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Abstract

In this paper we prove exponential asymptotic stability for discrete
time filters for signals arising as solutions of d-dimensional stochastic dif-
ference equations. The observation process is the signal corrupted by an
additive white noise of sufficiently small variance. The model for the sig-
nal admits non-ergodic processes. We show that almost surely, the total
variation distance between the optimal filter and an incorrectly initialized
filter converges to 0 exponentially fast as time approaches ∞.
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1 Introduction

The central problem of nonlinear filtering is to study the conditional distribu-
tion of a signal process at any time instant given noisy observations on the
signal available up until that time. If the signal–observation pair is Markov,
the conditional distribution process, referred to hereafter as the optimal filter ,
is determined completely by the observation process, the transitional proba-
bility function of the pair, and its initial distribution. In practice, the model
parameters, i.e. the initial distribution and the transition probability function,
are rarely known exactly, and so one constructs sub-optimal filters by replacing
the unknown parameters with suitable approximations. Thus it is of interest to
study the sensitivity of the filter to errors in the model parameters, especially
over large time intervals. The simplest problem assumes that the transition
probability function is known exactly, so that the only error in the filter comes
from use of the wrong initial distribution. A filter computed with the wrong
initial distribution is called an incorrectly initialized filter and is suboptimal. We
say that the filter is asymptotically stable if the distance (appropriately mea-
sured) between the optimal filter and the incorrectly initialized filter converges
to 0 as time approaches ∞. Thus if the filter is asymptotically stable the errors
in the initial conditions do not significantly influence the long term performance
of the filter.

In recent years there has been significant progress in the study of asymptotic
stability of filters for models in which a Markov signal is observed in indepen-
dent, additive, usually Gaussian, white noise. The best general results have been
obtained in the case of signal dynamics which admit ergodic solutions. Here, the
pioneering paper is that of Kunita[10] who showed that if the signal is Feller-
Markov with a compact state space then the filter process is also Feller-Markov,
and, furthermore, if the signal admits a unique invariant measure so also does
the filter, provided appropriate technical conditions are satisfied. This result
was extended to locally compact state spaces in Stettner[16] and Kunita[11].
These papers suggest that under appropriate conditions the ergodicity of the
signal should lead to the asymptotic stability of filters. Indeed, Ocone and
Pardoux[15] showed that if the Kunita-Stettner conditions on the signal are
satisfied and the signal “forgets its initial conditions” then so does the filter.
The connection between ergodic signals and asymptotic stability of filters has
been greatly clarified by a recent series of papers: Delyon and Zeitouni[9], Atar
and Zeitouni[4, 3, 2], Atar[1], LeGland and Mevel[12], Budhiraja and Kushner
[5], and Malliavin, Da Prato, and Fuhrmann[8].

Conditions under which asymptotic stability holds in absence of signal er-
godicity is an interesting and challenging problem. The known results sup-
port the intuition that even for non-ergodic signals “sufficiently good” observa-
tions should exert a correcting influence on an incorrectly initialized filter. For
Kalman filters, it is a classical result that asymptotic stability does not require
signal ergodicity, but only detectability and observability assumprions on the
signal–observation system. Asymptotic stability for scalar Beneš filtering mod-
els, whose signal processes are generically transient. is established in Ocone[13].
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In Budhiraja and Ocone[6] it is shown that for one dimensional stochastic dif-
ference equations which are observed in bounded observation noise, asymptotic
stability holds in the sense that the total variation distance between the optimal
and an incorrectly initialized filter converges to 0 exponentially fast as t →∞,
under appropriate smoothness of the signal process coefficients. General infor-
mation inequalities relating optimal and incorrectly initialized filters, are given
in Ocone[14] and Clark, Ocone and Coumarbatch[7].

The object of this paper is to prove an asymptotic stability result for discrete-
time systems in which the assumption of bounded noise made in [6] is dropped,
yet the signal is allowed to be non-ergodic. The main result, stated precisely in
Theorem 2.4, establishes exponential asymptotic stability in the total variation
norm of the corresponding filters. In order to clearly bring out the key points
we first study the case where the observation noise and the noise in the signal
dynamics are both Gaussian. This is done in Theorem 2.1. The method of proof
is quite different from the proof of the bounded observation case studied in[6],
which, like [3], used Hilbert’s projective metric. This metric is not useful for
studying measures on a non-compact space, as required in the case of noise with
unbounded support. Rather, in this paper, we start from the crucial observation,
made in [3], that if ρ(0), ρ(1) are nonnegative integrable functions on IRd and
p(i)(x)=̇

∫
IRd ρ(i)(x)dx; i = 0, 1 then

||p(0) − p(1)||1 ≤
||ρ(0) ∧ ρ(1)||1
||ρ(0)||1||ρ(1)||1

,

where ρ(0) ∧ ρ(1) is an element of L1(IR2d) defined as

ρ(0) ∧ ρ(1)(x, y)=̇ρ(0)(x)ρ(1)(y)− ρ(0)(y)ρ(1)(x)

and we have denoted the natural norm on L1(IRd) and L1(IR2d) by the same
symbol: || · ||1. This inequality is used in the proof of the theorem with
ρ(0) ≡ ρ

(0)
n and ρ(1) ≡ ρ

(1)
n where ρ

(0)
n and ρ

(1)
n are the unnormalized filter-

ing densities corresponding to the optimal and the incorrectly initialized filter
respectively. The advantage of considering these unnormalized densities is that
the map ρ

(0)
n−1 ∧ ρ

(1)
n−1 → ρ

(0)
n ∧ ρ

(1)
n is a linear operator on L1(IR2d) and Lemma

2.3 shows that almost everywhere this operator is a strict contraction for a small
enough observation noise variance: σ2. Furthermore as σ → 0 the contraction
coefficient approaches 0. This shows that ||ρ(0)

n ∧ ρ
(1)
n ||1 decays exponentially

fast with an arbitrarily large exponential rate if σ is appropriately small. The
remaining work is to show that 1

||ρ(0)
n ||1||ρ(1)

n ||1
grows at an at most exponential

rate which is bounded as σ approaches 0. This is done in Lemma 2.2. Lem-
mas 2.2 and 2.3 are stated and proved for Gaussian noises but as is seen in
Theorem 2.4 they hold more generally. Theorem 2.1, follows as a direct conse-
quence of Lemmas 2.2 and 2.3. Finally in Theorem 2.4 we consider the case of
non-Gaussian noises.
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2 The main result:

The filtering model that we consider is as follows. Let (Ω,F , P ) be some prob-
ability space. The signal and the observation processes are given as follows.

Xn = a(Xn−1) + b(Xn−1)ξn; n ≥ 1,

and
Yn = Xn + σνn; n ≥ 1,

where X0 is a IRd valued random variable with distribution µ0, a : IRd → IRd

and b : IRd → IRd×d are measurable maps satisfying conditions (A1) and (A2)
below.

(A1) There exists a finite positive constant alip such that for all x, y ∈ IRd

|a(x)− a(y)| ≤ alip|x− y|.

(A2) There exist finite positive constant 0 < b < b < ∞ such that ∀u ∈ IRd,

b|u|2 ≤ 〈u, b(x)u〉 ≤ b|u|2,

where 〈·, ·〉 denotes the usual inner product in IRd.

We assume that {ξn}n≥1 is a sequence of i.i.d random variables with probability
density function q, {νn}n≥1 is another sequence of i.i.d random variables, which
is independent of {X0, {ξn;n ≥ 1}}, with density r and σ > 0 is a fixed constant.
For notational simplicity denote 1

det(b(x))φ
(
b−1(x)(y − a(x))

)
by G(x, y). Note

that {Xn}n≥1 is a Markov chain with initial distribution µ0 and transition
probability density G(x, y).

Henceforth if a measure on IRd admits a density with respect to the Lebesgue
measure, we will denote the density by the same symbol as the measure. The op-
timal nonlinear filter is obtained as follows. Define a sequence of finite measures
{ρ(0)

n }n≥1 recursively as follows.

ρ(0)
n (x) =̇

1
σd

r(
1
σ

(Yn − x))
∫

IRd

ρ
(0)
(n−1)(y)G(y, x)dy; x ∈ IRd

ρ
(0)
0 =̇ µ0. (2.1)

Finally let p
(0)
n (x)=̇ ρ(0)

n (x)

||ρ(0)
n (·)||1

, n ≥ 1 and p
(0)
0 =̇µ0, where for an integrable func-

tion g we denote
∫

IRd |g(x)|dx by ||g||1. The function p
(0)
n is the optimal filter,

i.e. it is the conditional density of Xn given Y1, · · · , Yn.
Now let µ1 be an arbitrary probability measure on IRd. Define ρ

(1)
n (x) and

p
(1)
n (x) in a similar manner as above by replacing µ0 with µ1. Define for f, g ∈

L1(IRd), f ∧ g ∈ L1(IR2d) as

(f ∧ g)(x, y)=̇f(x)g(y)− f(y)g(x); x, y ∈ IRd.
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Denote the natural norm on L1(IR2d) by || · ||1 as well. A straightforward
calculation shows (cf. [3]) that

||p(0)
n − p(1)

n ||1 ≤
||ρ(0)

n ∧ ρ
(1)
n ||1

||ρ(0)
n ||1||ρ(1)

n ||1
. (2.2)

We will now show that ||p(0)
n − p

(1)
n ||1 converges to 0 exponentialy fast for suffi-

ciently small σ if q and r satisfy appropriate conditions. Before presenting the
general result we will consider the case where q = r = φ where φ denotes the
d-dimensional standard normal density. This case contains all the ideas required
to prove the general case and is notationally simpler to state.

Theorem 2.1 Assume that r = q = φ and
∫

IRd |a(z)|2µi(dz) < ∞; i = 0, 1.
There exists 0 < σ0 < ∞ such that for all σ < σ0;

lim sup
n→∞

1
n

log ||p(0)
n − p(1)

n ||1 < 0, (2.3)

a.s. P .

Before proceeding to the proof of the theorem we will present two lemmas first
of which considers the denominator and the second the numerator of (2.2) .

Lemma 2.2 Assume that q = r = φ, then there is a finite positive constant K
depending only on alip, d, b, b such that

lim sup
n→∞

sup
0<σ<1

(
− 1

n
log ||ρ(i)

n (·)||1
)
≤ K a.s., (2.4)

for i = 0, 1.

Remark The constant K in the statement of the lemma is non-random and
is obtained by applying the strong law of large numbers to the i.i.d sequences
{ξn}, {νn}, as will be seen in the proof of the lemma.
Proof of the lemma: For i = 0, 1,

ρ(i)
n (xn) =

∫
(IRd)n

n∏
j=1

(
1
σd

φ(
1
σ

(Yj − xj))G(xj−1, xj)
)

µi(dx0)dx1 · · · dxn−1.

Hence,

||ρ(i)
n (·)||1 =

∫
(IRd)n+1

n∏
j=1

(
1
σd

φ(
1
σ

(Yj − xj))G(xj−1, xj)
)

µi(dx0)dx1 · · · dxn.

Substituting xj = Yj + zj , j = 0, · · · , n, where Y0=̇0, in the above equation we
have

||ρ(i)
n (·)||1 =

∫
(IRd)n+1

n∏
j=1

(
1
σd

φ(
1
σ

zj)G(Yj−1 + zj−1, Yj + zj)
)

µi(dz0)dz1 · · · dzn.
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Applying Jensen’s inequality to the function x → log(x) with respect to the
probability measure:

∏n
j=1

1
σd φ( 1

σ zj)µi(dz0)dz1 · · · dzn we have that

log(||ρ(i)
n (·)||1) ≥ 1

σnd

∫
(IRd)n+1

log

 n∏
j=1

G(Yj−1 + zj−1, Yj + zj)

 n∏
j=1

φ(
1
σ

zj)dzj

µi(dz0)

=
n∑

j=1

1
σnd

∫
(IRd)n+1

log (G(Yj−1 + zj−1, Yj + zj))

 n∏
j=1

φ(
1
σ

zj)dzj

µi(dz0)

=
n∑

j=2

1
σ2d

∫
(IRd)2

log (G(Yj−1 + zj−1, Yj + zj))φ(
1
σ

zj−1)φ(
1
σ

zj)dzj−1dzj

+
1
σd

∫
(IRd)2

log (G(z0, Y1 + z1))φ(
1
σ

z1)dz1µi(dz0). (2.5)

In view of (A2) we have that there exist finite positive constants B and B such
that

B ≤ min(det b(x), |b(x)|) ≤ max(det b(x), |b(x)|) ≤ B.

Observe next that for x, y ∈ IRd,

G(x, y) =
1

det(b(x))
φ(b−1(x)(y − a(x)))

≥ 1
(2π)d/2B

exp
(
−|y − a(x)|2

B2

)
.

Hence

log G(x, y) ≥ −|y − a(x)|2

(B)2
− d

2
log(2π)− log(B) (2.6)

Next note that for j = 2, · · · , n

|Yj + zj − a(Yj−1 + zj−1)| = |Xj + σνj + zj − a(Yj−1 + zj−1)|
= |a(Xj−1) + b(Xj−1)ξj + σνj + zj − a(Yj−1 + zj−1)|
≤ B|ξj |+ alipσ|νj−1|+ σνj + |zj |+ alip|zj−1|.

(2.7)

Combining the inequalities (2.6), (2.7) we have that

log G(Yj−1 + zj−1, Yj + zj) ≥ −2
B

2

B2 |ξj |2 − 2
a2
lipσ2|νj−1|2

B2 − 2
σ2|νj |2

B2 − 2
|zj |2

B2

− 2
a2
lip|zj−1|2

B2 − d

2
log(2π)− log(B) (2.8)

In a similar fashion we have the inequality

log G(z0, Y1+z1) ≥ −2
B

2

B2 |ξ1|2−2
σ2|ν1|2

B2 −2
|z1|2

B2 −2
|a(X0)|2

B2 −2
|a(z0)|2

B2 −d

2
log(2π)−log(B)

(2.9)
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Using the inequalities (2.8), (2.9) in (2.5) and observing that 1
σd

∫
IRd |zj |2φ( 1

σ zj)dzj =
dσ2 we have

log ||ρ(i)
n (·)||1 ≥ −2

B
2

B2

n∑
j=1

|ξj |2 − 2
(a2

lip + 1)σ2

B2

n∑
j=1

|νj |2 − 2
dσ2n

B2 − 2
a2
lipdσ2(n− 1)

B2

− 2
|a(X0)|2

B2 − 2
B2

∫
IRd

|a(z0)|2µi(dz0)−
nd

2
log(2π)− n log(B)

Finally an application of the strong law of large number gives that for i = 0, 1,

lim sup
n→∞

sup
0<σ<1

− 1
n

log ||ρ(i)
n (·)||1 ≤ K,

where

K=̇2
B

2

B2 + 2
(a2

lip + 1)

B2 + 2
d

B2 +
d

2
log(2π) + log(B).

We now consider the numerator in (2.2) in the following lemma.

Lemma 2.3 Assume that q = r = φ. Then

lim
σ→0

lim sup
n→∞

1
n

log ||ρ(0)
n ∧ ρ(1)

n ||1 = −∞.

Proof: Observe that

ρ(0)
n ∧ ρ(1)

n (x, y) = ρ(0)
n (x)ρ(1)

n (y)− ρ(1)
n (x)ρ(0)

n (y)

=
1

σ2d
φ(

1
σ

(Yn − x))φ(
1
σ

(Yn − y))∫
IR2d

[
ρ
(0)
n−1(u)G(u, x)ρ(1)

n−1(v)G(v, y)− ρ
(0)
n−1(v)G(v, y)ρ(1)

n−1(u)G(u, x)
]
dudv

=
1

σ2d
φ(

1
σ

(Yn − x))φ(
1
σ

(Yn − y))
∫

IR2d

ρ
(0)
n−1 ∧ ρ

(1)
n−1(u, v)G(u, x)G(v, y)dudv,

(2.10)

where the second equality follows on using (2.1). Now denote (suppressing x

and y in the notation) ρ
(0)
n−1 ∧ ρ

(1)
n−1(u, v)G(u, x)G(v, y) by M(u, v). Also write

the vectors u and v as (u1, u
(1)) and (v1, v

(1)) respectively, where u1, v1 ∈ IR
and u(1), v(1) ∈ IRd−1. It is easy to check that

∫
IR2d |M(u, v)|dudv < ∞ thus we

can freely interchange the orders of integration which we will do without any
further comment. Next note that∫

IR2d

M(u, v)dudv =
∫

IR2(d−1)

(∫ ∞

−∞

(∫ ∞

−∞
M(u, v)du1

)
dv1

)
du(1)dv(1)

=
∫

IR2(d−1)

(∫ ∞

−∞

(∫ v1

−∞
M(u, v)du1 +

∫ ∞

v1

M(u, v)du1

)
dv1

)
du(1)dv(1)
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=
∫

IR2(d−1)

(∫ ∞

−∞

(∫ v1

−∞
M(u, v)du1

)
dv1

)
du(1)dv(1)

+
∫

IR2(d−1)

(∫ ∞

−∞

(∫ ∞

u1

M(v, u)dv1

)
du1

)
dv(1)du(1)

=
∫

IR2(d−1)

(∫ ∞

−∞

(∫ v1

−∞
M(u, v)du1

)
dv1

)
du(1)dv(1)

+
∫

IR2(d−1)

(∫ ∞

−∞

(∫ v1

−∞
M(v, u)du1

)
dv1

)
du(1)dv(1)

=
∫

IR2(d−1)

(∫ ∞

−∞

(∫ v1

−∞
(M(u, v) + M(v, u))du1

)
dv1

)
du(1)dv(1),

where the third equality follows by renaming (u, v) as (v, u) in the second integral
and the fourth equality follows by changing the order of the two innermost
integrals in the second expression. Consider now,

M(u, v) + M(v, u) = ρ
(0)
n−1 ∧ ρ

(1)
n−1(u, v)G(u, x)G(v, y) + ρ

(0)
n−1 ∧ ρ

(1)
n−1(v, u)G(v, x)G(u, y)

= ρ
(0)
n−1 ∧ ρ

(1)
n−1(u, v) [G(u, x)G(v, y)−G(v, x)G(u, y)]

=
(
ρ
(0)
n−1 ∧ ρ

(1)
n−1(u, v)

)
(G(·, x) ∧G(·, y)(u, v)) .

Hence∣∣∣∣∫
IR2d

M(u, v)dudv

∣∣∣∣ ≤ ∫
IR2d

|ρ(0)
n−1 ∧ ρ

(1)
n−1(u, v)||G(·, x) ∧G(·, y)|(u, v)dudv.

(2.11)
Using (2.11) in (2.10) we have that

||ρ(0)
n ∧ ρ(1)

n ||1 =̇
∫

IR2d

|ρ(0)
n ∧ ρ(1)

n (x, y)|dxdy

≤
∫

IR2d

(
∫

IR2d

1
σ2d

φ(
1
σ

(Yn − x))φ(
1
σ

(Yn − y))|ρ(0)
n−1 ∧ ρ

(1)
n−1(u, v)|

|G(·, x) ∧G(·, y)|(u, v)dxdy)dudv

Define,

K(x, y, u, v)=̇
1

σ2d
φ(

1
σ

(Yn−x))φ(
1
σ

(Yn−y))|ρ(0)
n ∧ρ(1)

n (u, v)||G(·, x)∧G(·, y)|(u, v).

Let ε > 0 be arbitrary, then

||ρ(0)
n ∧ ρ(1)

n ||1 =
∫

IR2d

(∫
(x,y):|x−y|>ε

K(x, y, u, v)dxdy

)
dudv

+
∫

IR2d

(∫
(x,y):|x−y|≤ε

K(x, y, u, v)dxdy

)
dudv. (2.12)
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Now consider the first integral in (2.12). If |x−y| > ε then |Yn−x|2+|Yn−y|2 >

ε2

2 . This implies that exp
( −1

2σ2

(
|Yn − x|2 + |Yn − y|2

))
≤ e

−ε2

4σ2 . Thus observing
that

∫
IRd G(u, x)dx =

∫
IRd G(v, y)dy = 1 for all u, v ∈ IRd we have that∫

IR2d

(∫
(x,y):|x−y|>ε

K(x, y, u, v)dxdy

)
dudv ≤ 2

σ2d
e
−ε2

4σ2

∫
IR2d

|ρ(0)
n−1 ∧ ρ

(1)
n−1|(u, v)dudv

=
2

σ2d
e
−ε2

4σ2 ||ρ(0)
n−1 ∧ ρ

(1)
n−1||1. (2.13)

Next we consider the second term in (2.12). Let |x− y| ≤ ε. A straightforward
calculation shows that

|G(·, x) ∧G(·, y)|(u, v) ≤ G(u, x)|G(v, y)−G(v, x)|+ G(v, x)|G(u, x)−G(u, y)|
(2.14)

Now

|G(u, x)−G(u, y)| =
1

det(b(u))

∣∣φ(b−1(u)(x− a(u)))− φ(b−1(u)(y − a(u)))
∣∣

≤ 1
B(2π)d/2

∣∣∣e− 1
2 |b
−1(u)(x−a(u))|2 − e−

1
2 |b
−1(u)(y−a(u))|2

∣∣∣
≤ 1

(B)2(2π)d/2
||x− y||. (2.15)

Thus using (2.15) and the observation that ||G||∞=̇ supu,x |G(u, x)| < ∞ in
(2.14) we get that

|G(·, x) ∧G(·, y)|(u, v) ≤ 2||G||∞
(B)2(2π)d/2

||x− y||. (2.16)

Therefore we can now conclude that∫
IR2d

(∫
(x,y):|x−y|≤ε

K(x, y, u, v)dxdy

)
dudv ≤ 2||G||∞

(B)2(2π)d/2
ε

∫
IR2d

|ρ(0)
n−1 ∧ ρ

(1)
n−1|(u, v)(∫

IR2d

1
σ2d

φ(
1
σ

(Yn − x))φ(
1
σ

(Yn − y))dxdy

)
dudv

≤ 2||G||∞
(B)2(2π)d/2

ε||ρ(0)
n−1 ∧ ρ

(1)
n−1||1.

Hence combining the above inequality with (2.12) and (2.13) we have that

||ρ(0)
n ∧ ρ(1)

n ||1 ≤
(

2
σ2d

e
−ε2

4σ2 +
2||G||∞

(B)2(2π)d/2
ε

)
||ρ(0)

n−1 ∧ ρ
(1)
n−1||1.

Thus

lim sup
σ→0

lim sup
n→∞

1
n

log
(
||ρ(0)

n ∧ ρ(1)
n ||1

)
≤ lim sup

ε→0
lim sup

σ→0
log
(

2
σ2d

e
−ε2

4σ2 +
2||G||∞

(B)2(2π)d/2
ε

)
= lim sup

ε→0
log
(

2||G||∞
(B)2(2π)d/2

ε

)
= −∞
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Proof of Theorem 2.1: Assume without loss of generality that σ < 1. Observe
that

lim sup
n→∞

1
n

log ||p(0)
n − p(1)

n ||1 = lim sup
n→∞

(
1
n

log ||ρ(0)
n ∧ ρ(1)

n ||1 −
1
n

log ||ρ(0)
n ||1 −

1
n

log ||ρ(1)
n ||1

)
≤ lim sup

n→∞

(
1
n

log ||ρ(0)
n ∧ ρ(1)

n ||1
)

+ 2K

where the inequality follows from Lemma 2.2. Now the theorem follows on
applying Lemma 2.3.

We now proceed to the general case which relaxes the Gaussian assumption
on the densities of ξn and νn. We will impose the following conditions on q and
r:

(A3) There exists a measurable function η, from IR+ ∪ {0} → IR satisfying:

(a) η is a decreasing function on IR+ ∪ {0}.
(b) log q(u) ≥ η(|u|) for all u ∈ IRd.

(c) For every c > 0 there exists a constant κ(c) > −∞ such that

1.
∫

IRd η(c|u|)r(u)du > κ(c).
2.
∫

IRd η(c|u|)q(u)du > κ(c).
3.
∫

IRd η(c|a(u)|)µi(du) > κ(c) for i = 1, 2.

(A4) There exists a measurable function γ from IR+ ∪ {0} → IR+ satisfying:

(a) γ is a decreasing function on IR+ ∪ {0}.

(b) lim supt→∞
γ(t)
t2d = 0.

(c) For all u, v ∈ IRd, r(u)r(v) ≤ γ(|u− v|).

(A5) The density function q satisfies:

(a) ||q||∞=̇ supx∈IRd |q(x)| < ∞.

(b) There exists a finite constant qlip such that for all x, y ∈ IRd, |q(x)−
q(y)| ≤ qlip|x− y|.

We now have the following result.

Theorem 2.4 Assume that assumptions (A1) through (A5) hold. Then there
exists 0 < σ0 < ∞ such that for all σ < σ0;

lim sup
n→∞

1
n

log ||p(0)
n − p(1)

n ||1 < 0,

a.s. P .
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Sketch of the Proof: The idea of the proof is to show once more that (2.4)
holds for i = 0, 1 and then show that

lim
σ→0

lim sup
n→∞

1
n

log ||ρ(0)
n ∧ ρ(1)

n ||1 = −∞. (2.17)

In order to see that (2.4) holds, observe initially that as in Lemma 2.2 we have
the inequality (2.5) with φ replaced by r. Observe now that from (A3) ((a) and
(b)),

G(x, y) =
1

det(b(x))
q(b−1(x)(y − a(x)))

≥ 1
B

η(|b−1(x)(y − a(x))|)

≥ 1
B

η(
1
B
|y − a(x)|).

Using (2.7) and (A3) ((a)), we see that

log G(Yj−1 + zj−1, Yj + zj) ≥ η

(
1
B

(
B|ξj |+ alipσ|νj−1|+ σνj + |zj |+ alip|zj−1|

))
− log(B)

≥ η(
5B

B
|ξj |) + η(

5alip
B

|νj−1|) + η(
5
B
|νj |)

+ η(
5
B
|zj |) + η(

5alip
B

|zj−1|)− 4η(0)− log(B),

where the last inequality follows on observing that since η is decreasing, η
(∑k

j=1 uj

)
≥∑k

j=1 η(kuj)− (k − 1)η(0).
In a similar fashion we have that

log G(z0, Y1+z1) ≥ η(
5B

B
|ξ1|)+η(

5
B
|ν1|)+η(

5
B
|z1|)+η(

5|a(X0)|
B

|)+η(
5|a(z0)|

B
|)−4η(0)−log(B).

Observing that,

1
σd

∫
IRd

η(c|zj |)r(
zj

σ
)dzj =

∫
IRd

η(cσ|zj |)r(zj)dzj

≥
∫

IRd

η(c|zj |)r(zj)dzj ≥ κ(c)

we have that

log
(
||ρ(1)

n ||1
)

≥
n∑

j=1

η

(
5B

B
|ξj |
)

+
n∑

j=1

η

(
5
B
|νj |
)

+
n−1∑
j=1

η

(5alip
B

|νj |
)

+ nκ(
5
B

)

+ (n− 1)κ(
5alip

B
) + η

(
5
B
|a(X0)|

)
+
∫

IRd

η

(
5
B
|a(z0)|

)
µi(dz0)− 4nη(0)− n log(B).

11



Now applying the strong law of large numbers and using (A3) ((c); 1, 2, 3) we
have that

lim sup
n→∞

sup
0<σ<1

− 1
n

log ||ρ(i)
n (·)||1 ≤ K,

where K is a finite constant.
We now outline the proof of (2.17). As before we have that (2.12) holds

where in the definition of K(·, ·, ·, ·), φ is replaced by r. Applying (A4) ((a) and
(c)) with u = Yn−x

σ and v = Yn−y
σ we have that

r

(
Yn − x

σ

)
r

(
Yn − y

σ

)
≤ γ(

|x− y|
σ

) ≤ γ(
ε

σ
).

Therefore as in (2.13),∫
IR2d

(∫
(x,y):|x−y|>ε

K(x, y, u, v)dxdy

)
dudv ≤ 2

σ2d
γ(

ε

σ
)||ρ(0)

n−1 ∧ ρ
(1)
n−1||1.

(2.18)
Next using (2.14) and (A5) ((a) and (b)) we have as in the proof of (2.15)

that

|G(·, x) ∧G(·, y)|(u, v) ≤
2||q||∞qlip

B2 ||x− y||. (2.19)

This implies that∫
IR2d

(∫
(x,y):|x−y|≤ε

K(x, y, u, v)dxdy

)
dudv ≤

2||q||∞qlip
B2 ε

∫
IR2d

|ρ(0)
n−1 ∧ ρ

(1)
n−1|(u, v)

=
2||q||∞qlip

B2 ε||ρ(0)
n−1 ∧ ρ

(1)
n−1||1.

Combining the above inequality with (2.18) we have that

||ρ(0)
n ∧ ρ(1)

n ||1 ≤

(
1

σ2d
γ(

ε

σ
) +

2||q||∞qlip
B2 ε

)
||ρ(0)

n−1 ∧ ρ
(1)
n−1||1.

The proof is now completed on observing that

lim sup
σ→0

lim sup
n→∞

1
n

log
(
||ρ(0)

n ∧ ρ(1)
n ||1

)
≤ lim sup

ε→0
lim sup

σ→0
log

(
1

σ2d
γ(

ε

σ
) +

2||q||∞qlip
B2 ε

)

= lim sup
ε→0

log

(
2||q||∞qlip

B2 ε

)
= −∞,

where the first equality follows from (A4) ((b) and (a)).
Remark: From the calculations of the proof one can find lower bound on σ0 in
terms of κ(c), alip, qlip, ||q||∞, B, B, and γ. Similarly, one can derive a refined
lower bound on σ0 in the case of Gaussian noise from the proof of Theorem 2.1.
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