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Abstract

Below | provide examples of some results | developed thahkbound
error rate of Bayes optimal sliding window classifiers orphiaal models

Closed form for binary Forward classifier

Suppose you have a binary chain CRF of lengthith edge potentialg1, Y>, ..., Yn_1
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We are interested in the log-odds of the last state of thendbesing 1, denoted
by o, It is determined recursively as

op = 0 (1)
ont1 = arctantftanhgtanhon + by) + by (2)
Where 014819 — B0l — &

by = 11+ a12 : D1 — a2 3)
by — arl— 312: ap1—ap? 4)

a1 —ajpp—axi+ag
— 5
2 (5)



Example

Suppose | have a chain of length 4, where each transitionxinats the following
form.
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Figure 1: Binary Chain
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The potential matrix is symmetric, so bias termsglf,) are 0, and the log odds
of the last state being 0 takes the following form

F((f(0))) (7)

Where
f(x) = arctantitanh 1 tanix) 8)
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Figure 2:x and f (x)

Now, suppose we know the first state is 1, then log odds of giestate being
lis

F(E(f())) ©)

Using the definition off (x) from 8 we get arctanftant? 1) ~ 0.474
Suppose we now have the same situation, but with 5 statesloghadds of
last state being 1 is no( f (f(f()))) ~ 0.350
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Figure 3: Fixed point iterations df(x)

Repeating this operation, makes the estimated log-oddgeoga to 0 as is
evident from the cobweb plot above.

The rate at which fixed point iterations converge to O comwesg to the rate
of “forgetting” of far away observations. We can use thaé riat bound the error
incurred by discarding evidence outside of a certain window

Example, for the function in Figure 2, the derivative is atstn®.7615. From
this we can conclude that in order to make a correct predictiee forward clas-
sifier only needs to consid&most recent observations, where

10
1 otherwise (10)

logmargin :
K { Toga7ers | margin<1
Margin is the absolute value of the log-odds estimate prediny the Bayes-
optimal classifier, it reflects how strongly the data favopaeticular state for this

model.



Classifiers for Binary-valued Trees

Sum-product classifier for tree-structued graphical modat closed form similar
to 2. The simplest version is obtained when edgbas the following potential
matrix

L explij  exp—Jij
Wij = ( exp—inj eprijJ ) (11)

To find log-odds of node 1, rearrange the tree so that 1 is thitearod arrows
point from root to leaves. Then lettirdy indicate the list of children of nodg
log odds of node 1 being in state 1 arewhere

o= fij(o)) (12)
jeoai
Where
fij (X) = arctaniftanhJ;j tanhx) (13)

See figure 4 for plot of f for various values &f
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Figure 4: Plot of f(x) =

arctantftanhJtanhx) Figure 5: Tree rooted at 1

Example

Suppose we have have the graphical model structure as irgtive %, with po-
tentials of the form in (11), and le; = 1. Fix all the nodes at level 2 (ie, nodes
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4,5,6,7) to have state 1. This corresponds to setiifm,06,07 t0 . Log-odds at
the root now becomes

01 = f(f(e0)+ (o)) + f(f(e0) + f(c0)) ~ 1.875 (14)

If we do the same, but now set those nodes to have state 0, Wweggedds
of about—1.875. From this we can show that if the margin for the Bayesaugdt
classifier is greater than875 we can discard any evidence more than 2 levels
deep in the tree and still make a correct prediction.

A simpler way to bound the maximum error in log odds incurrgdiscarding
any evidence beyondlevels is to instead consider the first order Taylor expansio
of f(x) around 0, see figure 6

Figure 6: Plot off (x) and it's first order
Taylor expansiorf (x)

The advantage of usinf(x) instead off (x) is that if we use it to replacé in
our sum-product classifier (14), the resulting classifidrlva linear. Additionally,
error bounds based on this simplified classifier are stilthfak the Bayes-optimal
classifier.

Consider how we can rewrite estimate of the root log-oddsgusiis linearized
classifier, for the same problem as in 14 —

6, = f(f:(oo)+f m2)+f(f§m2+f(m)2 ) (15)
= f(f(e)) + f(f(w0)) + f(f(c0)) + f(f(e0)) (16)

You can see that we get 4 terms. Note that in our tree there pegh® of
length 2. It is not a coincidence. More generally, for thinéarized sum-product”
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classifier we will get a term for each path, where the level @dtimg of f's in
each term corresponds to length of the path. Another exarsybgose we have a
tree all potentials the same and two paths starting fromrrodg, of length 1 and
length 2. Then, estimate of root node log-odds willftgg) + f (f(x))

Using potentials of the form 11 and the linearization trigidt described, we
get the following bound for the maximum influence on root lagrginal by nodes
outside of radius (path-distandejrom root node

Z ‘]pkapk+l tathme tathpz,ps T tanh‘]pkflypk (17)
p

Where the sum is taken over all paths of lenigth1 starting at node 1.
If node 1 is at leask away from the closest leaf, all potentials are the same,
and the degree of each nodalighis simplifies to

Jtanhi*dX (18)

For our simple example, this approach gives a boundaiit? 1. 22 ~ 2.3201.
Stated another way, our estimate of log-odds will be off bynast 2.3201 if we
discard observations outside of radius 2 in any 2-reguése with binary valued
states where neighbouring nodes have mutual informatiomoat 1.48 bits. This
may seem quite loose, but that's because in regular treeguttmber of evidence
nodes at distanadgrows exponentially witll so without restrictions on tree size,
there can be potentially quite a bit of evidence outside gffexed window radius.

The approach used in equation 14 is optimal in a sense thhbutirestric-
tions on the strength of local potentials, the bound is tiglowever, we shall see
that for general graphical models, optimal bound is inttale to compute, while
linearization trick gives us tractable bounds.

Binary Valued General Graphical Models

Weitz (2006) has recently introduced a way to take a margmaln arbitrary
graph, and find a tree such that the marginal of a root nodeisfttde is the
same as the marginal in the arbitrary graph. This constmds known as the
self-avoiding walk tree. Figure 8 gives a self-avoiding kvedpresentation of a
marginal of node 3in 7. “3-" and “3+” indicate that we fix thaidae to have value
0 or 1 respectively. More specifically the tree is constrddig considering all
self-avoiding walks on a graph starting at the target ndukx treating a tree by



merging walks with common prefixes. When loop is encounteseite construct-
ing the walk, the self-avoiding walk terminates. The nod ttioses the loop is
included in the tree, fixed to either O or 1 value, dependingheandirection in
which the loop was traversed. Node 3 in figure 8 and Node 3 imdiglthave the
same marginal

\2 5
\1 4/
\3/
2\3 4 5)
1/ i
Figure 7: Example graphical L
model

Figure 8: SAW-tree representa-
tion of node 3 marginal

Using self-avoiding walk representation, and the samenpialieas 6 we can
have a similar closed form representation for log-odds oien®

03 = f((0)) + f(f(f(0))) + F(f(f(-))) (19)

Wheref is the same as in 8. Using linearization trick as in the prnesgection,
we can obtain the following bound on the maximum influencenelag-marginal
by nodes outside of some radikis

}EJﬂanHmJ) (20)
p

Here the sum is taken over all self-avoiding walks of lernigthl. Note the simi-
larity to equation 17
We can rewrite it as

szm (21)
p



Wherec = tanhJ. The sum in the equation 21 is known as the generating func-
tion for self-avoiding walks. Those have been heavily stddin physics literature,
and we can use those results to obtain bounds on sliding withssifier error
for lattices. For instance, consider the square lattiagctire in figure 9

B
[ 1]

Figure 9: Piece of square lattice

If we again use the simple potential as in eq. 11, lineaopatrick and the
results from self-avoiding walks on lattices (ie, from (Masl& Slade, 1996)), we
get the following estimate for the amount of influence exeékg nodes more than
k steps away from target node.

Z n%(utath)” (22)
n=K+1

Whereptis the unique positive root of polynomial £3- 7x2 — 581~ 2.63816.
You can see that in order for this sum to convergbas to be at most.898952.
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This is related to the phenomenon of phase-transitions.gfaghical model in
the figure above corresponds to square-lattice Ising mé&oelthis 1sing model,
itis known that above a certain valuehfthere’s no longer decay of correlations,
in other words, the importance of far away states doesn’trdghn with distance.
In a true Ising model (allowing infinite square grid), thergerfect correlation
between all states wheh> arcsinh(1)2 ~ 0.441. Therefore, any kind of bound
on influence of far away observations must become trivialfor0.441. We in-
troduce looseness by linearizirig so our bound becomes trivial slightly earlier,
for J > 0.399.

In order to get optimal sliding window size given margin (alinias | men-
tioned depends on the strength and pattern of observatiwasjould solve equa-
tion 22 for k numerically. Alternatively, we could approxate the influence by
dropping the polynomial term, then we can solveKaxplicitly, we get

log(margin1— ptanhd))
log(utanhd)
Wherep is the same as in equation 22. Suppose our margin is 0.5, then y
can see the size of the sliding window of optimal sliding vandclassifier for

large square lattice as a functionbin figure 10 (it defines the potential matrix
as in equation 11)

(23)

Window radius
35F

30F

251

201

15}

10}

T L L L L 1 L L L L 1 L L L L 1 J
0.1 0.2 0.3 0.4

Figure 10: Bound on size of optimal sliding window classifier square lattice
(fig 9) where edge potentials have form (24)



expJ exp—J
<exp—J expJd ) (24)

Linear Sliding Window for Finite Graphs

Obtaining error bounds and obtaining linear classifiersraplgs are related tasks
— we can take a first-order Taylor expansion of log-margisa &unction of evi-
dence, then consider the regret incurred by discardingay evidence for this
linear classifier. This “linearized” regret bounds the tregret of optimal sliding
window. Results from mathematical physics literature nogr@d in previous sec-
tion (ie, (Guttmann & Conway, 2001)) apply to large graphthwai high degree of
symmetry. For finite graphs, we can use a more direct approach

Supposefi(x1, X2, ..., Xn) represents log-odds of nodeas a function of evi-
dence on nodes.1.n. Then we have the following result for binary valued graph-
ical models

Of.

ax; = ax, Zs P1, P2)S(P2; P3) - - S(Pn-1, Pn) (25)

The sum is taken over all self-avoiding walks between ricded j. The func-
tion s(ny, n2) represents the degree of informativeness of the edge betaekes
n; andny. For simple potentials of the form (24) it is talfor general potentials
on binary models () it is tandpwhereq is defined as in (5).

The bound will become tight if we introduce loop correctiactbrs, more on
this below. As it stands, it is tight in the limit of weak loopteractions. In other
words, if we want our bound to be loose by at most a fact@; afe can find pick
loop potentials where this tightness is satisfied, forany

If we consider models with more than two statésis now a vector valued
function. In this case, the following holds

ofi

155 ||_C|| IIZsm,pz S(P2,P3) .- -S(Pn-1, Pn) (26)

C is a constant that depends on the ndfr. Functions(.,.) is now the
Birkhoff contraction coefficient (Hartfiel, 2002), of the teatial matrix for the
corresponding edge. When the norm used is a certain polghedm related to
Hilbert’s projective metric (Kohlberg & Pratt, 1982},= 1 and the bound is tight,
subject to conditions on loop potentials as before.
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Maximum error incurred by dropping evidence from ngde

CA(@) ) s(p1, P2)S(P2, P3) .- S(Pn-1, Pn) 27)
p

WhereA is the range of the image of the emission potential on nodteis
closely related to Birkhoff contraction coefficient. For @@ntial matrix{a}ij, A
and a certain polyhedral nori||;, (explained below), (also brought up in (Harpe,
1991))Ais defined

A= r_naxM (28)
ijkl &y ajk

This formula is derived in greater detail in (Bapat & RaghgvER97).

C is a constant that depends on the metric used to measure samoeC as
in (26). For instance, if you measure error in termd_gfdistance between esti-

mated log-odds and true log-odds, and we have 3 staté§ Qfwe use distance
measure introduced by Darwiche/Hei Chan (2002), C=1. In, fdis measure

has been rediscovered several times, and is also known aantdyiRange (lh-

ler, 2007), “Hilbert’s projective metric” ((Hartfiel, 200 also it is the same as
the quotient metric for thé, norm introduced in (Mooij & Kappen, 2007). A
few other places where it comes up are (Waser, 1986),(Li@et983),(Altham,

),(Atar & Zeitouni, 1996)

This metric seems to be the most natural to use for measuriognation loss
because it's been shown that it is the only metric (up to mamiotbijection) under
which two belief vectors are brought closer together whemvalyed with any
positive edge potential, (Kohlberg & Pratt, 1982). Diagta@tow marks contours
of common metrics centered at 0, our metric is marke(dl s

For models with 3 states, level sets of Hilbert’s projectivetric are regular
hexagons. For 4 states, they are rnombic dodecahedra ayuireHi2

For higher dimensions, the level sets of this metric are knaw strombiated
simplices. We can obtain bound on error in more familiar mstike |, distance
in log odds by comparing ratio of circumscribed (hyper)sphe inscribed sphere

for one such simplex. For instance, the constantizétior error inly metric in
Eq (27) is precisely the ratio of circumscribed to inscrilmédtles for a regular
hexagon.

11
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Figure 11: Level-1 sets of different metrics centered at 0

Computing Correlations for Linear Sliding Window

In order to compute a linearized sliding window classifier mezd to compute
all correlations from the equation (25). The difficulty withat formula is that it
requires enumerating over all self-avoiding walks, whiah potentially take ex-
ponential time. We can relax the requirement and comput@panbound instead
by enumerating over all walks, not necessarily self-avadi

Consider the following matrix

(29)
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Figure 12: Level set of dynamic range norm for 4-state model

Note that(A");j is the same as

> s(P1, P2)S(P2, P3) - - -S(Pn—1, Pn) (30)
P

Where the sum is taken over walks of length

In order to get an upper bound on (25), we need to considersaaflall
lengths. The sum in the equation (25) will be ilpth entry in the matrix defined
by the following

| +AL A2 A3 =(1-A)T (31)

This is known as the Neumann series, (Meyer & Meyer, 2001 d&tH and
the equality above holds when spectral radiua &f < 1. When the spectral radius
is >=1, the above equality doesn’t hold, the series divergestlaadepresents
the fact that the bound becomes trivial.

Example

Consider binary valued graphical model in figure 13. Suppdigeotentials (edge
and observation potentials) have the form

01 401
e e
= 32
Wi ( e 01 01 ) (32)
We are interested in linear classifier that predicts statedlfanction of obser-
vations at nodes 2,3,4. Use equation 25 to compute appréximaar expansion

13



Figure 13: Simple graph

of the log-marginal around O evidence point. For instancasider the derivative
3—;2, the corresponding sum will have 4 terms, visualized in Bgl4

tani(1) tank(1)
tani(1) tanif(1)

2 2

Figure 14: Self avoiding walks between nodes 1 and 4

Summing up the corresponding weights we get

f
a_yl = tanif.1+tani?.1+tank?.1+ tani?.1 ~ 0.0218476 (33)
A

Carrying out the procedure for all the variables we get thfiong linear
expansion of the log-marginal at node 1 in terms of local pidés x; for the
graph 13

y1 = X1+ 0.11059%, + 0.11059%3 + 0.02184 7&4 (34)

X variables are local potentials, more specificat)ygives log-odds of state 1
over state O for nodeconditioned on local evidence given all other potentials O,
for the graph 13

14



Note that the equation above is a linear expansion of log-@ddund O evi-
dence point (x’s are 0) in the limit of weak loop interactiohshose low edge-
potential strength here to make this expansion method letikeib

We can get exact linear expansion by considering exact flarfoulog-marginal
of node 1 for the graph in Figure 13

1 [eﬁ+xl—x2—x3—x4 +e T]b+><1+><2—><3—><4 te Tlo+><1—><2+><3—x4 + eﬁ+xl+xz+x3—x4 te %+x1—x2—x3+><4 +e T]b+><1+><2—><3+><4 +e Tlo+><1—><2+><3+x4 + e% +X1+x2+x3+x4
~L
2

3
+e 10

— 110 —x1+x2—-x3-x4

+e — 110 —X1-Xx2+x3-x4

1
e —x1-x2—-x3-x4 t+e

—X1+x2+x3-x4 + 8110 —X1-x2-x3+x4 | — 110 —X14+x2-x3+x4 | — 110 —X1-Xx2+x3+x4 + eilO —X14+X2+x3+x4

+e +e
(35)

Another way of representing this quantity is using the setfiding walk rep-
resentation as in previous section. The quantity in (35 isvadent to)

x1+ f {x3+f {x4+f [é +x2H +f Lflo+x2+f [71710“(4}“ +f [x2+f[x4+f[x3]]+f [71—10+x3+f [71—10+X4H} (36)

Wheref (x) = arctanfftanh(0.1) tanh(x)). By explicitly taking first order Tay-
lor expansion of either of the closed forms above around (Qyete

y1 = X1 +0.11046%, + 0.11046 k3 + 0.021802%, (37)

Comparing this equation to 34 we see that approach based/fesvegling
walk generating function (Figure 14) gives almost the sagselt as one based on
exact differentiation of the closed form. Also, coefficieirt 34 are upper bounds
on coeffients in 37

Obtaining linearized classifiers from equation for exagtioarginal as in (35)
is intractable for large models. Obtaining approximatedinzed classifiers from
25 is also intractable because self-avoiding walk enunweras hard. However,
self-avoiding walk representation suggests a naturalesezpiof approximations
— instead of self-avoiding walks, use memory-k walks, whiah be enumerated
in polynomial time, and give valid upper bounds on both cogffits, and regret.

Using the approach of previous section, lets compute ceeite for our ex-
ample using regular walks instead.

Correlation matrix (from 29) for this example is

0 tanh01 tanhOl 0
tanhQ01 0 tanh01 tanhOl1
tanhQl1 tanhO1 0 tanh 01

0 tanh01 tanhOl 0

Spectral radius of this matrix is 0.255 so the bound based on regular walks
will be non-trivial and Neumann series equali®?) holds. We get the following
matrix of correlations

(38)
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1.02309 0115813 0115813 00230856
0.115813 103567 0126309 0115813

-1
(I1=A"= 0.115813 0126309 103567 0115813 (39)
0.0230856 0115813 0115813 102309
From this, we get the following linear expansion
y1 = 1.023%; +0.1158X, + 0.11581x3 + 0.023084 (40)

Using formula for diameter of image after convolution (28)dormula above
we can conclude that regret from dropping observations denbis at most
0.02308 2-tanh01 ~ 0.00460167.

This approach can be extended to memory-k walks. We simpBtera graph
that corresponds to memory-k walks by creating nodes foesadth different
histories. For instance, for our example, memory-1 wallpgraould be the one
below. In Figure 15, we have a node for every directed edgee 8,4} repre-
sents a walker on state 4, which has visited state 3 in pre\atap. Note that this
construction is the same as the directed line graph of 13batiktracking edges
removed.

Now we use the same approach as before to get

Q099668 0099668 0 0

0 0

0

0
0
0.099668 0
0

(41)

>
|

0099668 0099668
0 0 0
0099668 0099668 0
0 0 0 0099668 0099668

0

0

0 0

0 9

0 0 0 0
0 0 0
0 0

0

0

cocogo0o
[S)
Sofooo0CPo”o
8
©
©co%0o89c%0
(2]
©

o

o
coocoo8oococoo

1<

o

&
coocogoo@o

0
0 9!
0
0

Spectral radius of this matrix is 0.1516, lower than for rixatf regular walks
and also below 1, so bound will be non-trivial. Repeatingcprture as before, we
get a 10x10 matrix. We can then add up correlations for etpnvatates (ie, state
4 with history{3} and state 4 with history2} will be collapsed) and we get the
following linear expansion.

y1 = 1.0011x; +0.1110%, + 0.111025 + 0.0221 3, (42)
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Figure 15: Graph for memory-1 walks on graph in Fig.13

Connections to belief propagation

Consider a binary graphical model with structure as in 13 witiform edge po-
tentials. Loopy belief propagation entails iterating tbbdwing set of equations
until fixed point. We have a variable for each node and eadttid edge

17



ml< ml12+ml13+x1

M2 < M214+m23+ m24+x2
M3 <+ M314+ m32+ m34+x3
M4 <— m42+4+- m43+ x4
m12« f(m23+m24+ x2)
m13+« f(m32+ m34+ x3)
m21«+ f(m13+x1)

m23+ f(m31+m34+ x3)
m24<«— f(m43+x4)

m31«+ f(m12+x1)

m32<« f(M21+ m24+x2)
m34« f(m42+x4)

m42+ f(m21+m23+x2)
m43+ f(m31+m32+ x3)

Wheref (X) is the same contraction function used before, it dependsemgh
of potentials, for instance could be the same as in 36. Thedius equations ob-
tain the values of the log-marginals and have no effect onlfpant iteration. So
the solution is obtained by iterating the last 10 equationget fixed point value
for edge variables, then substituting their values intcagign for node variables.

You can view the fixed-point iteration process as consistihtyvo kinds of
steps:

(43)

A P Py

1. Addition: M43=m31+m32+x3
2. Convolution: m43=f(M43)
(44)

We can visualize the set of equations above by creating dgvép a node for
each edge message, there will be an edge from messagel @2 gsnessagel
enters into the update equation for message2. The resgitamh is the same as
the graph for non-backtracking (memory-1) walks in Figur®)( The equivalence
of fixed point of Loopy belief propagation and root marginehon-backtracking
walk tree has been noted by Jordan/Tatikonda (2002) before.

The set of equations in 44 is non-linear because of conwlwtep which
makes analysis harder. It is instructive to study a lineatizersion, which is close
to exact when loop interactions and observation poterdigsveak.

18



1. Addition:M43 = m31+ m32+ x3

2. Convolutionm43= M43-tanhJ
(45)
The new set of equations is linear, hence we can represerstemdénearized

loopy-belief propagation update with a matrix multiplicat If J = 0.1, single
step of this linearized belief propagation correspondaédaollowing equation

X<+ AX+0 (46)

WhereA is the same matrix as the matrix of generating function fan-no
backtracking walks in (41 is a vector of local potentials. Because this equation
is linear, there’s an easy condition on the convergenceisf‘limearized loopy
belief propagation” — spectral radius of A has tohé4.

Consider again the update matrix for linearized loopy lhgliepagation for
the graph 13, letting denote edge strength.

0 0 0 tankl tanhJ 0 0 0 0 0

0 0 0 0 0 0 tand tanhJ 0 0

0 tanhl 0 0 0 0 0 0 0 0

0 0 0 0 0 tankd 0 tanh] 0 0
Al 0 0 0 0 0 0 0 0 0 tanh
| tanhd O 0 0 0 0 0 0 0 0
0 0 tanhJ 0 tanh] 0 0 0 0 0

0 0 0 0 0 0 0 O tanBh O

0 0 tanh) tanh] 0 0 0 0 0 0

0 0 0 0 0 tanld tanhJ 0 0 0

(47)

Spectral radius of that matrix is tadhr where r is the unique real root of
equationx® —x— 2 = 0. This suggests thdt = arctantil1/r) is the critical point
for this inference method. In fact, this is also the critipaint for regular loopy
belief propagation for this graph, see figures 16,17,18

Spectral radius condition in this example is a sufficientditbon for the con-
vergence of loopy belief propagation, although it's not egssary condition since
it ignores local potentials. This is the same as the condigiven in (Mooij &
Kappen, 2007).
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Figure 16: Behavior of error as a function of iterationsJot J.

Summary

There are two technical challenges in obtaining tight beundgraphical models
—nonlinearity and inference complexity. For graphical lsdvith strong obser-
vation potentials, dependence of marginal on observaisdmnighly non-linear, for
instance, in a chain, two strong observations can rendeegtef the chain irrele-
vant. In alinear classifier, feature relevance doesn’t dépa other features. Non-
linearity also precludes a lot of simplification. Obtainitight non-linear bounds
for general graphical models can be done using approachasitmi(lhler, 2007).
Basically the bounds are obtained in a way similar to belieppgation. This ap-
proach suggests an algorithm for bound calculation, rdtteer interpretable for-
mulas. We can let graphical model take a particular form,dean with uniform
observation and interaction potentials, and come up wigii@pmate formulas in
terms of few variables, see first paper attached to this tepor

Another approach is to look at bounds in the limit of weak iat¢ion poten-
tials. When potentials are weak enough, the log-odds of naatginals are almost
linear functions of observations. Using self-avoiding kvike representation of
marginal, bounds then become values of the two-point crogl function for
self-avoiding walks on the graph. Two point-correlatiomdtion for memory-k
walks gives a looser upper bound which is easier to compu@tgiekt to compute
is a bound which is based on memory-1 walks. In fact this bastigiht for in-
ference based on loopy-belief propagation. This suggestsaection between
approximate inference and bounds — we can craft approximigieence methods
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Figure 17: Behavior of error as a function of iterationsJcet J.

for which bound derived from memory-k walks is tight, andgbanethods will
be more accurate than loopy belief propagation, see sedtauthad paper.
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