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Abstract

We provide a way to modify loopy belief
propagation to correct for the error intro-
duced by cycles up to length k. The method
is based on bottom-up dynamic program-
ming reformulation of the Self-Avoiding Walk
Tree representation of marginal. k=2 recov-
ers loopy belief propagation, “k=size of the
largest cycle in the graph” provides exact in-
ference at higher cost.

1. Introduction

Sokal and Scott (2005) and later Weitz (2006) demon-
strated a way to represent occupation probability of
a node in a general hard-core gas model as the oc-
cupation probability of a root node in a tree struc-
tured hard-core model. Jung and Shah (2007) ex-
tended this to general binary graphical models, Nair
and Tetali extended this approach to general n-state
graphical models (2007). Suppose we wanted to com-
pute all marginals using self-avoiding walk tree repre-
sentation. Straightforward approach of constructing a
self-avoiding walk tree rooted at each node will have
redundant computation. To get rid of the redundancy
we can identify shared pieces of computation, and com-
pute all the marginals in a bottom up fashion. The
result is a procedure similar to loopy belief propaga-
tion, except that instead of a message for every edge,
we have a message for every self-avoiding walk on the
graph. We can trade off between efficiency and accu-
racy by substituting messages corresponding to shorter
walks into the update equations. For example, if the
update equation calls for message on the walk (1,2,3),
we can replace it with the message corresponding to
the walk (2,3).

Preliminary work. Under review by the International Work-
shop on Mining and Learning with Graphs (MLG). Do not
distribute.

1.1. Example: Binary Ising model

Consider the following simple structure
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Figure 1. Log(base 10) of error as a function of largest cycle
length corrected

Suppose the states are denoted by variables
y1, y2, y3, y4 which take on values 1 and −1 and
the probability of a particular configuration is as
follows

P (y1, y2, y3, y4) ∝ exp(y1y2 + y2y3 + y1y3 + y3y4 +
y1x1 + y2x2 + y3x3 + y4x4) (1)

Using the self-avoiding walk tree representation we get
the following expressions for the 1/2 log-odds of Y3

(Eq.2) and Y4 (Eq.3)

f(x4) + x3 + f(x2 + f(x1 + 1)) + f(x1 + f(x2 − 1))︸ ︷︷ ︸
c

(2)

x4 + f(x3 + f(x2 + f(x1 + 1)) + f(x1 + f(x2 − 1))︸ ︷︷ ︸
c

)

(3)

Where f(x) = arctanh(tanh 1 tanh x)

You can see that the part marked c is the same in
both equations. This part can be computed once and
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reused. In example above, c has the following inter-
pretation – it is the “log-odds of the root node of a
tree rooted at 3 which does not contain node 4”. More
generally, consider the following binary Ising spin-glass
model

P (y1, . . . , yn) ∝ exp(
∑

(ij)∈G

Jijyiyj +
n∑

i=1

xiyi) (4)

In order to compute marginal probabilities (also
known as mean magnetizations) for every node in the
model efficiently, we can introduce a message for ev-
ery self-avoiding walk in the model, and relate them
by the following update equation

mp1,...,pl−1,pl
= fpl−1,pl

(
∑
q∈σ

mp1,...,pl,q

xpl
−

∑

q∈C+

Jpl,q +
∑

q∈C−
Jpl,q)(5)

Here fij(x) = arctanh(tanh Jij tanh x), σ denotes all
self-avoiding 1-step continuations of a self-avoiding
walk starting with nodes p1, . . . , pl, C+ indicates all
non-backtracking continuations of a self-avoiding walk
which create a loop with current node (pl) being larger
than the first node in the loop (ie, 1,2,3,1 would be one
such loop). C− is same as before, but for loops with
current node being smaller than the first node in the
loop (ie, 1,3,2,1 would be one such loop).

Note that if the length of the longest cycle in the model
is k, then messages corresponding to self-avoiding
walks longer than k are redundant. More specifically,

mp1,...,pk,pk+1 = mp2,...,pk+1 (6)

To get the non-redundant set of equations, simply re-
place every redundant message in the equation 5 with
it’s shortened version, lets call this procedure “trunca-
tion”.

Using this procedure, here’s the full set of update equa-
tions for the model in (1).

m1 = x1 + m12 + m13

m2 = x2 + m21 + m23

m3 = x3 + m31 + m32 + m34

m4 = x4 + m43

m13 = f(x3 + m34 + m132)

m12 = f(x2 + m123)
m21 = f(x1 + m213)
m23 = f(x3 + m34 + m231)
m31 = f(x1 + m312)
m32 = f(x2 + m321)
m34 = f(x4)
m43 = f(x3 + m31 + m32)

m123 = f(x3− 1 + m34)
m132 = f(1 + x2)
m213 = f(−1 + x3 + m34)
m231 = f(1 + x1)
m312 = f(−1 + x2)
m321 = f(1 + x1)

Value of log-odds at of y1 is 2m1. Note that if we
truncate each message to it’s last 2 vertices, resulting
equation will be equivalent to loopy belief propagation.
This suggests a natural sequence of approximations
– truncate each message to the last p nodes. When
p is equal to k, result will be exact. When p is 2,
the resulting procedure is equivalent to loopy belief
propagation, which gives result equivalent to Bethe-
Peierls approximation when it converges.

1.2. Experiment

Consider the graphical model in the figure 2
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Figure 2. Skip-chain of length 5

Suppose it represents an Ising model with interaction
strength +1 for adjacent nodes, and +1 potential for
each node. We can construct a sequence of approxima-
tions by taking a full set of update equations according
to (5) and then truncating messages in those equations
as in (6) to various lengths. We then iterate resulting
equations 150 times, Figure (4) shows logarithm (base
10) of squared error over all marginals (marginal log-
odds compared to approximate log-odds) as a function
of the truncation length (ie, largest cycle length cor-
rected).

If we use the same model as before, but with anti-
ferromagnetic interactions, the errors may cancel out,
and increasing order of approximation can actually
slightly increase error as seen below

If we go one step further, and correct for all cycles
up to length 10, the result will be identical to exact
marginalization.



Cycle-corrected Belief Propagation

3 4 5 6 7 8 9
cycle length

-10

-8

-6

-4

-2

error

Figure 3. Log(base 10) of error as a function of largest cycle
length corrected
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Figure 4. Log(base 10) of error as a function of largest cycle
length corrected for anti-ferromagnetic potentials

2. Multi-variate models

Similar approach can be applied to multi-variate
graphical models. Nair/Tetali (2007) have showed how
to extend the self-avoiding walk tree approach to han-
dle more than two states. Their construction, called
correlation decay tree, involves fixing some loop clos-
ing nodes in the self-avoiding walk tree to take on the
same value as the opening node. Here again we can
save shared pieces of computation. For a model with
s states we get the following set of update equations
in 1/2 log-odds parameterization

Mp1,...,pn(v1, . . . , vn) =
∑

σ

mp1,...,pn,q(v1, . . . , vn) +
∑

i∈C+

log
ψpn,pi

vn,vi

ψpn,pi
s,vi

+

∑

i∈C−
log

ψpn,pi
vn,s

ψpn,pi
s,s

(7)

mp1,...,pn(v1, . . . , vn−1) =

1
2

log

(∑s
j ψ

pn−1pn

jvn−1
exp(2Mp1...pn(v1 . . . j))∑s

j ψ
pn−1pn

js exp(2Mp1...pn(v1 . . . j)

)
(8)

C+,C− and σ here have the same interpretation as in
(5). ψa,b indicates the potential matrix for edge from
a to b. For a matrix A, Aab indicates entry in position

(a, b). i indexes the state, since we are dealing with log-
odds, i ∈ (1 . . . s−1). Variables v1 . . . vn index states of
previously visited nodes. Again, because of degree of
freedom removed by log-odds parameterization, they
take on values (1 . . . s−1). Note, if we have two states,
then v and i variables in (7,8) can only assume one
value, so we can drop them. Using a potential matrix
corresponding to the transfer matrix for the simple
Ising spin glass as in (1) we will recover equations in
(5). For example, for the model in (1), the potential
matrix corresponding to edge connecting variables y1

and y2 is

(
e1+x1/2+x2/2 e−1+x1/2−x2/2

e−1−x1/2+x2/2 e1−x1/2−x2/2

)
(9)

Log-odds of state i for node k is double the value of
Mk(i) where M is defined using equations (7,8).

M messages are temporary and they can be substi-
tuted into (8), so to analyze the complexity it is suffi-
cient to look at m messages. Note that if we only al-
low messages for self-avoiding walks of length 2 (loopy
belief propagation), then we will have a message for
every edge, and each message will have s − 1 entries.
If we allow self-avoiding walks of length 3, then we
get matrix-valued messages, each with (s−1)2 entries.
More generally, correcting for loops up to length k can
introduce up to dk messages, each having (s− 1)k en-
tries, where d is maximum degree of the graph. How-
ever, we can do better with graphs with few loop in-
teractions. Note that in equations (7,8), the only time
the value of previous node (vi) is being used is during
convolution step, where the most recent node value is
needed. Also when the walk corresponding to current
message can complete a loop, this calls for a value of
a node visited earlier in the walk. If only some nodes
can be a part of the loop for given walk, we can reduce
size of messages. For instance, consider message corre-
sponding to the walk 1, 2, 3, 4. Suppose that the only
way that the walk starting with 1, 2, 3, 4 can terminate
with a loop is by traversing nodes in following order
1, 2, 3, 4, 2. This means that our message only needs to
keep track of the value of nodes 2 and 4, so we can use
a matrix-valued message instead of 4-dimensional ten-
sor valued one. For a graph G with n nodes, consider
the following measure

cc(G) is maximum k such that there are k cycles
C1, . . . , Ck ∈ G, k = 1, . . . , n, such that C1 ∩ ... ∩ Ck

contains a path of length k.

The size of the largest message needed to provide loop
corrections for a gaph G will be (s−1)(cc(G)+1). Note,
that if the family of graphs has bounded tree-width,
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then this measure is also bounded (Kawarabayashi,
2008)

2.1. Code

Code used to obtain the graph in the experiment sec-
tion and implementation of update equations (7,8) for
multi-variate models is available at
yaroslavvb.com/research/reports/mlg08
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