RKHS, many learning models, including smoothing
splines (Kimeldorf & Wahba, 1970; Wahba, 1990), RNs (Girosi et al., 1995),
support vector machines (SVMs; Vapnik, 1995, 1998a), and gaussian pro-
cesses (MacKay, 1998; Williams, 1998a), can be related to each other. In this
sense, regularization theory has gone beyond its original implication and
expectation.

In this review, we emphasize the theory of operators, Green’s function,
and kernel functions. In particular, based on operator theory and Fourier
analysis, we derive the spectral regularization framework (Chen & Haykin,
2001a, 2001b) along the lines of classical spatial regularization (Poggio &
Girosi, 1990a; see also Haykin, 1999). As we show, the regularization ap-
proach is per se to expand the solution in terms of a set of Green’s func-
tions, which depend on the form of stabilizer in the context of differential or
integral operators and their associated boundary conditions. With two prin-
ciples of regularization, smoothness and simplicity, in mind, we provide an
extensive overview of regularization theory. The main contributions of this
article are to review the theory of regularization, examine the relations be-
tween regularization theory and other related theoretical work, and present
some new perspectives.

The rest of the review is organized as follows. Section 2 brie�y formu-
lates the ill-posed problem and introduces regularization theory as the so-
lution. Section 3 introduces the classical Tikhonov regularization theoretical
framework with prerequisite materials on machine learning and operator
theory. Following the theory of operator and Green’s function, we derive
the spectral regularization framework using Fourier analysis. Starting with
Occam’s razor and minimum length description (MDL) theory in section 4,
we present different facets of regularization theory from sections 5 through
10. Various relevant research topics are reviewed and their connections to
regularization theory highlighted. Finally, the universal principle of Kol-
mogorov complexity for regularization is explored in section 11, followed
by the summary and comments in section 12.
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2 Why Use Regularization?

A problem is said to be well posed in the Hadamard sense1 if it satis�es
the following three conditions (Tikhonov & Arsenin, 1977; Morozov, 1984;
Haykin, 1999):

1. Existence. For every input vector x 2 X, there exists an output vector
y D F(x), where y 2 Y.2

2. Uniqueness. For any pair of input vectors x, z 2 X, it follows that
F(x) D F(z) if and only if x D z.

3. Continuity (stability). The mapping is continuous, that is, for any 2 > 0
there exists f D f (2 ) such that the condition dX (x, z) < f implies that
dY (F(x), F(z) ) < 2 , where d (¢, ¢) represents the distance metric between
two arguments in their respective spaces.

If any of these three conditions is not satis�ed, the problem is said to be ill
posed. In terms of operator language, we have

De�nition 1 (Kress, 1989). Let A: X ! Y be an operator from a normed space
X into a normed space Y. The equation Ax D y is said to be well posed if A is
bijective3 and the inverse operator A¡1: Y ! X is continuous. Otherwise the
equation is called ill posed.

According to de�nition 1, if A is not surjective, then Ax D y is not solvable
for all y 2 Y and thus violates the existence condition; if A is not injective,
Ax D y may have more than one solution and thus violates the uniqueness
condition; if A¡1 exists but is not continuous, then the solution x does not
depend continuously on the observation y, which again violates the stability
condition (Kress, 1989).

The following three equivalent conditions are usually used to describe
the constraints of the solution of the inverse problem (Poggio & Koch, 1985):

� Find x that minimizes kAx ¡ yk that satis�es kPxk < c1, where c1 is a
positive scalar constant.

� Find x that minimizes kPxk that satis�es kAx ¡ yk < c2, where c2 is a
positive scalar constant.

1 Hadamard sense is a special case of Tikhonov sense (Vapnik, 1998a).
2 Throughout this review, X, Y represent the range or domain in speci�c functional

space.
3 The operator is bijective if it is injective and surjective. If for each y 2 A (X) there

is at most (or at least) one element x 2 X with Ax D y, then A is said to be injective (or
surjective).
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� Find x that minimizes kAx ¡ yk2 C lkPxk2, where l is a regularization
parameter (l D c2 /c1),

where x is the solution, y is the observation, A and P represent some linear
operators, and k ¢ k is some kind of norm operator depending on a spe-
ci�c physical scenario. The �rst condition is called the quasi-solution and
the second is called the discrepancy principle, both of which belong to the
constrained optimization problem. The third condition is an unconstrained
optimization problem, which we focus on in this review.

Ill-posed problems are ubiquitous in the real world, since most inverse
problems are subject to some physical constraints and have no unique so-
lution. We brie�y describe three examples relevant to the neural networks
and signal processing communities.

2.1 Computational Vision. The early vision problem is often referred
to the �rst processing stage in computational vision, which consists of de-
coding two-dimensional images in terms of properties of three-dimensional
objects. Many computational vision problems, such as shape from shading,
surface reconstruction, edge detection, and computation of optical �ow, are
generally ill posed (Poggio & Koch, 1985; Poggio et al., 1985; Bertero et al.,
1988). In general, the solutions to these ill-posed problems can be formulated
as (Poggio et al., 1985)

arg min
x

kAx ¡ yk2 C lkPxk2. (2.1)

By invoking different regularization tools (Marroquin, Mitter, & Poggio,
1987; Poggio, Voorhees, & Yuille, 1988; Yuille & Grzywacz, 1988; Schnorr &
Sprengel, 1994; Bernard, 1999), many computational vision problems haven
been solved with great success.

2.2 Density Estimation. Density estimation is a fundamental problem
in machine learning. Suppose the observed data are sampled by the density
p (x) from the cumulative distribution function F(x), which is expressed by

Z x

¡1
p (t ) dt D F(x). (2.2)

Now the problem is formulated as: Given some data xi (i D 1, . . . , )̀ , how
can p (x) be estimated from a �nite number of noisy observations? Empiri-
cally, one may estimate the distribution function by

F`(x) D
1
`

`X

iD1

H (x ¡ xi), (2.3)
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where H (¢) is a step function; H (x) D 1 if all xn > 0 and H (¢) D 0 otherwise.
The density is further estimated by solving

Z x

¡1
p(t ) dt D F`(x). (2.4)

Solving this inverse operator is generally a stochastic ill-posed problem,
especially in the high-dimensional case (Vapnik, 1998a).

2.3 Dynamic Reconstruction. Nonlinear dynamic reconstruction (e.g.,
sea clutter dynamics) is a common problem in the physical world (Haykin,
1999). Without loss of generality, the nonlinear dynamics can be formulated
by the following state-space model,

xtC1 D F(xt) C º1,t (2.5)

yt D G(xt) C º2,t, (2.6)

where F is a nonlinear mapping vector-valued function, G is a scalar-valued
function, and º1,t and º2,t represent process noise and measurement noise
contaminating the state variable xt and the observable yt, respectively. Given
a time series of observable yt, the problem is to reconstruct the dynamics
described by F, which is generally ill posed in the following sense: (1) for
some unknown reasons, the existence condition may be violated; (2) there
may not be suf�cient information in the observation for reconstructing the
nonlinear dynamics uniquely, which thus violates the uniqueness condition;
and (3) the unavoidable presence of noise adds uncertainty to the dynamic
reconstruction—when the signal-to-noise ratio (SNR) is too low, the conti-
nuity condition is also violated.

One way to solve ill-posed problems is to make the problems well posed
by incorporating prior knowledge into the solutions (Tikhonov & Arsenin,
1977; Morozov, 1984; Wahba, 1990, 1995; Vapnik, 1998a). The forms of prior
knowledge vary and are problem dependent. The most popular and im-
portant prior knowledge is the smoothness prior,4 which assumes that the
functional mapping of the input to the output space is continuous and
smooth. This is where regularization naturally comes in, arising from the
well-known Tikhonov’s regularization theory,5 which we detail in the next
section.

4 Another methodology to embed prior knowledge is the theory of hints and virtual
examples. See Abu-Mostafa (1995), and Niyogi, Girosi, and Poggio (1998).

5 Many well-known statistical terminologies (for example, ridge regression, penalized
least-square estimate, penalized likelihood estimate, smoothing splines, and averaging kernel re-
gression) can be well formulated in Tikhonov’s regularization framework.
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3 Regularization Framework

3.1 Machine Learning. Consider the following machine learning prob-
lem: Given a set of observation data (learning examples) f (xi, yi) 2 RN £
Rg`

iD1 ½ X £ Y, the learning machine f is expected to �nd the solution to
the inverse problem. In other words, it needs to approximate a real function
in the hypothesis satisfying the constraints f (xi) D y (xi) ´ yi, where y (x)
is supposed to be a deterministic function in the target space. Hence, the
learning can be viewed as a multivariate functional approximation problem
(Poggio & Girosi, 1990a, 1990b). It can be also viewed as an interpolation
problem (Powell, 1985; Micchelli, 1986; Broomhead & Lowe, 1988), where f
is an interpolant parameterized by weights w. Note that this problem is ill
posed in that the approximants satisfying the constraints are not unique. To
solve the ill-posed problem, we usually require some smoothness property
of the solution f , and the regularization theory naturally comes in.

Statistically, the approximation accuracy is measured by the expectation
of the approximation error. In the Hilbert space,6 denoted as H, the expected
risk functional may be expressed as

R D
Z

X£Y
L(x, y) dP (x, y)

D
Z

X£Y
L(x, y)p (x, y) dx dy, (3.1)

where L(x, y) represents the loss functional. A common loss function is the
mean squared error de�ned by L2 norm. Suppose y is given by a nonlinear
function f (x) corrupted by additive white noise independent of x: y D f (x) C
e, where e is bounded and follows an unknown probability metric m (e)
(namely, the noise e can have various probability density models, as we
discuss in section 8). In that case, p (x, y) D p(x)p (y | x), and the conditional
probability density p(y | x) is represented by the metric function m [y ¡ f (x)].
In particular, the expected risk functional with the L2 norm is given by

R D
Z

X£Y
[y ¡ f (x)]2p (x, y) dx dy. (3.2)

In practice, the joint probability p (x, y) is unknown, and an estimate of R
based on �nite (say, )̀ observations is used instead, with an empirical risk
functional

Remp D
`X

iD1

[yi ¡ f (xi)]2, (3.3)

6 Hilbert space is de�ned as an inner product space that is complete in the norm
induced by the inner product. The common measure space where the Lebesque square-
integrable functions are de�ned is a special case of Hilbert space: L2 space.
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which introduces an estimate Oy (x) ( Oy D y ¡ e D f (x)). Quantitatively, sup-
pose A · L(x, y) · B and 0 · g · 1; for the loss taking the value g, the
generalization error has the upper bound (Vapnik, 1995):

R · Remp C (B ¡ A)
r

dVC log(1 C 2`/dVC) ¡ log(g/4)
`

(3.4)

with the probability 1 ¡g, where dVC is a nonnegative integer called the VC
dimension, which is a capacity metric of the learning machine. The second
term on the right-hand side of equation 3.4 determines the VC con�dence.7

3.2 Tikhonov regularization. In the theory of regularization, the ex-
pected risk is decomposed into two parts—the empirical risk functional
Remp[ f ] and the regularizer risk functional Rreg[ f ]:

R[ f ] D Remp[ f ] C lRreg[ f ]

D
1
2

`X

iD1

[yi ¡ f (xi)]2 C
1
2

lkD f k2, (3.5)

where k¢k is the norm operator.8 l is a regularization parameter that controls
the trade-off between the identity (goodness of �t) of data and the rough-
ness of the solution. D is a linear differential operator, which is de�ned as
the Fr Âechet differential of Tikhonov functional (Tikhonov & Arsenin, 1977;
Haykin, 1999). Geometrically, D is interpreted as a local linear approxima-
tion of the curve (or manifold) in high-dimensional space. The smoothness
prior implicated in D makes the solution stable and insensitive to noise.

De�nition 2, Fr Âechet differential (Balakrishnan, 1976). A function f map-
ping X to Y is said to be Fr Âechet differentiable at a point x, if for every h in X,

lim
2 !0

f (x C 2 h) ¡ f (x)
2

D df (x, h)

exists, and de�nes a linear bounded transformation (in h) mapping X into Y.
df (x, h) D F(x)h is the Fr Âechet differential; F(x) is the Fr Âechet derivative.

7 See Niyogi and Girosi (1996, 1999) for detailed discussions on the approximation
error (bias) and estimation error (variance).

8 It is usually referred to the L2 norm in the Hilbert space unless stated otherwise. Also
note that it can be de�ned in a particular form in the RKHS.



2798 Zhe Chen and Simon Haykin

Since the Fr Âechet differential is regarded as the best local linear approxi-
mation of a functional, we have

dR( f, h) D
d

db
R ( f C bh)


bD0

, (3.6)

where h(x) is a constant �xed function of x. By using the Riesz representation
Theorem (Yosida, 1978; Debnath & Mikusinski, 1999) and following the
steps in Haykin (1999), we have

dRemp ( f, h) D
d

db
Remp ( f C bh)


b D0

D ¡
`X

iD1

[yi ¡ f (xi)]h (xi)

D ¡
*

h,
`X

iD1

(yi ¡ f (xi))d (x ¡ xi)
+

, (3.7)

where d (¢) is the Dirac delta function and h¢, ¢i denotes the inner product of
two functionals in the Hilbert space H. Similarly, the Fr Âechet differential of
the regularizing term Rreg is written as

dRreg ( f, h) D
d

db
Rreg ( f C bh)


bD0

D
Z

D[ f C bh]Dh dx

bD0

D
Z

D fDh dx D hDh, D f i. (3.8)

The above results are well known in the spatial domain. See Haykin (1999)
for details.

3.3 Operator Theory and Green’s Function. Instead of presenting a rig-
orous mathematical treatment on operator theory, we brie�y introduce the
basic concepts and theorems that are relevant to our purposes and sketch
a picture of differential and integral operators and their associated Green’s
(kernel) functions. More information can be found in books on functional
analysis (Balakrishnan, 1976; Yosida, 1978; Kress, 1989; Debnath & Mikusin-
ski, 1999).

3.3.1 Operator. Roughly speaking, an operator is a kind of correspon-
dence relating one function to another in terms of a differential or inte-
gral equation (and, thus, the differential or integral operator arises from
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the correspondence). An operator can be linear or nonlinear, �nite dimen-
sional or in�nite dimensional. We discuss only linear operators here. Given
a bounded linear operator A: X ! Y, its adjoint operator is de�ned as
QA: Y ! X, that is, hAx, yi D hx, QAyi (x 2 X, y 2 Y) and kAk D k QAk. It is

called adjoint because it describes the inverse correspondence between two
functions in the operator, with exchanging range and domain. The role of
the adjoint operator is similar to the (conjugate) transpose of a (complex)
matrix. An operator is a self-adjoint operator if it is equal to its adjoint op-
erator, in other words, hAx, x0i D hx0 , QAxi (x, x0 2 X). Analogous to matrix
computation, we can imagine functionals as in�nite-dimensional vectors in
the sense of generalized functions, and linear operators can be viewed as
in�nite-dimensional matrices. Solving the linear differential (integral) op-
erator is in essence solving a differential (integral) equation. Many concepts
familiar in linear algebra and matrix theory (e.g., norm, determinant, condi-
tion number, trace) can be extended to operator theory. The spectral theory
isused to de�ne, in operator language, the properties similar to eigenvectors
and eigenvalues in matrix computation. Given a differential or integral op-
erator, we may de�ne the eigenvectors as follows:Find the valuej for which
there exists a nonzero function f satisfying the equation Af D j f , where the
vector function f satisfying this equation is called the eigenvector of the
operator A and j is the corresponding eigenvalue.

De�nition 3. Given a positive-de�nite kernel function K, an integral operator
T is de�ned by T f D f (s) D R K (s, x) f (x) dx; its adjoint operator QT is de�ned by
QT f D f (x) D R K (x, s) f (s) ds. T is self-adjoint if and only if K (s, x) D K (x, s) for
all s and x, where the overline denotes complex conjugate.

Remarks.

� An integral operator with a symmetric kernel K (s, x) is self-adjoint.
Note that de�nition 3 is valid only for homogeneous integral equa-
tions.9 The integral equation given in the de�nition 3 is sometimes
called a Fredholm integral equation of the �rst kind (Kress, 1989).

� From de�nition 3, one may have

QTT f D g: g (s) D
Z

K0 (s, x) f (x) dx (3.9)

K0 (s, x) D
Z

K (s, t)K (x, t) dt. (3.10)

9 For the inhomogeneous integral equation, we have f (s) D
R

K (s, x) f (x) dx C h(s),
where h(s) is an even function. It is also called a Fredholm integral equation of the second
kind.
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Denoting K D QTT, we know, by de�nition, that K is still an integral
operator with the associated kernel function K0 , and K is also a self-
adjoint operator; likewise, L D QDD is still a differential operator.10

� The integral operator essentially calculates E[ f (x)] (where E[¢]) repre-
sents mathematical expectation), provided K (s, x) takes the form of a
Backus-Gilbert averaging kernel: K (s, x) D Pm

iD1 si (x)ki (s), where ki (¢)
is a known smooth function (O’Sullivan, 1986). In particular, K (s, x)
can be a covariance kernel if T is nuclear (Balakrishnan, 1976).

3.3.2 Norm. The norm operator essentially determines the smoothness
of a functional, depending on the functional space where the inner product
is de�ned. For example, a general norm in the Hilbert space Hm is de�ned
by

k f kHm D
"Z

R

Á
| f |2 C


@f
@x



2

C ¢ ¢ ¢ C

@m f
@xm



2!
dx

#1/2

D

2

4
mX

kD0

®®®®®
@k f
@xk

®®®®®

2

2

3

5

1/2

I

when m D 0, it reduces to the L2 norm. If the norm operator is de�ned in
the Sobolev space Wm

p (Adams, 1975),11 the norm is given by

k f kWm
p

D
µZ

R

³
| f |p C


@f
@x


p

C ¢ ¢ ¢ C

@m f
@xm


p´

dx
¶1/p

. (3.11)

In other words, for 0 · p · 1, m D f0, 1, . . .g, the functional f is said to
belong to Sobolev space Wm

p if it is m-times differentiable with an associated
norm k fkWm

p
D k fkp C k f (m)kp. Based on different norm operators, different

smoothness functionals can be de�ned. For example, the smoothing splines
arise from the case of m D 2, p D 2 (Wahba, 1990). In the RKHS (Aronsajn,
1950), the Hilbert norm is de�ned by12

k f kHm ´ k fkK D
Z

RN

|F (s) |2

K (s)
ds, (3.12)

where K is the (unique) kernel function associated to the RKHS, and K is the
Fourier transform of K. For this reason, RKHS is sometimes called a proper
functional Hilbert space.

10 It can be understood by observing L (u, v) D QD (Du, v) D QD(u, Dv) and K (u, v) D
QT (Tu, v) D QT (u, Tv).

11 Hilbert space is a special case of Sobolev space, Hm D Wm
2 , and L2 space is W0

2 .
12 For a discussion of iterative evaluation of the RKHS norm, see Kailath (1971).
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3.3.3 Green’s Function. It is well known in functional analysis (Yosida,
1978) that given a positive integral operator T, we can always �nd a
(pseudo-)differential operator,13 D, as its inverse. The operator D corre-
sponds to the inner product of the RKHS with a reproducing kernel K asso-
ciated to T, where the kernel K is called Green’s function of the differential
operator D. If the operator D is a certain form of pseudodifferential opera-
tor, the functional space induced by the kernel14 is a Sobolev space (Adams,
1975).

In analogy to the inverse of a matrix, Green’s function represents the in-
verse of a (suf�ciently regular) linear differential operator (Lanczos, 1961).
For a large class of problems, it appears in the form of a kernel function
that depends on the position of two points in the given domain. Green’s
function can be de�ned as the solution of a certain differential equation that
has the Dirac delta function on the driving force. The reciprocity theorem
makes it possible to de�ne the Green’s function in terms of either a differen-
tial operator or its adjoint operator (see Lanczos, 1961, chap. 5 for details).
Mathematically, we have the following de�nition:

De�nition 4 (Courant & Hilbert, 1970). Given a linear differential operator L,
the function G (x, ») is said to be the Green’s function for L if it has the following
properties:

� For a �xed », G(x, ») is a function of x and satis�es the given boundary
conditions.

� Except at the point x D », the derivatives of G (x, ») with respect to x are all
continuous; the number of derivatives is determined by the order of operator
L.

� With G(x, ») considered as a function of x, it satis�es the partial differential
equation LG(x, ») D d (x ¡ »).

Denoting Q (x) as a continuous function of x 2 RN , it follows that the function

F(x) D
Z

RN
G(x, »)Q (») d» (3.13)

is the solution of the differential equation

LF(x) D Q (x), (3.14)

13 The pseudodifferential operator differs from the differential operator in that it may
contain an in�nite sum of differential operators and its Fourier transform is not necessarily
a polynomial.

14 There exists a one-to-one correspondence between the operator and the kernel ac-
cording to Schwartz’s kernel theorem.



2802 Zhe Chen and Simon Haykin

where G(x, ») is the Green’s function for the linear differential operator L.
The proof can be found in Courant and Hilbert (1970) and Haykin (1999).

3.4 Fourier Analysis and Spectral Regularization. Studying regular-
ization theory in the Fourier domain dates back to Kimeldorf and Wahba
(1970, 1971), Duchon (1977), Micchelli (1986), Wahba (1990), and Girosi
(1992). It has been also treated fairly well in the kernel learning framework
(e.g., Schölkopf & Smola, 2002). The common approach in the literature is to
de�ne the smoothness of a stabilizer in some functional space, for example,
the seminorms in the Banach space (Duchon, 1977; Micchelli, 1986) or the
Hilbert norm in the Sobolev space (Kimeldorf & Wahba, 1970). (See Girosi,
1992, 1993; Girosi et al., 1995, for details.)

In what follows, we establish the spectral regularization framework in
the Fourier domain in a slightly different way. Starting with the de�nition of
Fourier operator and Parseval theorem, we de�ne the spectral operator and
further discuss the regularization scheme in terms of operators and integral
equations. To derive the regularization solution, we make use of operator
theory and Green’s function to establish the spatial and spectral regulariza-
tion frameworks, with discussions relating to other relevant work. We also
point out important theorems and give another proof of the regularization
solution by using the Riesz representation theorem.

3.4.1 Spectral Operator. Essentially, the spectral operator is an integral
operator given by de�nition 3:

T f D
Z

RN
K (s, x) f (x) dx.

In the case of the Fourier operator, K (s, x) D exp(¡jhs, xi) where j ´
p

¡1.
Formally, we have:

De�nition 5. For any functional f (x) 2 H, the Fourier operator T is de�ned by
T f D F : F (s) D R C1

¡1 f (x) exp(¡jxs) dx; F (s) 2 H.15

Theorem 1, Plancherel identity (Yosida, 1978). Given two functionals f, g
2 H and their corresponding Fourier transform F and G , the Plancherel identity
(Parseval theorem) states that h f (x), g (x)i D 1

2p
hF (s), G (s)i.16 Written in the

operator form, it is expressed by h f, gi D hT f, Tgi.

15 The range and domain of Fourier operator are both in the Hilbert space.
16 For simplicity of notation, we henceforth take all the constants that appear in the

de�nitions of (inverse) Fourier transform to be 1. Note that hF (s) , G (s) i D
R

F (s)G (s) ds.
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Remarks.

� If we de�ne the differential operator D as

D D
1X

¡1

(¡1)n

n!
dn

dxn , (3.15)

then its corresponding spectral operator is

TD D
1X

¡1

(¡1)n ( js)n

n!
D exp(¡js). (3.16)

where TD denotes the Fourier operator functioning on a differential
operator D (with respect to f ), namely, TD f D T(D f ) D D(T f ) D DF .

� Recalling equation 3.10, for the Fourier operator T, the kernel function
associated with the operator K is given by

K0 (x, xi) D
Z

exp(jsx) exp(¡jsxi) ds D d (x ¡ xi),

and it follows that

K f D
Z

K0 (x, xi) f (s) ds

D
Z

d (x ¡ xi) f (s) ds D f (x ¡ xi). (3.17)

Example 1, Dirichlet kernel (Lanczos, 1961; Vapnik, 1995, 1998a).

K (h ) D
sin(n C 1

2 )h

2p sin h
2

. (3.18)

From equation 3.18, the truncated Fourier series is written as

fn (x) D
Z p

¡p

f (s)Kn (s, x) ds (3.19)

where

Kn (s, x) D
1
p

nX

kD0

(cos ks cos kx C sin ks sin kx)

D
1
p

nX

kD0

cos k(s ¡ x) D Kn (s ¡ x), (3.20)
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where Kn (s ¡ x) de�nes an integral operator in the sense that

f (x) D
Z p

¡p

f (s)K (s ¡ x) ds. (3.21)

In particular, the Dirac delta function d (s, x) has the series 3.19 as its Fourier
expansion when n ! 1 (see appendix A for the proof). Hence, the Dirichlet kernel
corresponds to a truncated Fourier expansion mapping (Burges, 1999).

Example 2, Fej Âer kernel (Lanczos, 1961; Vapnik, 1998a).

Wn (h ) D
sin2 n

2h

2p n sin2 h
2

,

which is the arithmetic mean of the Dirichlet kernel. In other words, the Fourier
coef�cients of the Fej Âer kernel are the weighted version of those of the Dirichlet
kernel dependent on n: a0

k D (1 ¡ k/n)ak, b0
k D (1 ¡ k/n)bk.

Other examples, such as periodic gaussian kernel, B-spline kernel, Lapla-
cian kernel, and regularized Fourier expansion kernel, can be found in Vap-
nik (1998a, 1998b), Smola, Schölkopf, & Müller (1998), and Schölkopf &
Smola (2002). It is noted that the Dirichlet kernel, Fej Âer kernel, and B-spline
kernel are interpolation kernels; translationally invariant kernels (e.g., gaus-
sian) are convolution kernels; and polynomial kernels and Fourier kernel
are dot product kernels.

3.4.2 Regularization Scheme. Consider the operator equation AQ D f
(A: X ! Y); the regularization scheme is to �nd an approximated solution
Q2 related to Q, such that kQ2 ¡ Qk · 2 , where 2 is a small, positive value.
Generally, it consists of �nding a linear operator Rl: Y ! X (l > 0) with
the property of pointwise convergence liml!0 RlAQ D Q for all Q 2 X, or,
equivalently, Rl f ! A¡1 f as l ! 0. However, as shown in Kress (1989,
theorem 15.6), for the regularization scheme, the operator Rl cannot be
uniformly bounded with respect to l, and the operator RlA cannot be norm
convergent as l ! 0. In particular, one has the approximation error,

kQ2
l ¡ Qk · kRlAQ ¡ Qk C 2 kRlk,

which states that the error consists of two parts: the �rst term of the right-
hand side is due to the approximation error between Rl and A¡1, and the
second term re�ects the in�uence of incorrect data. In general, the �rst
term decreases as l ! 0, whereas the second term increases as l ! 0.
The regularization parameter, l, controls the trade-off between accuracy
(the �rst term) and stability (the second term). The regularization approach
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amounts to �nding an appropriate l to achieve the minimum error of the
regularized risk functional.

De�nition 6 (Kress, 1989). The regularization scheme Rl, namely, the choice
of regularization parameter l D l(2 ), is called regular if for all f 2 A (X) and all
f 2 2 Y with k f 2 ¡ fk · 2 , there holds Rl(2 ) f 2 ! A¡1 f, 2 ! 0.

By using the tools of eigendecomposition (ED) and singular value de-
composition (SVD) in spectral theory, we have the following theorems:

Theorem 2 (Kress, 1989). For a bounded linear operator, there holds

A (X)? D N ( QA) and N ( QA)? D A(X),

where A(X)? means for all Q 2 X and g 2 A (X)?, hAQ, gi D 0;N ( QA) denotes the
null space of QA, in the sense that QAg D 0 for all g.

Theorem 3 (Kress, 1989). Let X be a Hilbert space, and let A: X ! X be a
(nonzero) self-adjoint compact operator. Then all eigenvalues of A are real. All
eigenspaces N (j I ¡ A) for nonzero eigenvaluesj have �nite dimension, and eigen-
spaces associated with different eigenvalues are orthogonal. Suppose the eigenvalues
are ordered such that |j1 | ¸ |j2 | ¸ ¢ ¢ ¢, and denote by Pn: X ! N (jnI ¡ A) the
orthogonal projection onto the eigenspace for the eigenvalue jn; then there holds

A D
1X

nD1

jnPn

in the sense of norm convergence. Let Q: X ! N (A) denote the orthogonal pro-
jection onto the null space N (A); then there holds

Q D
1X

nD1

PnQ C QQ

for all Q 2 X.

In the case of an orthonormal basis, hQn, Qki D dn,k, we have the following
expansion representation:

AQ D
1X

nD1

jnhQ, QniQn,

Q D
1X

nD1

hQ, QniQn C QQ.
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Theorem 4 (Kress, 1989). Let X and Y be Hilbert spaces. Let A: X ! Y be a
linear compact operator and QA: Y ! X be its adjoint. Let sn denote the singular
values of A, which are the square roots of the eigenvalues of the self-adjoint compact
operator QAA: X ! X. Let fsng be an ordered sequence of nonzero singular values
of A according to the dimension of the null spaces N (s2

n I ¡ QAA). Then there exist
orthonormal sequences fQng in X and fgng in Y such that

AQn D sngn, QAgn D snQn

for all integers n. For each Q 2 X, there holds the SVD

Q D
1X

nD1

hQ, QniQn C QQ

with the orthogonal projection Q: X ! N (A) and

AQ D
1X

nD1

snhQ, Qnign.

Theorem 5, Picard theorem (Kress, 1989). Let A: X ! Y be a linear compact
operator with singular system (sn, Qn, gn). The Fredholm integral equation of the
�rst kind AQ D f is solvable if and only if f 2 N ( QA)? and

1X

nD1

1
s2

n
|h f, gni|2 < 1.

Then a solution is given by

Q D
1X

nD1

1
sn

h f, gniQn.

The Picard theorem essentially describes the ill-posed nature of the inte-
gral equation AQ D f . The perturbation ratio kQ2 k/k f 2 k D 2 /sn determines
the degree of ill posedness, the more quickly s decays and the more severe
the ill posedness is.

For more examples of regularization in terms of operators and Fredholm
integral equations of the �rst kind, see Kress (1989).

3.4.3 Regularization Solution. By virtue of theorem 1, it follows that

hDh, D f i D hTDh, TD f i. (3.22)
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For ease of notation, we henceforth simply denote TD as T. From equa-
tion 3.22, equation 3.8 is rewritten as

dRreg ( f, h) D
Z

D fDh dx D hDh, D f i

D
Z

T f Th ds D
Z

T f Th ds D hTh, T f i. (3.23)

For any pair of functions u(x) and v (x), given a linear differential operator
D and its associated Fourier operator T (i.e., TD), their adjoint operators, D̃
and T̃, are uniquely determined to satisfy the boundary conditions

Z

RN
u(x)Dv (x) dx D

Z

RN
v(x)D̃u(x) dx (3.24)

and
Z

V

u(s)Tv (s) ds D
Z

V

v (s)T̃u(s) ds, (3.25)

where V represents spectrum support in the frequency domain. Equa-
tion 3.24 is called Green’s identity, which describes the bilinear identity
of matrix calculus into the realm of function space (Lanczos, 1961). Equa-
tion 3.25 follows from the fact that hu(x), Dv (x)i D h QDu(x), v (x)i, hu(x), Dv
(x)i D hu(s), Tv(s)i.

Using Green’s identity and setting u(x) D D f (x) and Dv (x) D Dh (x),
we further obtain an equivalent form of equation 3.23 in the light of equa-
tion 3.24, as shown by

dRreg ( f, h) D
Z

h (x)D̃D f (x) dx D hh, D̃D f i(x). (3.26)

On the other hand, we also obtain another form in the light of equation 3.25
by setting u(s) D T f (s) and Tv (s) D Th (s), as given by

dRreg ( f, h) D
Z

h (s)T̃T f (s) ds D hh, T̃T f i(s). (3.27)

Thus, the condition that the Fr Âechet differential being zero

dR ( f, h) D dRemp ( f, h) C ldRreg ( f, h) D 0

can be rewritten, by virtue of equations 3.8, 3.26, and 3.27, in the following
form,

dR ( f, h) D
*

h(x),
"

D̃D f (x) ¡ 1
l

`X

i
(yi ¡ f )d (x ¡ xi )

#+
, (3.28)
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or

dR( f, h) D
*
h (s),

"
T̃T f (s) ¡ F

(
1
l

`X

i
(yi ¡ f )d (x ¡ xi)

)#+
, (3.29)

where F f¢g denotes taking the Fourier transform. The necessary condition
for f (x) being an extremum of R[ f ] is that dR( f, h) D 0 for all h 2 H, or,
equivalently, the following conditions are satis�ed in the distribution sense:

D̃D fl (x) D
1
l

`X

iD1

[yi ¡ f (xi)]d (x ¡ xi ) (3.30)

and

T̃T fl (s) D F
(

1
l

`X

iD1

[yi ¡ f (xi)]d (x ¡ xi)
)

D
1
l

`X

iD1

[yi ¡ f (xi)] exp(¡jxis). (3.31)

Equation 3.30 is the Euler-Lagrange equation of the Tikhonov functional
R[ f ], and equation 3.31 is its Fourier counterpart. Denoting L D D̃D and
K D T̃T as earlier, G(x, ») is the Green’s function for the linear differential
operator L. Recalling de�nition 4,

LG(x, ») D d (x ¡ »), (3.32)

we may derive its counterpart in the frequency domain

KG (s, ») D exp(¡js»). (3.33)

Recalling equation 3.13, it follows that

f (x) D
Z

RN
G (x, »)Q (») d» (3.34)

is the solution of the following differential equation and integral equation,

L f (x) D Q (x), (3.35)

K f (s) D W (s), (3.36)

where W (s) is the Fourier transform of Q (x). In the light of equations 3.32
through 3.34, we may derive the solution of the regularization problem as

fl (x) D
`X

iD1

wiG(x, xi), (3.37)
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where wi D [yi ¡ f (xi)]/l, and G (x, xi) is a positive-de�nite Green’s function
for all i (see appendix B for an outline of the proof).

Remarks.

� Provided the operator L D D̃D is de�ned by the Laplace operator
(Yuille & Grzywacz, 1988; Poggio & Girosi, 1990a; Haykin, 1999),17

L D
1X

nD0

(¡1)n

n!2n r2n, (3.38)

where

r2 D
`X

iD1

`X

jD1

@2

@xi@xj
,

then the corresponding operator K D T̃T in the spectral domain reads

K D
1X

nD0

(¡1)2ns2n

n!2n D exp
³ s2

2

´
. (3.39)

By noting that

LG (x) D d (x), (3.40)

KG(s) D 1, (3.41)

from the property of Green’s function, it further follows that

G (s) D exp
³

¡ksk2

2

´
, (3.42)

G(x) D exp
³

¡
kxk2

2

´
, (3.43)

where G(x) $ G (s) is a Fourier transform pair.

� Note that the solution to the Tikhonov regularization problem, given
by equation 3.37, is incomplete in the sense that it only represents
the solution modulo a term that lies in the null space of the operator
D (Poggio & Girosi, 1990a). In general, the solution to the Tikhonov

17 This can be also regarded as an RKHS norm of the L Âevy’s n-dimensional (n ! 1)
Brownian motion (Kailath, 1971).
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regularization problem is given by (Kimeldorf & Wahba, 1970; Poggio
& Girosi, 1990a; Girosi et al., 1995)

fl (x) D
`X

iD1

wiG(x, xi) C b (x), (3.44)

where b (x) is a term that lies in the null space of D (the simplest case is
b (x) D const.),18 which satis�es the orthogonal condition P`

iD1 wib (xi)
D 0. Hence, the functional space of the solution fl is an RKHS of the
direct sum of two orthogonal RKHS.19 Equation3.44 can be understood
using an analogy of solving a matrix equation Ax D b. The general
solution of the equation is given by x D (A† C Z)b D ( (ATA)¡1AT C Z)b
(† represents the Moore-Penrose pseudoinverse), where Z accounts for
the orthogonal (null) space where A† lies. Hence, the regularization
solution 3.37 is somehow similar to the minimum-norm solution of the
matrix equation, as given by x D A†b D (ATA)¡1ATb.

� The essence of regularization is to �nd a proper subspace, namely,
the eigenspace of L f or K f , within which the operator behaves like a
“well-posed” operator (Lanczos, 1961). The solution in the subspace
is unique.

� Another viewpoint to look at the regularization solution is the follow-
ing: Rewriting equation 3.5 in a matrix form,

R[ f ] D
1
2

ky ¡ fk2 C
1
2

l(D f )T (D f )

D
1
2

(y ¡ f)T (y ¡ f) C
1
2

lD̃D f

D
1
2

(y ¡ f)T (y ¡ f) C
1
2

lfTKf, (3.45)

and taking the derivativeof of risk function with respect to f and setting
it to zero, we have f D (I C lK)¡1y, which gives rise to a smoothing
matrix20 S D (I C lK)¡1, where K is a quadratic symmetric penalty
matrix associated with L (Hastie, 1996). By taking the ED of S, say
S D U § UT, UTy expresses y in terms of the orthonormal basis de�ned
by the column vectors of U, which is quite similar to the Fourier ex-
pansion (Hastie, 1996).

18 We notice that for b (x), Db (x) D 0 and TDb (s) D 0.
19 For a good mathematical treatment on the RKHS in the context of regularization

theory, see Wahba (1990, 1999), Corradi and White (1995), Girosi (1998), Vapnik (1998a),
and Evgeniou, Pontil, and Poggio (2000).

20 When l D 0, the smoothing matrix reduces to an identity matrix, and the learning
problem reduces to a pure interpolation problem in the noiseless situation.
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� Observing equation 3.37, one may replace P by
R

, G (x, xi) by K (x, xi ),
and wi by [yi ¡ f (xi)]/l. Suppose that K is a translationally invariant-
reproducing kernel that is positive de�nite and satis�es K (x, xi) D
K (x ¡ xi). Then the approximated function can be expressed by the
convolution between the observation and a kernel:

f (x) D
1
l

Z
(yi ¡ f (xi) )K (x ¡ xi) dxi

D ¡ 1
l

Z
f (xi)K (x ¡ xi) dxi C

1
l

Z
yiK (x ¡ xi) dxi ,

where the �rst term has exactly the same form as the integral opera-
tor, and the second term is similar to kernel regression. Intuitively, f (x)
can be reconstructed by the data sample smoothed by an averaged ker-
nel, which accounts for a convolutional window (the so-called Parzen
window).

� In RBF (regularization) networks, the number of RBF (i.e., Green’s
function) units, m, is exactly equal to the observation number .̀ In
practice, we may choose m < ,̀ which corresponds to the so-called
hyperbasis function networks or generalized RBF networks. From the
matrix equation viewpoint, there are ` equations associated with `

observation pairs but m unknowns; hence, it is an overdetermined
situation (Golub& Van Loan, 1996). In order to �nd the minimum norm
solution, we might use SVD to obtain Of D Pm

iD1
(vT

i GTy)
s2

i
vi (assuming the

rank of G is m), where vi are the vectors of the unitary matrix V and
si are the singular values. For more discussion on their optimization,
see Moody & Darken (1989), Girosi (1992), and Haykin (1999).

The preceding derivation states that the solution of the classical Tikhonov
regularization is independent of the domain where the regularizer (stabi-
lizer) is de�ned, and the regularization is equivalent to the expansion of the
solution in terms of a linear superposition of ` Green’s functions centered
at the speci�c observation. Note that some invariance properties are im-
plicitly embedded in T,21 which implies that the derived Green’s function
should be translationally and rotationally invariant. In other words, G (x, xi)
is inherently an RBF with the radially symmetric and shift-invariant form
(Poggio & Girosi, 1990a),

G(x, xi) D G (|x ¡ xi |). (3.46)

More generally, it can be the hyperbasis function (HyperBF) (Poggio &
Girosi, 1990a) with the form

G(x, xi) D G (|x ¡ xi |T S¡1 |x ¡ xi |), (3.47)

21 Fourier transform is invariant to shift, rotation, and starting point.
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where S is a positive-de�nite covariance matrix; or it can be the RBF with
the weighted norm (so-called Mahalanobis distance metric),

G (x, xi) D G (kx ¡ xikQ) D G (|x ¡ xi |TQTQ|x ¡ xi |). (3.48)

3.4.4 Spectral Regularization. Thus far, we have been able to establish a
functionally equivalent form of spectral regularizer, being the counterpart
of equation 3.5,

R[ f ] D Remp[ f ] C lRreg[F ]

D
1
2

`X

iD1

[yi ¡ f (xi)]2 C
1
2

lkDFk2

D
1
2

`X

iD1

[yi ¡ f (xi)]2 C
1
2

lkT f k2. (3.49)

Written in a matrix form, the spectral regularizer is given by

kT fk2 D (T f )T (T f ) D T̃T f D fTKf,

which again relates to the same smoothing matrix as equation 3.45.
By using a property of the Fourier transform, when f (x) $ F (s), one

obtains @m f (x)
@xm $ ( js)mF (s). Intuitively, we may think of the differential

operator kD f k as taking m-order derivative in the Hilbert space Hm; thus,
the corresponding kT f k2 has the form of seminorms (Micchelli, 1986):

kT fk2 D
Z

|F (s) |2 £ ksk2m ds. (3.50)

If the norm operator is de�ned in the RKHS associated with a kernel K and
its Fourier transform K (s) D ksk¡2m,22 the seminorm reduces to the form

kT fk2 D
Z

RN

|F (s) |2

K (s)
ds, (3.51)

which de�nes a semi-Hilbert space (Micchelli, 1986). Equation 3.51 has the
same form as the spectral penalty stabilizer given in Wahba (1990) and Girosi
et al. (1995). K (s) can be viewed as a low-pass �lter, which plays a role of
smoothing in the sense that the solution f can be viewed as the convolution
of the observation with a smoothing �lter,

f (x) D y (x) ¤ B(x), (3.52)

22 The smoothness order m has to be large enough to guarantee K to be continuous
and decay fast to zero as s ! 1, for example, m > N/2.
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where ¤ denotes the operation of convolution product and B(x) is the inverse
Fourier transform of B (s), given by Poggio et al. (1988) and Girosi et al.
(1995):

B (s) D K (s)
l C K (s)

. (3.53)

When l D 0, f (x) D y, it follows that B (s) D 1, B(x) D d (x), which corre-
sponds to an interpolation problem in the noiseless situation. Many choices
of kernel K can be found in Girosi et al. (1995).

3.4.5 Important Theorems. We brie�y mention four important theorems
in the literature and indicate their relations to the theory of regularization:

� Riesz representation theorem (Yosida, 1978;Debnath & Mikusinski, 1999):
Any bounded linear functional on a Hilbert space has a unique repre-
senter in that space. This is useful in describing the dual space to any
space that contains the compactly supported continuous functions as
a dense subspace. Green’s function is developed from this theorem
(Lanczos, 1961). The norm of the bounded linear operator is the same
as the norm of its representer. Based on this theorem, we are able to
derive another proof of the regularization solution (see appendix C).

� Bochner’s theorem (Bochner, 1955; see also Wahba, 1990; Vapnik, 1998a):
Among the continuous functions on RN , the positive de�nite func-
tions are those functions that are the Fourier transforms of �nite mea-
sures. Hence, the Fourier transform of a positive measure constitutes
a Hilbert-Schmidt kernel.

� Representer theorem (Kimeldorf & Wahba, 1970; see also Wahba, 1999):
Minimizing the risk functional with spectral stabilizer 3.51 with inter-
polation constraints is well posed, and the solution is generally given
by equation 3.44. The proof was �rst established for the squared loss
function and later extended to the general pointwise loss functions.
See Schölkopf and Smola (2002, chap. 4) for many variations of this
theorem.

� Sobolev embedding theorem (see e.g., Yosida, 1978): This describes the
relation between the Hilbert space Hm and a class of smooth functions
whose derivatives exist pointwise. It is essentially related to the gener-
alized function with in�nite differentiability in the distribution sense.
See Watanabe, Namatame, and Kashiwaghi (1993), and Zhu, Williams,
Rohwer, and Morciniec (1998) for discussion.

3.4.6 Interpretation. Geometrically, the smoothness of a functional is
measured by the order of differentiability, tangent distance, or curvature
in the spatial domain; in the frequency domain, the smoothness is seen
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from its power spectral density (which is the Fourier transform of the corre-
lation function). When the solution is smooth, the spectral components are
concentrated in the low-frequency bands. In a biological point of view, regu-
larization is essentially the expansion of a set of Green’s functions taking the
form of the RBF, which behaves like a lookup table mapping similar to the
working mechanism of the brain. For the case of a gaussian RBF, its factor-
izable property lends itself to a physiologically convincing support (Poggio
& Girosi, 1990a, 1990b); and the covariance matrix S in equation 3.47 de-
�nes the properties (e.g., shape, size, orientation) of the receptive �eld (Xu,
Krzyzak, & Yullie, 1994; Haykin, 1999). Regularization based on the entropy
principle also �nds some plausible biological supports, which we detail in
section 6. Finally, the regularization problem has a very nice probabilistic
interpretation (Poggio & Girosi, 1990a; Girosi et al., 1995; Evgeniou et al.,
2000), on which we will give detailed discussions (in sections 5 and 8) in a
Bayesian framework.

3.5 Transformation Regularization: Numerical Aspects. Thus far in
section 3, we have discussed regularization in the continuous domain. In
practice, we are more concerned about regularization in the standpoint of
numerical calculation (Hansen, 1992, 1998). This approach is another kind of
transformation regularization (or subspace regularization) in the sense that
regularization is taken in a subspace domain by matrix decomposition (e.g.,
ED, SVD, or QR decomposition). Due to the analogy between operators and
matrices, we can rewrite the risk functional in a matrix form,

R D ky ¡ Gwk2 C lkPwk2, (3.54)

where w D [w1, . . . , w ]̀T , G D G(x, xi) is a radial basis matrix, and y D
[y1, . . . , y`]T. P is a user-designed matrix for the stabilizer. Since G is usually
ill conditioned,23 one might use matrix decomposition or factorization to
alleviate this situation. Taking the SVD of G,

G D U § ZT , (3.55)

where U and Z are left and right singular vectors of G, § is a diagonal
matrix with the singular values si (i D 1, . . . , )̀ in the main diagonal. In the
case of zero-order Tikhonov regularization (where P is an identity matrix
I), suppose w D Z®, we obtain

( §
T
§ C lI)® D §

Td, (3.56)

23 By ill conditioned, we mean that the conditional number (de�ned as the ratio of the
largest eigenvalue to the smallest eigenvalue) of the matrix is very large, and the matrix
is rank de�cient or almost rank de�cient.
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where d D UTy is a vector of Fourier coef�cients (Hansen, 1998).24 Further-
more, applying the SVD to P, suppose P D VSZT. Then the spectral coef�-
cients corresponding to the zero-order and nonzero-order25 of the Tikhonov
regularization can be described, respectively, as

ci D
s2

i

s2
i C l

, ai D
cidi

si
(3.57)

and

ci D
s2

i

s2
i C ls2

i
, ai D

cidi

si
, (3.58)

where si are de�ned as the diagonal elements of the diagonal matrix S. Fur-
thermore, in the case of nonzero-order Tikhonov regularization, provided
w D Z®, we obtain

(§
T
§ C lSTS)® D §

Td. (3.59)

The solution to equation 3.54 when P D I can be computed explicitly as
w D (G C lI)†y, which has the same form as in the continuous case (see
appendix C). More generally, we have the relationship

ZTw D §
†
l d D § lUTy, (3.60)

in which

§ l D

8
<

:

diag
n

s2
i

s2
i Cl

o
, P D I

diag
n

c i (c 2
i C1)1/2

c 2
i Cl

o
, P 6D I

, (3.61)

where c i D (s2
i C s2

i )1/2 are the generalized singular values of the ( § , S) (see
appendix D for a de�nition).

The discrete Picard condition (Hansen, 1998) states that a necessary con-
dition for obtaining a good regularized solution is that the magnitude of the
Fourier coef�cients |di | must decay to zero faster than the singular values
si. By reweighting a posteriori the generalized singular values si according
to their contributions (through calculating the geometric mean of |di |), the

24 Note that it coincides with the remark following equation 3.45. In a loose sense,
Fourier transform can be viewed as diagonalizing the regularization operator in the con-
tinuous domain, a fact that corresponds to applying ED or SVD to the regularizer matrix
in the discrete domain.

25 For instance, provided D D r is a �rst-order gradient operator, we can de�ne
P D J (w)w¡1 , where J(w) is a Jacobian matrix; provided D D r2 is a second-order Laplace
operator, we can de�ne P D H (w)w¡1, where H (w) is a Hessian matrix.
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weight coef�cients can be devised to be the reciprocal of the energy spec-
trum of the data (Velipasaoglu, Sun, Zhang, Berrier, & Khoury, 2000). Since
the ill-conditioned matrix G usually has a wide range of singular values,26

the singular values corresponding to the components with high energy and
high SNR are supposed to be penalized less and those corresponding to
the components with low energy and low SNR are penalized more (Veli-
pasaoglu et al., 2000). In addition, for discussions on regularization in the
context of optimization, see Dontchev and Zolezzi (1993).

3.6 Choosing the Regularization Parameter. In order to obtain a stable
and convergent regularized solution, the choice of regularization param-
eter is very important. There are several approaches for determining the
regularization parameter in practice.

According to MacKay (1992), regularizationparameter l canbe estimated
by a Bayesian method within the second evidence framework.27 Given data
D and model M, the regularization parameter can be estimated by

p(l | D, M) / p (D | l, M)p(l | M). (3.62)

The regularization parameter can be also estimated by the average
squared error and generalized cross-validation (GCV) approaches (Wahba,
1990, 1995; Haykin, 1999; Yee & Haykin, 2001). The advantage of the GCV
estimate over the average squared error and ordinary cross-validation ap-
proaches lies in the fact that it does not need any prior knowledge of the
noise variance and treats all observation data equally in the estimate. Yee
(1998) and Yee and Haykin (2001) proved that the regularized strict interpo-
lation radial basis function network (SIRBFN) is asymptotically equivalent
to the Nadaraya-Watson regression estimate with mean-square consistency,
in which the optimal l is allowed to vary with the new observations.

The optimal adaptive regularization parameter and its suf�cient conver-
gence condition was studied in Leung and Chow (1999), and it is shown
that the choice of l should be

l ¸
¡krRemp (w)k2

hrRemp (w), rRreg (w)i (3.63)

and

l ¸
hrRemp (w), rRreg (w)i

¡krRreg (w)k2 (3.64)

in order to guarantee the convergence of Remp (w) and Rreg (w), respectively.

26 Alternatively, its singularity can be observed using QR decomposition, which is
discussed in section 9.

27 The �rst evidence framework is to estimate the posterior probability of the weights
while supposing l is known. See section 5 for details.
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The discussion so far assumes that only a single regularization parameter
is used in the regularized functional; however, this is not a strict require-
ment. In fact, multiple regularization parameters are sometimes necessary
in practical scenarios, depending on the prior knowledge underlying the
data. In general, the regularized functional can be de�ned by

Rreg[ f ] D
1

|S|

Z

RN

³
@f
@x

´T

S
³

@f
@x

´
dx

D
1

|S|

Z

RN

X

k

sk

³
@f
@xk

´2

dxk, (3.65)

where S is a diagonal matrix (i.e., with radial symmetry constraint) with
nonnegative elements diagfs1, s2, . . . , sNg, |S| denotes the determinant of S.
One possible choice of sk (k D 1, . . . , N) can be assigned to be proportional to
the variances of xk along different coordinates. See Girosi (1992) for further
practical examples and discussions.

4 Occam’s Razor and MDL Principle

Occam’s razor is a principle that favors the shortest (simplest) hypothesis
that can well explain a given set of observations. In the arti�cial intelli-
gence and neural networkcommunities, it is commonly used for complexity
control in data modeling, which is essentially connected to regularization
theory. MacKay (1992) provided a descriptive discussion on Occam’s razor
from a Bayesian perspective (see section 5 for discussion). The evidence
can be viewed as the product of a best-�t likelihood and Occam’s factor.
In a regression problem, Occam’s razor is anticipated to �nd the simplest
smoothlike model that can well approximate or interpolate the observation
data.

Theminimum description length (MDL)principle isbased onan informa-
tion-theoretic analysis of the concepts of complexity and randomness. It was
proposed as a computable approximation of Kolmogorov complexity (Ris-
saen, 1978; Cherkassky & Mulier, 1998). The idea of MDL is to view machine
learning as a process of encoding the information carried by the observa-
tions into the model. The code length is interpreted as a characterization
of the data related to the generalization ability of the code. Speci�cally, the
observation D D fxi, yig is assumed to be drawn independently from an
unknown distribution, and the learning problem is formulated as the de-
pendency estimation of y on x. A metric measuring the complexity of the
data length is given by Rissaen, 1978,

R D L(D | M) C L(M), (4.1)

where the �rst term measures a code length (log likelihood) of the difference
between the data and the model output, and the second term measures the
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code length of the model, which relates to the number of lookup table (say
m) of a codebook, that is, L(M) D dlog2 me (Cherkassky & Mulier, 1998). The
MDL principle is close in spirit to Akaike’s information-theoretic criterion
(Akaike, 1974).

MDL is closely related to the regularization principle (MacKay, 1992;Hin-
ton & van Camp, 1993; Rohwer & van der Rest, 1996; Cherkassky & Mulier,
1998). Hinton and van Camp (1993) found that the regularization of weight
decay and soft weight sharing are indeed the vindication of MDL. Basically,
a neural network acts like an encoder-decoder. The data and weights con-
stitute an information �ow, which is transferred through the channel, that
is, the hidden layers (see Figure 1 for illustration). Regularization attempts
to keep the weights simple by penalizing the information they carry. The
amount of information in the weights can be controlled by adding some
noise with a speci�c density, and the noise level (i.e., regularization param-
eter) can be adjusted during the learning process to optimize the trade-off
between the empirical error (mis�t of data) and the amount of information
in the weights (regularizer). Suppose the approximation error is zero-mean
gaussian distributed with standard deviation si and quantization width m ;
one then obtains (Hinton & van Camp, 1993)

¡ log2 p (ei ) / ¡ log2 m C log2 s C
e2

i

2s2 , (4.2)

and the mis�t of data is measured by the empirical risk,

Remp D k` C
`

2
log2

Á
1
`

X

i
e2

i

!
, (4.3)

where k is a constant dependent on m . Hence, minimizing the squared error
(the second term of the right-hand side of 4.3) is equivalent to the MDL
principle. Assuming the weights are gaussian distributed with zero-mean
and standard deviation sw, the regularizer L(M) of weight decay can be
written by an MDL metric,

Rreg D
1

2s2
w

X

i
w2

i , (4.4)

in which s2
w plays the role of regularization parameter. In the noisy weight

case, MDL corresponds to introducing a high variance to L(D | M); conse-
quently, the mis�t of data is less reliable. More generally, the weights may
be assumed to have a mixture density p (w) D P

i p ip(wi ). For a detailed dis-
cussion, see Hinton and van Camp (1993), Bishop (1995a), and Cherkassky
and Mulier (1998).28

28 For a detailed discussion of MDL and the structural risk minimization (SRM) prin-
ciple, as well as the shortcoming of MDL, see Vapnik (1998a).
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5 Bayesian Theory

Bayesian theory is an ef�cient approach to deal with prior information. It
lends itself naturally to a choice of the regularization operator (MacKay,
1992). This is not surprising since regularization theory has a nice Bayesian
interpretation (Poggio & Girosi, 1990a; Evgeniou et al., 2000). Much effort
has been spent to apply the Bayesian framework to machine learning and
complexity control (MacKay, 1992; Bruntine & Weigend, 1991; Williams,
1994).

Given the data D, what one cares about is �nding out the most proba-
ble model underlying the observation data. Following the Bayes formula,
the posterior probability of model M is estimated by p(M | D) D p (D |

M)p (M) /p(D), where the denominator is a normalizing constant repre-
senting the evidence. Maximizing p (M | D) is equivalent to minimizing
¡ log p (M | D), as shown by

¡ log p (M | D) / ¡ log p (D | M) ¡ log p(M), (5.1)

where the �rst term of the right-handsidecorresponds to the MDL described
in the previous section and the second term represents the minimal code
length for the model M.

Once M is known, one can apply Bayes theorem to estimate its parame-
ters. The posterior probability of the weights w, given the data D and model
M, is estimated by

p (w | D, M) D
p(D | w, M)p (w | M)

p(D | M)
, (5.2)

where p (D | w, M) represents the likelihood and p (w | M) is the prior
probability given the model. Assuming the training patterns are identically
and independently distributed, we obtain

p (D | w, M) D
Y

i
p (xi , yi | w, M)

D
Y

i
p (yi | xi, w, M)p (xi). (5.3)

Ignoring the normalizing denominator, equation 5.2 is further rewritten as

p (w | D, M) / p (w | M)
Y

i
p(xi, yi | w, M). (5.4)

Furthermore, the prior p (w | M) is characterized as

p (w | M) D
exp(¡lRreg (w) )

Zw (l)
, (5.5)
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where Zw (l) D R dw exp(¡lRreg (w)). The choices of l and Rreg (w) usually
depend on some assumption of p(w). For instance, when w is the gaussian
prior as p (w) / exp(¡l

2 kwk2 ), it leads to the maximum a posteriori (MAP)
estimate:

log p (w | D, M) D ¡l

2
kwk2 C

X

i
log p (xi) C

X

i
log p (yi | xi, w). (5.6)

When p (yi | xi, w) is measured by the L2 metric under gaussian noise model
assumption, equation 5.6 reads

¡ log p(w | D, M) / l

2
kwk2 C

X

i
[yi ¡ f (xi , w)]2.

In particular, remarks on several popular regularization techniques are in
order.

Remarks.

� Weight decay (Hinton, 1989): Weight decay is equivalent to the well-
known ridge regression in statistics (Wahba, 1990), which is a version
of zero-order Tikhonov regularization.

� Weight elimination (Weigend, Rumelhart, & Humberman, 1991):
Weight elimination can be interpreted as the negative log-likelihood
prior probability of the weights. The weights are assumed to be a mix-
ture of uniform and gaussian-like distributions.

� Approximate smoother (Moody & Rögnvaldsson, 1997): In the case of

sigmoid networks with tanh nonlinearity, by letting Rreg D k @k f (x)
@xk k2,

it can be shown that it reduces to some sort of approximate smootherP
j v2

j kwjkp when k D 1.

As summarized in Table 1, most regularizers correspond to weight priors
with different probability density functions.29 It is noteworthy to point out
that (1) weight decay is a special case of weight elimination, (2) the role
of weight elimination is similar to the Cauchy prior, and (3) in the case
of p (w) / cosh¡1/b (bw) (p (w) approximates to the Laplace prior as b !
1), we have @

@wj

P
j |wj | ¼ tanh(bwj). In the sense of weight priors, the

regularizer is sometimes written as kPwk2 in place of kD f k2 (we discuss the
functional priors later in section 8).

29 The complexity of weights is evaluated by the negative logarithm of probability
density function of the weights.
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Table 1: Regularizers and Weight Priors.

Regularizer Distribution Comment

Constant Uniform distribution Uniform prior
w2 Gaussian distribution Weight decay

w2

1C w2 Uniform C gaussian Weight elimination
log(1 C w2 ) Cauchy distribution Cauchy prior
|w| Laplace distribution Laplace prior
log(cosh(w) ) Supergaussian distribution Supergaussian prior

6 Shannon’s Information Theory

According to information theory (Shannon, 1948), the ef�ciency of coding is
measured by its entropy: the less the entropy, the more ef�cient the encoder
(Cover & Thomas, 1991). Imagine a learning machine (neural network) as
an encoder; the information �ow is transmitted through the channel, in
which the noisy information is nonlinearly �ltered. A schematic illustra-
tion is shown in Figure 1. Naturally, it is anticipated that the information is
encoded as ef�ciently as possible, that is, by using fewer look-up tables (ba-
sis functions) or fewer codes (connection weights). The entropy reduction
in coding the information has been validated by neurobiological observa-
tions (Daugman, 1989). Intuitively, we may think that the minimum entropy
(MinEnt) can be used as a criterion for regularization.

Actually, MinEnt regularization may �nd plausible theoretical support
and interpretation in classi�cation (Watanabe, 1981) and regression prob-
lems. In functional approximation, information in the data is expected to
concentrate on as few hidden units as possible, which refers to sparse cod-
ing or sparse representation.30 In other words, maximum energy concentra-
tion corresponds to minimum Shannon entropy (Coifman & Wickerhauser,
1992). On the other hand, in pattern recognition, one might anticipate that
only a few hidden units correspond to a speci�c pattern (or speci�c pattern
is coded by speci�c hidden units). In other words, the knowledge learned
by the neural network is not uniformly distributed in the hidden units and
its connections. Based on this principle, we may derive a MinEnt regularizer
for the translationally invariant RBF network as follows.

Recalling G (xi, xj) is an `£ ` symmetric matrix, it is noted that the sym-
metry is not a necessary condition and our statement holds for any ` £ m
(` 6D m) asymmetric matrix (which corresponds to the generalized RBF net-
work). For the purpose of expression clarity, we denote Gi (i D 1, . . . , )̀ as

30 It was well studied and observed that the sensory information in the visual cortex
is sparsely coded (Barlow, 1989; Atick, 1992; Olshausen & Field, 1996; Harpur & Prager,
1996).
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Figure 1: A schematic illustration of a neural network as an encoder-decoder.

the ith vector of matrix G and Gij as the jth ( j D 1, . . . , m) component of
vector Gi. In order to measure the coding ef�ciency, we normalize every
component Gij by its row vector,31

Pij D
|Gij |2

kGik2 , (6.1)

and consequently obtain a (symmetric) probability matrix P with elements
Pij, which satisfy the relationship

mX

jD1

Pij D 1. (6.2)

Thus, the information-theoretic entropy32 is de�ned by

H D
`X

iD1

Hi D ¡
`X

iD1

mX

jD1

Pij log Pij. (6.3)

31 If the kernel function is a normalized RBF, this step is not necessary.
32 One can, alternatively, use the generalized Renyi entropy instead of the Shannon

entropy.



On Different Facets of Regularization Theory 2823

Speci�cally, when Pi1 D ¢ ¢ ¢ D Pim D 1
m , Hi obtains the maximum value of

log m, and consequently Hmax D `log m. Therefore, the normalized entropy
can be computed as

bH D
H

`log m
. (6.4)

By setting Rreg D bH, we obtain an information-theoretic regularizer that
relates to the simplicity principle ofcoding,givena �xed m.33 It is also closely
related to the maximization of collective information principle (Kamimura,
1997) and the decorrelation of the information by the nonlinear �lter of
hidden layer (Deco, Finnoff, & Zimmermann, 1995).

The MinEnt regularization principle is also connected to the well-studied
Infomax principle in supervised learning (Kamimura, 1997) as well as in un-
supervised learning (Becker, 1996). Suppose the input units are represented
by A and hidden units by B; then the mutual information I (A, B) between
A and B can be represented by their conditional entropy (Cover & Thomas,
1991; Haykin, 1999):

I (A, B) D H (B) ¡ H (B | A). (6.5)

Minimizing the conditional entropy H (B | A), the uncertainty of hidden
units given the input data results equivalently in maximizing the mutual
information between input and hidden layers.

7 Statistical Learning Theory

Rewriting the expected risk R in an explicit form, one can decompose it into
two parts (O’Sullivan, 1986; Geman, Bienenstock, & Doursat, 1992),34

R D E[(y ¡ f (x) )2 | x]

D E[(y ¡ E[y | x] C E[y | x] ¡ f (x) )2 |x]

D E[(y ¡ E[y | x])2 |x] C (E[y | x] ¡ f (x) )2, (7.1)

which is the well-known bias-variance dilemma in statistics (Geman et al.,
1992; Wolpert, 1997; Breiman, 1998). The �rst term on the right-hand side of
equation 7.1 is the bias of the approximation, and the second term measures
the variance of the solution. The regularization coef�cient l in equation 3.5
or 3.49 controls the trade-off between the two terms in the error decompo-
sition.

33 The redundant hidden nodes can be pruned based on this principle.
34 The error decomposition of the Kullback-Leibler divergence risk functional was

discussed in Heskes (1998).
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In recent decades a new statistical learning framework has been formal-
ized in terms of structural riskminimization (SRM). Based on this paradigm,
support vector machines (SVMs) have been developed for a wide class of
learning problems (Vapnik, 1995, 1998a, 1998b; see also Schölkopf & Smola,
2002). SVM can be regarded as a type of regularization network with the
same form of solution as equation 3.37 but trained with a different loss func-
tion, and consequently with a different solution (Girosi, 1998; Evgeniou et
al., 2000). In the SVM, the 2 -insensitive loss function is used and trained by
quadratic programming; some of the weights wi are zero, and the xi corre-
sponding to the nonzero wi are called support vectors. The solution found
by the SVM is usually sparse (Vapnik, 1995; Poggio & Girosi, 1998). By
choosing a speci�c kernel function, the mapping from data space to feature
space corresponds to a regularization operator, which explains the reason
that SVMs exhibit good generalization performance in practice.

In particular, writing f (x) in terms of a positive semide�nite kernel func-
tion (not necessarily satisfying Mercer condition),35 we obtain

f (x) D
X

i
aiK (xi, x) C b. (7.2)

When K (xi, xj) D hDK (xi , ¢), DK (xj, ¢)i, regularization network (RN) is
equivalent to the SVM (Girosi, 1998;Smola et al., 1998). Recalling the Green’s
function D̃DG(xi , x) D dxi (x) D d (x ¡ xi), minimizing the risk functional, we
obtain

G (xi, xj) D hDG (xi , ¢), DG (xj, ¢)i D hW (xi), W (xj)i (7.3)

with W: xi ! DG(xi, ¢). Hence, the Green’s function is actually the kernel
function induced by the Hilbert norm of the RKHS. Further discussions on
the links between SVM and RNs can be found in Girosi (1998), Smola et al.
(1998), and Evgeniou et al. (2000).

Note that in the SVM, the dimensionality of the kernel (Gram) matrix
is the same as the number of observations, ,̀ which is in line with the
RBF network; similar to the generalized RBF network in which the number
of hidden units is less than ,̀ SVM can be also trained with a reduced
set. We recommend that readers consult Schölkopf and Smola (2002) for
an exhaustive treatment of regularization theory in the context of kernel
learning and SVMs.

8 Bayesian Interpretation: Revisited

Neal (1996) and Williams (1998b) found that a large class of neural networks
with certain weight priors will converge to a gaussian process (GP) prior

35 An insightful discussion on the bias b in terms of the conditional positive-de�nite
kernel was given in Poggio, Mukherjee, Rifkin, Rakhlin, and Verri (2001).
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over the functions, in the limit of an in�nite number of hidden units. This
fact motivated researchers to consider the change from priors on weights
to priors on functions: instead of imposing the prior on the weight (param-
eter) space, one can directly impose the prior on the functional space.36 A
common way is to de�ne the prior in the RKHS (Wahba, 1990; Evgeniou et
al., 2000). Using Bayes formula p( f | D) / p (D | f )p ( f ), we have

p (D | f ) / exp

Á
¡ 1

2s2

`X

iD1

(yi ¡ f (xi) )2
!

, (8.1)

where s2 is the variance of the gaussian noise, and the prior probability p ( f )
is given by

p ( f ) / exp(¡k fk2
K /2s2), (8.2)

where the stabilizer k fk2
K is a norm de�ned in the RKHS associated with

the kernel K. In particular, Parzen (1961, 1963) showed that the choice of
the RKHS is equivalent to the choice of a zero-mean stochastic process with
covariance kernel K (which is assumed to be symmetric positive de�nite),
that is, E[ f (x) f (y)] D s2K (x, y). And the regularization parameter is shown
to be the SNR (i.e., the variance ratio s2/s2; Bernard, 1999).

Hence, for the RNs or SVMs, choosing a kernel K is equivalent to assum-
ing a gaussian prior on the functional f with normalized covariance equal
to K (Papageorgiou, Girosi, & Poggio, 1998; Evgeniou et al., 2000). Usually,
K is chosen to be positive de�nite and stationary (which corresponds to the
shift-invariant property in the RBF). Also, choosing the covariance kernel
is inherently related to �nding the correlation function of the gaussian pro-
cess (Wahba, 1990; Schölkopf & Smola, 2002). Generally, if the function is
represented by the mixtures of gaussian processes, the kernel should also
be a mixture of covariance kernels.

It is noteworthy to point out that the Bayesian interpretation discussed
above applies not only to the classical regularization functional 3.5 with the
square loss function but also to a generic loss functional (Evgeniou et al.,
2000),

R[ f ] D
`X

iD1

L(yi ¡ f (xi) ) C lk fk2
K, (8.3)

where L is any monotonically increasing loss function. When p( f ) is as-
sumed to be gaussian, the kernel is essentially the correlation function

36 One can also de�ne the prior in the functional space and further project it to the
weight space (Zhu & Rohwer, 1996).
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E[ f (xi) f (xj )] by viewing f as a stochastic process. In the case of zero-mean
gaussian processes, we have the covariance kernel,

K (xi, xj) D exp(¡|xi ¡ xj |2 ). (8.4)

In the nongaussian situation, L isnota square loss function (Girosi, Poggio,&
Caprile, 1991). Inparticular, for the SVM, it was shown(Evengiou et al., 2000)
that the 2 -insensitive loss function can be interpreted by a nongaussian noise
model with superposition of gaussian processes with different variances
and means,37

exp(¡|x| 2 ) D
Z 1

¡1
dt

Z 1

0
dbl (t)m (b )

p
b exp(¡b (x ¡ t)2 ), (8.5)

where b D 1/2s2 and

l2 (t) D
1

2(2 C 1)
(Â[¡2 ,2 ] (t) C d (t ¡ 2 ) C d (t C 2 )), (8.6)

m (b ) / b2 exp(¡1/4b ), (8.7)

where Â[¡2 , 2 ] (t) is 1 for t 2 [¡2 , 2 ] and 0 otherwise.
L can be also chosen as Huber’s loss function (Huber, 1981):

L(j ) D
( 1

2 |j |2 |j | < c

c|j | ¡ c2

2 |j | ¸ c
, (8.8)

which was used to model the 2 -contaminated noise density: p(j ) D (1 ¡
2 )g (j ) C 2 h (j ) (where g(j ) is a �xed density and h (j ) is an arbitrary density,
both of which are assumed to be symmetric with respect to origin, 0 < 2 <

1). Provided g (j ) is chosen to be a gaussian density g (j ) D 1p
2p s

exp(¡ j 2

2s2 ),
the robust noise density is derived as

p(j ) D

8
<

:

1¡2p
2p s

exp
±

¡ j 2

2s2

²
, |j | < cs

1¡2p
2p s

exp
±

c2

2s2 ¡ c
s

|j |
²

, |j | ¸ cs
, (8.9)

where c is determined from the normalization condition (Vapnik, 1998a).
Table 2 lists some loss functions and their associated additive noise prob-

ability density models, which are commonly used in regression. Albeit we
discuss the learning problem in the regression framework, the discussion
is also valid for classi�cation problems. In addition, the loss function can
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Table 2: Loss Functions and Associated Noise Density Models.

Loss Function L (j ) Noise Density Model p (j )

Gaussian 1
2j

2 1p
2p

exp(¡|j |2 /2)
Laplacian |j | 1

2 exp(¡|j | )
2 -insensitive |j | 2 1

2 (2 C 1) exp(¡|j | 2 )

Huber’s loss

( 1
2
j 2 |j | < c

c|j | ¡ c2

2 otherwise
/

(
exp(¡j2

2
) |j | < c

exp( c2

2 ¡ c|j | ) otherwise

Talvar
»

j 2 /2 |j | < c
c2 /2 otherwise

/
»exp(¡j 2 /2c) |j | < c

exp(¡c2 /2) otherwise
Cauchy 1

2 log(1 C j 2) 1
p

1
1Cj 2

Hyperbolic cosine log(cosh(j ) ) 1
p cosh(j )

Lp norm 1
r
|j |r r

2C (1/ r) exp(¡|j |r)

include higher-order cumulants to enhance robustness in the nongaussian
noise situation (Leung & Chow, 1997, 1999, 2001).

In the light of the discussions, studying the priors on the functional pro-
vides much freedom for incorporating of prior knowledge to the learning
problem. In particular, the problem is in essence to design a kernel that may
explain well the observation data underlying the functional. For example,
if one knows that a functional might not be described by a gaussian pro-
cess (e.g., Laplacian process or others), one can design a particular kernel
(Laplacian kernel or other localized nonstationary kernels) without worry-
ing about the smoothness property. See Schölkopf and Smola (2002) and
Genton (2000) for more discussion.

9 Pruning Algorithms

Pruning is an ef�cient way to improve the generalization ability of neu-
ral networks (Reed, 1993; Cherkassky & Mulier, 1998; Haykin, 1999). It can
be viewed as a sort of regularization approach where the complexity term
is measured by a stabilizer. Pruning can be either connections pruning or
nodes pruning. Roughly, there are four kinds of pruning algorithms devel-
oped from different perspectives, with the �rst two kinds mainly concerned
with connections pruning and the last two concerned with nodes pruning:

� Penalty function (Setiono, 1997) or stabilizer-based pruning ap-
proaches, such as weight decay (Hinton, 1989), weight elimination
(Weigend et al., 1991), and Laplace prior (Williams, 1994). Soft weight

37 A limitation of Bayesian interpretation of SVM was also discussed in Evengiou et
al. (2000).
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sharing (Nowlan & Hinton, 1992) is another kind of pruning algorithm
that supposes the weights are represented by a mixture of gaussians
and the weights are supposed to share the same value.

� Second-order (Hessian) information-based pruning approaches, such
as optimal brain damage (OBD; LeCun, Denker, & Solla, 1990) and
optimal brain surgeon (OBS; Hassibi, Stock, & Wolff, 1992).

� Information-theoretic criteria-based pruning schemes (Deco et al.,
1995; Kamimura, 1997).

� Matrix decomposition (or factorization)–based pruning methods, such
as principal component analysis (PCA; Levin, Leen, & Moody, 1994),
SVD (Kanjilal & Banerjee, 1995), QR decomposition (Jou, You & Chang,
1994), discriminant component pruning analysis (DCP; Koene & Ta-
kane, 1999), and contribution analysis (Sanger, 1989).

The matrix decomposition–based pruning schemes are based on the ob-
servation of the ill-conditioned matrix G. For instance, taking the QR de-
composition, Gw D QR, we may obtain a new expression after pruning
some hidden nodes (see appendix E for derivation):

y D Gw ! ŷ D Ĝŵ, (9.1)

where bG D GL1R¡1
1 (w D [L1 L2]), and ŵ is calculated by

bwT D wTL1 C wL2 (R¡1
1 R2)T. (9.2)

10 Equivalent Regularization

In the machine learning community, there are various approaches imple-
menting the implicit regularization (neither the explicit form of equation 3.5
nor equation 3.49), which we call equivalent regularization. To name a
few, these approaches include early stopping (Bishop, 1995a; Cherkassky
& Mulier, 1998), use of momentum (Haykin, 1999), incorporation of invari-
ance (Abu-Mostafa, 1995; Leen, 1995; Niyogi et al., 1998), tangent distance
and tangent prop (Simard, Victorri, LeCun, & Denker, 1992; Simard, Le-
Cun, Denker, & Victorri, 1998; Vapnik, 1998a), smoothing regularizer (Wu
& Moody, 1996), �at minima (Hochreiter & Schmidhuber, 1997), sigmoid
gain scaling, target smoothing (Reed, Marks, & Oh, 1995), and training with
noise (An, 1996; Bishop, 1995a, 1995b). Particularly, training with noise is
an approximation to training with a kernel regression estimator; choosing
the variance of the noise is equivalent to choosing the bandwidth of the ker-
nel of the regression estimator. For a detailed discussion on training with
noise, see An (1996), Bishop (1995a, 1995b), and Reed et al. (1995). An equiv-
alence discussion between gain scaling, learning rate, and scaling weight
magnitude is given in Thimm, Moerland, & Fiesler (1996).
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Many regularization techniques correspond to the structural learning
principle. With structural learning, the learning process (in terms of hy-
pothesis, data space, parameters, or implementation) is controlled and per-
formed in a nested structure:

S0 ½ S1 ½ ¢ ¢ ¢ Sm ½ ¢ ¢ ¢ .

The capacity control and generalization performance are guaranteed and
improved by constraining the learning process in the speci�c structure,
which can be viewed as an implicit regularization (Cherkasskay & Mulier,
1998). Early stopping is an example of structural learning in terms of imple-
mentation of a learning process.

By early stopping, it is said that the training of a network is stopped before
it goes to the minimum error, while observing the error on an independent
validation set begin to increase. In the case of quadratic risk function Remp,
early stopping is similar to weight-decay regularization; the product of the
iteration index t and the learning rate g plays the role of regularization
parameter l, in the sense that the components of weight vectors parallel to
the eigenvectors of the Hessian satisfy (Bishop, 1995a)

w(t)
i ’ w¤, ji À (gt)¡1 (10.1)

|w(t)
i | ¿ |w¤ |, ji ¿ (gt)¡1, (10.2)

where w¤ denotes the desired minimum point where Remp achieves in the
weight space and ji represent the eigenvalues of the Hessian matrix H (w).
In this sense, early stopping can be interpreted as an implicit regularization
where a penalty is de�ned on a searching path in the parametric space. The
solutions are penalized according to the number of gradient descent steps
taken along the path from the starting point (MacKay, 1992; Cherkasskay &
Mulier, 1998).

11 Kolmogorov Complexity: A Universal Principle for Regularization?

Regularization theory can be established from many principles (e.g., MDL,
Bayes, entropy), with many visible successes in model selection, complexity
control, and generalization improvement. The weakness of these principles
is that none of them has universality, in the sense that they cannot be ap-
plied to an arbitrary area under an arbitrary situation. Is it possible to �nd
a universal principle for regularization theory in machine learning? This
question leads us to think in terms of a well-known concept in the com-
putational learning community: Kolmogorov complexity (or algorithmic
complexity).

Kolmogorov complexity theory, motivated by the Turing machine, was
�rst studied by Solomonoff and Kolmogorov. The main thrust of Kolmo-
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gorov complexity lies in its universality, which is dedicated to constructing a
universal learning method based on the universal coding method (Schmid-
huber, 1994). According to Kolmogorov complexity theory, any complexity
can be measured by the length of the shortest program for a universal Tur-
ing machine, which correctly reproduces the observation data in a look-up
table. The core of Kolmogorov complexity theory contains three parts: com-
plexity, randomness, and information.

It is interesting to make a comparison between these three concepts and
machine learning. In particular, the MDL principle is well connected to
the complexity; the randomness is inherently related to the well-known no-
free-lunch (NFL) theorems (Wolpert, 1996), such as NFL for cross-validation
(Zhu, 1996; Goutte, 1997), optimization (Wolpert & Macready, 1997), noise
prediction (Magdon-Ismail, 2000), and early stopping (Cataltepe, Abu-Mo-
stafa, & Magon-Ismail, 1999). All NFL theorems basically state that no learn-
ing algorithms can be universally good; some algorithms that perform well
will perform poorly in other situations. The information is related to the
entropy theory, which measures the uncertainty in a probabilistic sense.
From the Bayesian viewpoint, Kolmogorov complexity can be understood
by dealing with a universal prior (so-called Solomonoff-Levin distribu-
tion), which measures the prior probability of guessing a halting program
that computes the bitstrings on a universal Turing machine. Since the Kol-
mogorov complexity and the universal prior cannot be computed, some
generalized complexity concepts for the purpose of computability were de-
veloped (e.g., Levin complexity). An extended discussion on this subject,
however, is beyond the scope of this review.38 Some theoretical studies of
the relations between MDL, Bayes theory and Kolmogorov complexity can
be found in Vitanyi and Li (2000).39

Can the Kolmogorov complexity be a universal principle for regularization the-
ory? In other words, can it cover different principles such as MDL, Bayes,
and beyond? There seems to exist an underlying relationship between Kol-
mogorov complexity theory and regularization theory (especially in the
machine learning area). However, for the time being, a solid theoretical
justi�cation is missing. Although some seminal work has been reported
(Pearlmutter & Rosenfeld, 1991; Schmidhuber, 1994), the studies and re-
sults were empirical, and theoretic veri�cation was still in an early stage.
The question remains unanswered and needs investigation.

12 Summary and Beyond

This review presents a comprehensive understanding of regularization the-
ory from different viewpoints. In particular, the spectral regularization

38 For a descriptive and detailed treatment on the Kolmogrov complexity, see Cover
and Thomas (1991) and a special issue on the Kolmogrov complexity in Computer (vol. 42,
no. 4, 1999).

39 See NIPS2001 workshop for more information.
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framework is derived in the vein of the Fourier operator and Plancherel
identity. State-of-the-art research on various regularization techniques is re-
viewed, and many related topics in machine learning are addressed and
explored.

The contents of this review cover such topics as functional analysis, op-
erator theory, machine learning, statistics, statistical learning, Bayesian in-
ference, information theory, computational learning theory, matrix theory,
numerical analysis, and optimization. Nevertheless, they are closely related
to regularization theory. Roughly, Occam’s razor, MDL, and MinEnt are the
principles of implementing the regularization; Bayesian theory, informa-
tion theory, and statistical learning theory can be formulated in the theo-
retic framework level, which establishes the mathematical foundation for
the regularization principle, whereas pruning algorithms, equivalent reg-
ularization approaches, RNs, SVMs, and GP belong to the application or
implementation level. A schematic relationship of the topics in this review
is illustrated in Figure 2.

To this end, we conclude with some comments on possible future inves-
tigations related to the topics discussed in this review:

� Ithas been shown that there exists a close relationship between regular-
ization theory and sparse representation (Poggio & Girosi, 1998), SVMs
(Girosi, 1998; Smola et al., 1998; Evgeniou et al., 2000; Schölkopf &
Smola, 2002), gaussian processes (MacKay, 1998; Williams, 1998b; Zhu
et al., 1998), independent component analysis (Hochreiter & Schmid-
huber, 1998; Evgeniou et al., 2000; Bach & Jordan, 2001), wavelet ap-
proximation (Bernard, 1999), matching pursuit (Mallat & Zhang, 1993),
and basis pursuit (Chen, Donoho, & Saunders, 1998). Further efforts
will be to put many machine learning problems into a general frame-
work and discuss their properties.

� Prospective studies of regularized networks are devoted to build an
approximation framework in hybrid functional spaces. Many encour-
aging results have been attained in the RKHS. One can extend the
framework to other functional spaces, such as generalized Fock space
(van Wyk & Durrani, 2000) or Besov space. The idea behind the hy-
brid approximation is to �nd an overcomplete representation of an
unknown function by means of a direct sum of some possibly overlap-
ping functional spaces, which results in a very sparse representation
of the function of interest. The SRM principle (Vapnik, 1995, 1998a)
seems to be a solid framework and a powerful mathematical tool for
this goal. In addition, the algorithmic implementation of regulariza-
tion remains an important issue. Fast algorithms beyond the quadratic
programming in the kernel learning community are anticipated. A re-
cent new direction is the on-line or incremental learning algorithms
developed for GNs, SVMs, or GP (Zhu & Rohwer, 1996; De Nicolao &
Ferrari-Trecate, 2001; Cauwenberghs & Poggio, 2001; Csat Âo & Opper,
2002).
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Figure 2: Schematic illustration of the theory of regularization. The dashed lines
distinguish three levels: principle, theory, and application; the undirectional
solid lines represent some conceptual links; and the directional arrows represent
the routes from principle to theory and from theory to applications.

� A wide class of RNs, including RBF (Powell, 1985; Micchelli, 1986;
Broomhead & Lowe, 1988; Girosi, 1992, 1993), hyperBF (Poggio &
Girosi, 1990a), smoothing splines (Silverman, 1984; Wahba, 1990), and
generalized additive models (Hastie & Tibshirani, 1990), can be for-
malized mathematically based on regularization theory (Girosi et al.,
1995). Since the connection between RNs and SVMs was theoretically
established, one has much freedom to choose the regularization oper-
ator and the associated basis functions or kernels (Genton, 2000). For
example, it can be extended to wavelet networks (Koulouris, Bakshi, &
Stephanopoulous, 1995; Mukherjee & Nayar, 1996; Bernard, 1999; Gao,
Harris, & Gunn, 2001). Besides, theoretic studies on the generalization
bounds of the RNs or kernel machines are always important (Xu et al.,
1994; Corradi & White, 1995; Krzyzak & Linder, 1996; Freeman & Saad,
1995; Niyogi & Girosi, 1996, 1999; Vapnik, 1998a; Williamson, Smola,
& Schölkopf, 2001; Cucker & Smale, 2002), for which we are left with
many open problems.

� Most well-established smoothing operators in the literature so far are
de�ned in either the spatial domain (e.g., smoothing splines) or fre-
quency domain (e.g., RKHS norm), as reviewed in this article. One can,
however, consider the space-frequency smoothing operator, which es-
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sentially corresponds to a localized, nonstationary (or locally station-
ary) kernel in the general case.40 Careful design of the operator may
achieve multiresolution smoothing or approximation, which is the
spirit of structural learning. Besides, the operator and the associated
kernels can be time varying, which allows on-line estimation from the
data.

� Canu and Elisseeff (1999) reported that if the Radon-Nikodym deriva-
tive instead of Fr Âechet derivative is used in the regularized functional,
the solution to the regularization problem gives rise to a sigmoid-
shaped network, which partially answers the unanswered question
posed by Girosi et al. (1995): Can the sigmoid-like neural network be
derived from regularization theory?

� A wide class of neural networks and stochastic models form a curved
exponential family of parameterized neuromanifolds (Amari & Na-
gaoka, 2000). It will be possible to study the intrinsic relationship
between differential geometry and regularization theory in terms of
choice of kernels (Burges, 1999). Naturally, the smoothness of the non-
linear feature mapping in terms of kernel (which is connected to the
covariance property of the functional of interest) is measured by the
curvature of the corresponding hypersurface. The higher the curvature
is, the less smooth the parameterized model is, and thus thepoorer gen-
eralization performance is anticipated (Zhu & Rohwer, 1995). It is also
possible to incorporate some invariance to implement the equivalent
regularization (Simard et al., 1998; Burges, 1999; Schölkopf & Smola,
2002).

� Another area not covered in this review is the nonclassical Tikhonov
regularization, which involves the nonconvex risk functional. Without
the nice quadratic property, it is still possible to use variational meth-
ods (e.g., mean-�eld approximation method) or stochastic sampling
methods (e.g., Gibbs sampling, Markov chain Monte Carlo) to handle
regularized problems. Some studies in this direction can be found in
Geman and Geman (1984) and Lemm (1996, 1998).

Appendix A: Proof of Dirichlet Kernel

For the purpose of self-containing the article, the proof of Dirichlet kernel
given in Lanczos (1961) is presented here. Observe that the Dirac delta

40 Choosing a localized kernel with compact support is essentially related to �nding
an operator with composition of some band-limiting and time-limiting operators.
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function d (s, x) satis�es the following conditions:

Z p

¡p
d (s, x) cos kx dx D cos ks, (A.1)

Z p

¡p
d (s, x) sin kx dx D sin ks. (A.2)

Consider a symmetric, translationally invariant function G (s, x) D G(x, s) D
G(s ¡ x) ´ G(h ) D G (¡h ), which is zero everywhere except in the interval
|h | · 2 , where 2 is a small, positive value. The expansion coef�cients ak and
bk of this function are

ak D
1
p

Z 2

¡2
cos k(s C h )g (h ) dh

D
1
p

cos kj
Z 2

¡2
G(h ) dh , (A.3)

bk D
1
p

Z 2

¡2
sin k(s C h )g (h ) dh

D
1
p

sin kj
Z 2

¡2
G (h ) dh, (A.4)

where j 2 (s ¡ 2 , s C 2 ). Provided R 2
¡2 G (h ) dh D 1, letting 2 ! 0, then

the point j ! s, and one may obtain the desired expansion coef�cients in
equations A.1 and A.2. If we replace K (s ¡ x) by the Fourier expansion co-
ef�cients of the Dirac function, then comparing equation 3.21, the Dirichlet
kernel Kn (s, x) acts like a Dirac delta function:

Z p

¡p

f (s)d (s, x) ds D f (x). (A.5)

Appendix B: Proof of Regularization Solution

The proof of regularization solution was partly given in Haykin (1999) and
is rewritten here for completeness. By virtue of equation 3.13, applying L to
the function f (x), we obtain

L f (x) D L
Z

RN
G(x, »)Q (») dj

D
Z

RN
LG (x, »)Q (») d»

D
Z

RN
d (x ¡ »)Q (») d»

D Q (x). (B.1)
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Similarly, applying K to the function f (x) yields

K f (s) D K
Z

RN
G (x, »)Q (») d»

D
Z

RN
KG(s, »)Q (») d»

D
Z

RN
exp(¡js»)Q (») d»

D W (s). (B.2)

The solution of the regularization problem is further derived by setting

Q (») D
1
l

`X

iD1

[yi ¡ f (xi)]d (» ¡ xi), (B.3)

W (!) D FfQ (»)g D
1
l

`X

iD1

[yi ¡ f (xi)] exp(¡jxi! ). (B.4)

In the spatial domain, we have

fl (x) D
Z

RN
G (x, »)

(
1
l

`X

iD1

[yi ¡ f (xi)]d (» ¡ xi)
)

d»

D
1
l

`X

iD1

[yi ¡ f (xi )]
Z

RN
G (x, »)d (» ¡ xi) d»

D
`X

iD1

wiG(x, xi), (B.5)

where wi D [yi ¡ f (xi )]/l. Equivalently, in the frequency domain, we have

fl (x) D
Z

RN
F fG(x, »)gF

(
1
l

`X

iD1

[yi ¡ f (xi)]d (» ¡ xi)
)

d!

D
Z

RN
G (x, ! )

1
l

`X

iD1

[yi ¡ f (xi)]exp(¡jxi!) d!

D
1
l

`X

iD1

[yi ¡ f (xi )]
Z

RN
G (x, ! ) exp(jxi! ) d!

D
`X

iD1

wiG(x, xi), (B.6)



2836 Zhe Chen and Simon Haykin

which is identical to equation B.5. The second line in the above equation
uses equation B.4, and the �rst line follows from the Parseval theorem.

Appendix C: Another Proof of Regularization Solution

The proof is slightly modi�ed from the proof given in Bernard (1999).
From Riesz’s representation theorem, we know that 8x 2 RN ; there exists

a basis function wx 2 H such that f (x) D h f, wxi for all f 2 H. By de�ning an
interpolation kernel,

K (x, s) D hwx, wsi, (C.1)

with the property K (x, s) D K (s, x), the solution to the regularization prob-
lem can be written by the basis function wx:

R[ f ] D
1
2

`X

iD1

[yi ¡ f (xi)]2 C
1
2

lk fk2
H

D
1
2

`X

iD1

[yi ¡ f (xi)]2 C
1
2

lh f, f i. (C.2)

Differentiating equation C.2 with respect to f and setting to be zero, we
obtain

dR[ f ] D lh f, df i C
`X

iD1

hdf , wxi ih f, wxi i ¡
`X

iD1

yihdf , wxi i

D
*

lf C
`X

iD1

h f, wxi iwxi ¡
`X

iD1

yiwxi


df

+
D 0. (C.3)

It further follows that

lf D
`X

iD1

(yi ¡ h f, wxi i)wxi .

Hence, the solution can be represented by a linear combination of basis
functions wxi :

f (x) D
`X

iD1

ciwxi D
`X

iD1

ciK (x, xi).

Denote f D [h f, wx1 i, . . . , h f, wx`
i]T , c D [c1, . . . , c`]T , y D [y1, . . . , y ]̀T, K as

an -̀by-` matrix; writing in a matrix form, we have Kc D f, lf D K (y ¡ f),
and c D (K C lI)¡1y.
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Appendix D: GSVD

The generalized singular value decomposition (GSVD) is de�ned as

[U, V, Z, § , S] D GSVD(A, B),

where A, B are m £ p and n £ p matrices, respectively; Um£m, Vn£n are the
unitary matrices; matrix Zp£q (q D minfm C n, pg) is usually (but not neces-
sarily) square; and § and S are diagonal matrices. All satisfy the following
relationship:

A D U § ZT, B D VSZT , §
T
§ C STS D I.

Suppose si and si are theon-diagonal singular values in thesingular matrices
§ and S, respectively; the generalized singular values are de�ned by c i D
(s2

i C s2
i )1/2.

Appendix E: QR Decomposition

Applying the QR decomposition to the matrix G (Golub & Van Loan, 1996),
one has

GL D QR,

where G is an `£m input matrix, L is an m £m transposition matrix, Q is an
`£` full-rank matrix, and R is an `£m upper triangle matrix. In particular,
R and Q are expressed by

R D
"

R1 R2

0 0

#
, Q D £Q1 Q2

¤ I

henceforth,

GL D £GL1 GL2
¤ ,

and it further follows that

Q1 D GL1R¡1
1 , GL2 D Q1R2 D GL1R¡1

1 R2,

where L1 is an m £r matrix, L2 is an m £ (m ¡ r) matrix, Q1 is an `£r matrix,
Q2 is an `£ (m ¡ r) matrix, R1 is a r £ r matrix, and R2 is a r £ (m ¡ r) matrix.

Suppose the number of hidden nodes is pruned from m to r (m > r):
G`£m ! Ĝ`£r, that is, there are (m ¡ r) redundant hidden nodes to be
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deleted. Denoting the new weight vector by bw, the new expression for the
network is written by ŷ D Ĝŵ, where bG D Q1 D GL1R¡1

1 , and ŵr£1 is
calculated as

bwT D wTL1 C wL2 (R¡1
1 R2)T.
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