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Abstract

Below I provide examples of some results I developed that letme bound
error rate of Bayes optimal sliding window classifiers on graphical models

Closed form for binary Forward classifier

Suppose you have a binary chain CRF of lengthnwith edge potentialsψ1,ψ2, . . . ,ψn−1

ψi =

(

ea(i)11 ea(i)12

ea(i)21 ea(i)22

)

We are interested in the log-odds of the last state of the chain being 1, denoted
by on It is determined recursively as

o1 = 0 (1)

on+1 = arctanh(tanhqtanhon+b2)+b1 (2)

Where
b1 =

a11+a12−a21−a22

4
(3)

b2 =
a11−a12+a21−a22

4
(4)

q=
a11−a12−a21+a22

4
(5)
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Example

Suppose I have a chain of length 4, where each transition matrix has the following
form.

1 2 3 4

Figure 1: Binary Chain

ψi =

(

e1 e−1

e−1 e1

)

(6)

The potential matrix is symmetric, so bias terms (b1,b2) are 0, and the log odds
of the last state being 0 takes the following form

f ( f ( f (0))) (7)

Where
f (x) = arctanh(tanh1tanhx) (8)
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Figure 2:x and f (x)

Now, suppose we know the first state is 1, then log odds of the last state being
1 is

f ( f ( f (∞))) (9)

Using the definition off (x) from 8 we get arctanh(tanh31)≈ 0.474
Suppose we now have the same situation, but with 5 states. Thelog-odds of

last state being 1 is nowf ( f ( f ( f (∞))))≈ 0.350
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Figure 3: Fixed point iterations off (x)

Repeating this operation, makes the estimated log-odds converge to 0 as is
evident from the cobweb plot above.

The rate at which fixed point iterations converge to 0 corresponds to the rate
of “forgetting” of far away observations. We can use that rate to bound the error
incurred by discarding evidence outside of a certain window.

Example, for the function in Figure 2, the derivative is at most 0.7615. From
this we can conclude that in order to make a correct prediction, the forward clas-
sifier only needs to considerk most recent observations, where

k=

{

logmargin
log0.7615 if margin< 1
1 otherwise

(10)

Margin is the absolute value of the log-odds estimate produced by the Bayes-
optimal classifier, it reflects how strongly the data favors aparticular state for this
model.
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Classifiers for Binary-valued Trees

Sum-product classifier for tree-structued graphical models has closed form similar
to 2. The simplest version is obtained when edgei j has the following potential
matrix

ψi j =

(

expJi j exp−Ji j

exp−Ji j expJi j

)

(11)

To find log-odds of node 1, rearrange the tree so that 1 is the root and arrows
point from root to leaves. Then letting∂ j indicate the list of children of nodej,
log odds of node 1 being in state 1 areo1 where

oi = ∑
j∈∂i

fi j (o j) (12)

Where
fi j (x) = arctanh(tanhJi j tanhx) (13)

See figure 4 for plot of f for various values ofJ

J=3

J=2

J=1
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Figure 4: Plot of f (x) =
arctanh(tanhJ tanhx)

1
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8 9 10 11

o1

Figure 5: Tree rooted at 1

Example

Suppose we have have the graphical model structure as in the figure 5, with po-
tentials of the form in (11), and letJi j = 1. Fix all the nodes at level 2 (ie, nodes
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4,5,6,7) to have state 1. This corresponds to settingo4,o5,o6,o7 to ∞. Log-odds at
the root now becomes

o1 = f ( f (∞)+ f (∞))+ f ( f (∞)+ f (∞))≈ 1.875 (14)

If we do the same, but now set those nodes to have state 0, we getlog odds
of about−1.875. From this we can show that if the margin for the Bayes-optimal
classifier is greater than 1.875 we can discard any evidence more than 2 levels
deep in the tree and still make a correct prediction.

A simpler way to bound the maximum error in log odds incurred by discarding
any evidence beyondk levels is to instead consider the first order Taylor expansion
of f (x) around 0, see figure 6
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Figure 6: Plot of f (x) and it’s first order
Taylor expansion̂f (x)

The advantage of usinĝf (x) instead off (x) is that if we use it to replacef in
our sum-product classifier (14), the resulting classifier will be linear. Additionally,
error bounds based on this simplified classifier are still valid for the Bayes-optimal
classifier.

Consider how we can rewrite estimate of the root log-odds using this linearized
classifier, for the same problem as in 14 –

ô1 = f̂ ( f̂ (∞)+ f̂ (∞))+ f̂ ( f̂ (∞)+ f̂ (∞)) (15)

= f̂ ( f̂ (∞))+ f̂ ( f̂ (∞))+ f̂ ( f̂ (∞))+ f̂ ( f̂ (∞)) (16)

You can see that we get 4 terms. Note that in our tree there are 4paths of
length 2. It is not a coincidence. More generally, for this “linearized sum-product”
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classifier we will get a term for each path, where the level of nesting of f ’s in
each term corresponds to length of the path. Another example, suppose we have a
tree all potentials the same and two paths starting from rootnode, of length 1 and
length 2. Then, estimate of root node log-odds will bef̂ (x)+ f̂ ( f̂ (x))

Using potentials of the form 11 and the linearization trick Ijust described, we
get the following bound for the maximum influence on root log-marginal by nodes
outside of radius (path-distance)k from root node

∑
p

Jpk,pk+1 tanhJp1,p2 tanhJp2,p3 . . . tanhJpk−1,pk (17)

Where the sum is taken over all paths of lengthk+1 starting at node 1.
If node 1 is at leastk away from the closest leaf, all potentials are the same,

and the degree of each node isd, this simplifies to

J tanhJkdk (18)

For our simple example, this approach gives a bound of 1· tanh21·22≈2.3201.
Stated another way, our estimate of log-odds will be off by atmost 2.3201 if we
discard observations outside of radius 2 in any 2-regular tree with binary valued
states where neighbouring nodes have mutual information atmost 1.48 bits. This
may seem quite loose, but that’s because in regular trees, the number of evidence
nodes at distanced grows exponentially withd so without restrictions on tree size,
there can be potentially quite a bit of evidence outside of any fixed window radius.

The approach used in equation 14 is optimal in a sense that without restric-
tions on the strength of local potentials, the bound is tight. However, we shall see
that for general graphical models, optimal bound is intractable to compute, while
linearization trick gives us tractable bounds.

Binary Valued General Graphical Models

Weitz (2006) has recently introduced a way to take a marginalin an arbitrary
graph, and find a tree such that the marginal of a root node of this tree is the
same as the marginal in the arbitrary graph. This construction is known as the
self-avoiding walk tree. Figure 8 gives a self-avoiding walk representation of a
marginal of node 3 in 7. “3-” and “3+” indicate that we fix that node to have value
0 or 1 respectively. More specifically the tree is constructed by considering all
self-avoiding walks on a graph starting at the target node, then creating a tree by
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merging walks with common prefixes. When loop is encounteredwhile construct-
ing the walk, the self-avoiding walk terminates. The node that closes the loop is
included in the tree, fixed to either 0 or 1 value, depending onthe direction in
which the loop was traversed. Node 3 in figure 8 and Node 3 in figure 7 have the
same marginal

1

2

3 4 5

Figure 7: Example graphical
model
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Figure 8: SAW-tree representa-
tion of node 3 marginal

Using self-avoiding walk representation, and the same potential as 6 we can
have a similar closed form representation for log-odds of node 3

o3 = f ( f (0))+ f ( f ( f (∞)))+ f ( f ( f (−∞))) (19)

Wheref is the same as in 8. Using linearization trick as in the previous section,
we can obtain the following bound on the maximum influence on the log-marginal
by nodes outside of some radiusk

∑
p

J(tanh|p| J) (20)

Here the sum is taken over all self-avoiding walks of lengthk+1. Note the simi-
larity to equation 17

We can rewrite it as

J∑
p

c|p| (21)
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Wherec= tanhJ. The sum in the equation 21 is known as the generating func-
tion for self-avoiding walks. Those have been heavily studied in physics literature,
and we can use those results to obtain bounds on sliding window classifier error
for lattices. For instance, consider the square lattice structure in figure 9

Figure 9: Piece of square lattice

If we again use the simple potential as in eq. 11, linearization trick and the
results from self-avoiding walks on lattices (ie, from (Madras & Slade, 1996)), we
get the following estimate for the amount of influence exerted by nodes more than
k steps away from target node.

∞

∑
n=k+1

n
11
32(µtanhJ)n (22)

Whereµ is the unique positive root of polynomial 13x4−7x2−581≈ 2.63816.
You can see that in order for this sum to converge,J has to be at most 0.398952.
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This is related to the phenomenon of phase-transitions. Thegraphical model in
the figure above corresponds to square-lattice Ising model.For this Ising model,
it is known that above a certain value ofJ, there’s no longer decay of correlations,
in other words, the importance of far away states doesn’t diminish with distance.
In a true Ising model (allowing infinite square grid), there’s perfect correlation
between all states whenJ > arcsinh(1)/2≈ 0.441. Therefore, any kind of bound
on influence of far away observations must become trivial forJ > 0.441. We in-
troduce looseness by linearizingf , so our bound becomes trivial slightly earlier,
for J > 0.399.

In order to get optimal sliding window size given margin (which as I men-
tioned depends on the strength and pattern of observations), we could solve equa-
tion 22 for k numerically. Alternatively, we could approximate the influence by
dropping the polynomial term, then we can solve fork explicitly, we get

log(margin(1−µtanhJ))
log(µtanhJ)

(23)

Whereµ is the same as in equation 22. Suppose our margin is 0.5, then you
can see the size of the sliding window of optimal sliding window classifier for
large square lattice as a function ofJ in figure 10 (it defines the potential matrix
as in equation 11)

0.1 0.2 0.3 0.4
J

5
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15

20

25

30

35

Window radius

Figure 10: Bound on size of optimal sliding window classifierfor square lattice
(fig 9) where edge potentials have form (24)
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(

expJ exp−J
exp−J expJ

)

(24)

Linear Sliding Window for Finite Graphs

Obtaining error bounds and obtaining linear classifiers on graphs are related tasks
– we can take a first-order Taylor expansion of log-marginal as a function of evi-
dence, then consider the regret incurred by discarding far-away evidence for this
linear classifier. This “linearized” regret bounds the trueregret of optimal sliding
window. Results from mathematical physics literature mentioned in previous sec-
tion (ie, (Guttmann & Conway, 2001)) apply to large graphs with a high degree of
symmetry. For finite graphs, we can use a more direct approach.

Supposefi(x1,x2, . . . ,xn) represents log-odds of nodei as a function of evi-
dence on nodes 1. . .n. Then we have the following result for binary valued graph-
ical models

∂ fi
∂x j
≤ ∂y j

∂x j
∑
p

s(p1, p2)s(p2, p3) . . .s(pn−1, pn) (25)

The sum is taken over all self-avoiding walks between nodei and j. The func-
tion s(n1,n2) represents the degree of informativeness of the edge between nodes
n1 andn2. For simple potentials of the form (24) it is tanhJ, for general potentials
on binary models () it is tanhq whereq is defined as in (5).

The bound will become tight if we introduce loop correction factors, more on
this below. As it stands, it is tight in the limit of weak loop interactions. In other
words, if we want our bound to be loose by at most a factor ofe, we can find pick
loop potentials where this tightness is satisfied, for anye

If we consider models with more than two states,fi is now a vector valued
function. In this case, the following holds

‖ ∂ fi
∂x j
‖ ≤C‖∂y j

∂x j
‖∑

p
s(p1, p2)s(p2, p3) . . .s(pn−1, pn) (26)

C is a constant that depends on the norm‖.‖. Functions(., .) is now the
Birkhoff contraction coefficient (Hartfiel, 2002), of the potential matrix for the
corresponding edge. When the norm used is a certain polyhedral norm related to
Hilbert’s projective metric (Kohlberg & Pratt, 1982),C= 1 and the bound is tight,
subject to conditions on loop potentials as before.
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Maximum error incurred by dropping evidence from nodej is

C ∆(φi)∑
p

s(p1, p2)s(p2, p3) . . .s(pn−1, pn) (27)

Where∆ is the range of the image of the emission potential on nodei. It is
closely related to Birkhoff contraction coefficient. For a potential matrix{a}i j , ∆
and a certain polyhedral norm‖.‖h (explained below), (also brought up in (Harpe,
1991))∆ is defined

∆ = max
i jkl

aika jl

ail a jk
(28)

This formula is derived in greater detail in (Bapat & Raghavan, 1997).
C is a constant that depends on the metric used to measure error, sameC as

in (26). For instance, if you measure error in terms ofL2 distance between esti-
mated log-odds and true log-odds, and we have 3 states, C=

√
3

2 . If we use distance
measure introduced by Darwiche/Hei Chan (2002), C=1. In fact, this measure
has been rediscovered several times, and is also known as Dynamic Range (Ih-
ler, 2007), “Hilbert’s projective metric” ((Hartfiel, 2002)), also it is the same as
the quotient metric for thel∞ norm introduced in (Mooij & Kappen, 2007). A
few other places where it comes up are (Waser, 1986),(Liebetrau, 1983),(Altham,
),(Atar & Zeitouni, 1996)

This metric seems to be the most natural to use for measuring information loss
because it’s been shown that it is the only metric (up to monotonic bijection) under
which two belief vectors are brought closer together when convolved with any
positive edge potential, (Kohlberg & Pratt, 1982). Diagrambelow marks contours
of common metrics centered at 0, our metric is marked as‖.‖h.

For models with 3 states, level sets of Hilbert’s projectivemetric are regular
hexagons. For 4 states, they are rhombic dodecahedra as in Figure 12

For higher dimensions, the level sets of this metric are known as strombiated
simplices. We can obtain bound on error in more familiar metrics like l2 distance
in log odds by comparing ratio of circumscribed (hyper)sphere to inscribed sphere
for one such simplex. For instance, the constant C=

√
3

2 for error in l2 metric in
Eq (27) is precisely the ratio of circumscribed to inscribedcircles for a regular
hexagon.
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Figure 11: Level-1 sets of different metrics centered at 0

Computing Correlations for Linear Sliding Window

In order to compute a linearized sliding window classifier weneed to compute
all correlations from the equation (25). The difficulty withthat formula is that it
requires enumerating over all self-avoiding walks, which can potentially take ex-
ponential time. We can relax the requirement and compute an upper bound instead
by enumerating over all walks, not necessarily self-avoiding.

Consider the following matrix

A=









s(1,1) s(1,2) . . . s(1,n)
s(2,1) s(2,2) . . . s(2,n)
. . . . . . . . . . . .

s(n,1) s(n,2) . . . s(n,n)









(29)
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Figure 12: Level set of dynamic range norm for 4-state model

Note that(An)i j is the same as

∑
p

s(p1, p2)s(p2, p3) . . .s(pn−1, pn) (30)

Where the sum is taken over walks of lengthn.
In order to get an upper bound on (25), we need to consider walks of all

lengths. The sum in the equation (25) will be thei j th entry in the matrix defined
by the following

I +A1+A2+A3+ . . .= (I −A)−1 (31)

This is known as the Neumann series, (Meyer & Meyer, 2001) page 126 and
the equality above holds when spectral radius ofA is< 1. When the spectral radius
is >= 1, the above equality doesn’t hold, the series diverges, andthis represents
the fact that the bound becomes trivial.

Example

Consider binary valued graphical model in figure 13. Supposeall potentials (edge
and observation potentials) have the form

ψi =

(

e0.1 e−0.1

e−0.1 e0.1

)

(32)

We are interested in linear classifier that predicts state 1 as a function of obser-
vations at nodes 2,3,4. Use equation 25 to compute approximate linear expansion
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Figure 13: Simple graph

of the log-marginal around 0 evidence point. For instance, consider the derivative
∂ f1
∂y4

, the corresponding sum will have 4 terms, visualized in figure 14
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Figure 14: Self avoiding walks between nodes 1 and 4

Summing up the corresponding weights we get

∂ f1
∂y4

= tanh2 .1+ tanh2 .1+ tanh3 .1+ tanh3 .1≈ 0.0218476 (33)

Carrying out the procedure for all the variables we get the following linear
expansion of the log-marginal at node 1 in terms of local potentials xi for the
graph 13

y1 = x1+0.110592x2+0.110592x3+0.0218476x4 (34)

x variables are local potentials, more specifically,xi gives log-odds of state 1
over state 0 for nodei conditioned on local evidence given all other potentials 0,
for the graph 13
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Note that the equation above is a linear expansion of log-odds around 0 evi-
dence point (x’s are 0) in the limit of weak loop interactions. I chose low edge-
potential strength here to make this expansion method look better.

We can get exact linear expansion by considering exact formula for log-marginal
of node 1 for the graph in Figure 13

1
2

Log





e
1
10+x1−x2−x3−x4

+e−
1
10+x1+x2−x3−x4

+e−
1
10+x1−x2+x3−x4

+e
1
10+x1+x2+x3−x4

+e−
3
10+x1−x2−x3+x4

+e−
1
10+x1+x2−x3+x4

+e−
1
10+x1−x2+x3+x4

+e
1
2+x1+x2+x3+x4

e
1
2−x1−x2−x3−x4

+e−
1
10−x1+x2−x3−x4

+e−
1
10−x1−x2+x3−x4

+e−
3
10−x1+x2+x3−x4

+e
1
10−x1−x2−x3+x4

+e−
1
10−x1+x2−x3+x4

+e−
1
10−x1−x2+x3+x4

+e
1
10−x1+x2+x3+x4





(35)

Another way of representing this quantity is using the self-avoiding walk rep-
resentation as in previous section. The quantity in (35 is equivalent to)

x1+ f

[

x3+ f

[

x4+ f

[

1
5
+x2

]]

+ f

[

1
10

+x2+ f

[

− 1
10

+x4

]]]

+ f

[

x2+ f [x4+ f [x3]]+ f

[

− 1
10

+x3+ f

[

− 1
10

+x4

]]]

(36)

Where f (x) = arctanh(tanh(0.1) tanh(x)). By explicitly taking first order Tay-
lor expansion of either of the closed forms above around 0, weget

y1 = x1+0.110461x2+0.110461x3+0.0218022x4 (37)

Comparing this equation to 34 we see that approach based on self-avoiding
walk generating function (Figure 14) gives almost the same result as one based on
exact differentiation of the closed form. Also, coefficients in 34 are upper bounds
on coeffients in 37

Obtaining linearized classifiers from equation for exact log-marginal as in (35)
is intractable for large models. Obtaining approximate linearized classifiers from
25 is also intractable because self-avoiding walk enumeration is hard. However,
self-avoiding walk representation suggests a natural sequence of approximations
– instead of self-avoiding walks, use memory-k walks, whichcan be enumerated
in polynomial time, and give valid upper bounds on both coefficients, and regret.

Using the approach of previous section, lets compute coefficients for our ex-
ample using regular walks instead.

Correlation matrix (from 29) for this example is








0 tanh0.1 tanh0.1 0
tanh0.1 0 tanh0.1 tanh0.1
tanh0.1 tanh0.1 0 tanh0.1

0 tanh0.1 tanh0.1 0









(38)

Spectral radius of this matrix is≈ 0.255 so the bound based on regular walks
will be non-trivial and Neumann series equality (??) holds. We get the following
matrix of correlations

15



(I −A)−1 =









1.02309 0.115813 0.115813 0.0230856
0.115813 1.03567 0.126309 0.115813
0.115813 0.126309 1.03567 0.115813
0.0230856 0.115813 0.115813 1.02309









(39)

From this, we get the following linear expansion

y1 = 1.023x1+0.11581x2+0.11581x3+0.02308x4 (40)

Using formula for diameter of image after convolution (28) and formula above
we can conclude that regret from dropping observations at node 4 is at most
0.02308·2 · tanh0.1≈ 0.00460167.

This approach can be extended to memory-k walks. We simply create a graph
that corresponds to memory-k walks by creating nodes for nodes with different
histories. For instance, for our example, memory-1 walk graph would be the one
below. In Figure 15, we have a node for every directed edge, node{3,4} repre-
sents a walker on state 4, which has visited state 3 in previous step. Note that this
construction is the same as the directed line graph of 13 withbacktracking edges
removed.

Now we use the same approach as before to get

A=































0 0 0 0.099668 0.099668 0 0 0 0 0
0 0 0 0 0 0 0.099668 0.099668 0 0
0 0.099668 0 0 0 0 0 0 0 0
0 0 0 0 0 0.099668 0 0.099668 0 0
0 0 0 0 0 0 0 0 0 0.099668

0.099668 0 0 0 0 0 0 0 0 0
0 0 0.099668 0 0.099668 0 0 0 0 0
0 0 0 0 0 0 0 0 0.099668 0
0 0 0.099668 0.099668 0 0 0 0 0 0
0 0 0 0 0 0.099668 0.099668 0 0 0































(41)

Spectral radius of this matrix is 0.1516, lower than for matrix of regular walks
and also below 1, so bound will be non-trivial. Repeating procedure as before, we
get a 10x10 matrix. We can then add up correlations for equivalent states (ie, state
4 with history{3} and state 4 with history{2} will be collapsed) and we get the
following linear expansion.

y1 = 1.0011x1+0.11102x2+0.11102x3+0.02213x4 (42)
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Figure 15: Graph for memory-1 walks on graph in Fig.13

Connections to belief propagation

Consider a binary graphical model with structure as in 13 with uniform edge po-
tentials. Loopy belief propagation entails iterating the following set of equations
until fixed point. We have a variable for each node and each directed edge
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m1←m12+m13+x1
m2←m21+m23+m24+x2
m3←m31+m32+m34+x3
m4←m42+m43+x4
m12← f (m23+m24+x2)
m13← f (m32+m34+x3)
m21← f (m13+x1)
m23← f (m31+m34+x3)
m24← f (m43+x4)
m31← f (m12+x1)
m32← f (m21+m24+x2)
m34← f (m42+x4)
m42← f (m21+m23+x2)
m43← f (m31+m32+x3)

(43)

Wheref (x) is the same contraction function used before, it depends on strength
of potentials, for instance could be the same as in 36. The first four equations ob-
tain the values of the log-marginals and have no effect on fixed point iteration. So
the solution is obtained by iterating the last 10 equations to get fixed point value
for edge variables, then substituting their values into equation for node variables.

You can view the fixed-point iteration process as consistingof two kinds of
steps:

1. Addition: M43=m31+m32+x3

2. Convolution: m43=f(M43)

(44)

We can visualize the set of equations above by creating a graph with a node for
each edge message, there will be an edge from message1 to message2 if message1
enters into the update equation for message2. The resultinggraph is the same as
the graph for non-backtracking (memory-1) walks in Figure (15). The equivalence
of fixed point of Loopy belief propagation and root marginal of non-backtracking
walk tree has been noted by Jordan/Tatikonda (2002) before.

The set of equations in 44 is non-linear because of convolution step which
makes analysis harder. It is instructive to study a linearized version, which is close
to exact when loop interactions and observation potentialsare weak.
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1. Addition:M43= m31+m32+x3

2. Convolution:m43= M43· tanhJ

(45)

The new set of equations is linear, hence we can represent onestep linearized
loopy-belief propagation update with a matrix multiplication. If J = 0.1, single
step of this linearized belief propagation corresponds to the following equation

x← Ax+o (46)

WhereA is the same matrix as the matrix of generating function for non-
backtracking walks in (41).o is a vector of local potentials. Because this equation
is linear, there’s an easy condition on the convergence of this “linearized loopy
belief propagation” – spectral radius of A has to be< 1.

Consider again the update matrix for linearized loopy belief propagation for
the graph 13, lettingJ denote edge strength.

A=

































0 0 0 tanhJ tanhJ 0 0 0 0 0
0 0 0 0 0 0 tanhJ tanhJ 0 0
0 tanhJ 0 0 0 0 0 0 0 0
0 0 0 0 0 tanhJ 0 tanhJ 0 0
0 0 0 0 0 0 0 0 0 tanhJ

tanhJ 0 0 0 0 0 0 0 0 0
0 0 tanhJ 0 tanhJ 0 0 0 0 0
0 0 0 0 0 0 0 0 tanhJ 0
0 0 tanhJ tanhJ 0 0 0 0 0 0
0 0 0 0 0 tanhJ tanhJ 0 0 0

































(47)
Spectral radius of that matrix is tanhJ · r where r is the unique real root of

equationx3−x−2 = 0. This suggests thatJc = arctanh(1/r) is the critical point
for this inference method. In fact, this is also the criticalpoint for regular loopy
belief propagation for this graph, see figures 16,17,18

Spectral radius condition in this example is a sufficient condition for the con-
vergence of loopy belief propagation, although it’s not a necessary condition since
it ignores local potentials. This is the same as the condition given in (Mooij &
Kappen, 2007).
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Figure 16: Behavior of error as a function of iterations forJ < Jc

Summary

There are two technical challenges in obtaining tight bounds for graphical models
– nonlinearity and inference complexity. For graphical models with strong obser-
vation potentials, dependence of marginal on observationsis highly non-linear, for
instance, in a chain, two strong observations can render therest of the chain irrele-
vant. In a linear classifier, feature relevance doesn’t depend on other features. Non-
linearity also precludes a lot of simplification. Obtainingtight non-linear bounds
for general graphical models can be done using approach similar to (Ihler, 2007).
Basically the bounds are obtained in a way similar to belief propagation. This ap-
proach suggests an algorithm for bound calculation, ratherthan interpretable for-
mulas. We can let graphical model take a particular form, ie achain with uniform
observation and interaction potentials, and come up with approximate formulas in
terms of few variables, see first paper attached to this report.

Another approach is to look at bounds in the limit of weak interaction poten-
tials. When potentials are weak enough, the log-odds of nodemarginals are almost
linear functions of observations. Using self-avoiding walk tree representation of
marginal, bounds then become values of the two-point correlation function for
self-avoiding walks on the graph. Two point-correlation function for memory-k
walks gives a looser upper bound which is easier to compute. Easiest to compute
is a bound which is based on memory-1 walks. In fact this boundis tight for in-
ference based on loopy-belief propagation. This suggests aconnection between
approximate inference and bounds – we can craft approximateinference methods
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Figure 17: Behavior of error as a function of iterations forJ = Jc

for which bound derived from memory-k walks is tight, and those methods will
be more accurate than loopy belief propagation, see second attached paper.
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