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Abstract. Collaborative filtering (CF) involves predicting the preferences of a user for a set of items given partial
knowledge of the user’s preferences for other items, while leveraging a database of profiles for other users. CF
has applications e.g. in predicting Web sites a person will visit and in recommending products. Fundamentally,
CF is a pattern recognition task, but a formidable one, often involving a huge feature space, a large data set, and
many missing features. Even more daunting is the fact that a CF inference engine must be capable of predicting
any (user-selected) items, given any available set of partial knowledge on the user’s other preferences. In other
words, the model must be designed to solve any of a huge (combinatoric) set of possible inference tasks. CF tech-
niques include memory-based, classification-based, and statistical modelling approaches. Among these, modelling
approaches scale best with large data sets and are the most adept at handling missing features. The disadvantage
of these methods lies in the statistical assumptions (e.g. feature independence), which may be unjustified. To ad-
dress this shortcoming we propose a new model-based CF method, based on the maximum entropy principle. For
the MS Web application, the new method is demonstrated to outperform a number of CF approaches, including
naive Bayes and latent variable (cluster) models, support vector machines (SVMs), and the (Pearson) correlation
method.
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1. Introduction

In the last decade there has been rapid growth both in
the number and size of electronic data repositories and
in the accessibility of these databases via the Internet
or private networks. Such databases include records of
consumers and the products they buy, Web sites vis-
ited by users, medical records, text article databases,
and bioinformatics data. The field of data mining has
arisen specifically in response to this upsurge in acces-
sible data resources. One fundamental data mining task
is information retrieval, wherein one searches a (large)
database for some small subset of records relevant to a
particular subject. A related task is collaborative filter-
ing, where the database records are leveraged as exam-
ples to support automated decisionmaking/predictions
for new examples. Collaborative filtering (CF) differs
from standard classification in two important respects.
First, both the database records and the new examples

will typically have many missing attribute values. Sec-
ond, the attributes to be inferred or predicted for the
new examples are task-dependent and are in general
unknown a priori. Both of these aspects make the CF
objective a particularly challenging one. CF has ap-
plications to Web browsing, marketing, product rec-
ommendation, candidate selection (for employment or
admissions), information retrieval (e.g. text article re-
trieval) from databases, and to rule aggregation in ex-
pert and knowledge-based systems.

In this work we propose a new statistical technique
for CF that has advantages over existing methods in (1)
its scalability for databases of increasing size; (2) its
ability to handle (an arbitrarily large number of) miss-
ing features in both the database of records and in the
new data examples; and (3) the accuracy of the infer-
ences that it produces. The new method is based on
the principle of maximum entropy [8]. ME techniques
are usually associated with off-line learning e.g. [2, 11,
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12] mainly due to the learning complexity, whereas
CF may require on-line learning and inference. While
this suggests the ME approach may be impractical for
CF, we explain in the sequel how practical on-line ME
learning and inference can often be achieved. Our ap-
proach represents one of the first practical applications
of ME modelling in an on-line learning and inference
setting. In the next section, we review the CF prob-
lem in more detail. In Section 3 we develop our ME
method for CF. Our approach is based on the iterative
scaling methodology for learning ME models [2, 11,
12]. In Section 4 experimental results are given in com-
parison with four other well-known CF techniques on
the UC Irvine Microsoft Web and the EachMovie data-
bases. Finally we summarize the contribution of this
work.

Movie 1 Movie 2 Movie 3 Movie 4 Movie 5 Movie 6 Movie 7 Movie 8

f (d)
4 2 3 2 2 3 5

f (d)
3 1 4 3 0 2 1

f (d)
2 3 1 2 4 4

f (d)
1 3 2 1 5 4

f (n)
1 1 2 ? 4 3

2. Collaborative Filtering

Consider a random feature vector F = (F1, F2, . . . ,

FN ), with Fi ∈ Ai , and Ai the finite set {1, 2, 3,

. . . , |Ai |}. In the CF context, a realization f ≡
( f1, f2, . . . , fN ) represents one record (example) in
the database. For concreteness, if we consider an ap-
plication to predicting which Web sites a user will
visit, then N represents the number of Web sites,
Fi a particular site, Ai ∈ {0, 1, 2} ∀i , with the dis-
crete values representing ‘missing information’, ‘no
visit’, and ‘visit’, respectively. Likewise, in a prod-
uct recommendation context, Fi represents a partic-
ular product, again taking on a discrete set of values,
e.g. {0, 1, 2} representing ‘missing information’, ‘dis-
like’, and ‘like’, respectively, with N the number of
products. In this case, f represents one example con-
sumer. In CF applications, one is assumed to be given
a database of examples Fd ≡ { f (d)

1 , f (d)
2 , . . . , f (d)

T },
where f (d)

t ≡ ( f (d)
t1 , f (d)

t2 , . . . , f (d)
t N ), f (d)

ti ∈ Ai . The

(demanding) CF inference objective is then stated as
follows:

Given:
(1) A target attribute i∗ to be predicted, with i∗ ∈

{1, 2, . . . , N }.
(2) A set of L(<N ) known attributes i1, i2, . . . , iL .
(3) A set of K new (reduced dimension) exam-

ples Fn ≡ { f (n)
1 , f (n)

2 , . . . , f (n)
K }, where f (n)

k ≡
( f (n)

ki1
, f (n)

ki2
, . . . , f (n)

kiL
), f (n)

kim
∈ Aim .

Goal: Predict the values f (n)
ki∗ , k = 1, 2, . . . , K .

Example. Given 4 users ( f (d)
1 , f (d)

2 , f (d)
3 , f (d)

4 ) and
their ratings on 8 movies. The possible ratings are 0–5
and an empty box indicates that the user has not seen
that movie. Predict how new user f (n)

1 will rate Movie 6.

Several important observations can be made about
this problem in general:

(1) The target feature is essentially a class feature.
Thus, specifying i∗ and the known attributes
amounts to specifying a classification problem that
needs to be solved. Also, although we have indi-
cated the goal of inferring a single target attribute
value for each new example, this is easily ex-
tended to the prediction of a collection of attribute
values.

(2) The number of such classification problems is huge
(combinatoric), as one can choose both the target
feature(s) and the subset of known features. Thus,
off-line learning and storage of one classifier for
each possible inference task is utterly infeasible.1

Practical methods for CF must thus be versatile
approaches, capable of producing inferences for
any posed CF task without undue delay, i.e. by
either a direct (in some sense) ‘on-line’ inference
procedure or by ‘on-line’ model learning based on
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Fd followed by inference. Our ME approach will
fall in the latter category.

(3) Whenever L < N − 1, a classifier designed to in-
fer Fi∗ given the remaining N − 1 feature values
will require a (heuristic) missing feature imputa-
tion strategy. SVMs [9] is one such approach. Note
further that in practice we will have L � N −1. In
particular, for the MS Web domain, N = 285 and
we will (reasonably) assume L = 5 or 10. Thus,
SVMs will need to impute many missing features
in practice.

(4) Often the database examples f (d)
t will also have

many missing attribute values. This will again cre-
ate difficulties for classification-based CF meth-
ods (e.g. SVMs), which must (heuristically) impute
values for the missing features during the learning
phase.

There are three basic approaches taken to attack-
ing the CF problem: (1) memory-based methods;
(2) classification-based approaches; and (3) statisti-
cal modelling approaches. We next briefly review
these.

2.1. Memory-Based Methods

These methods essentially perform weighted voting us-
ing the examples in the database, with the weight for
each database example based on the degree of simi-
larity between the example and the new instance f (n).
Often, before voting is done, the similarity values are
compared to a threshold to reduce the size of the vot-
ing ensemble. This is somewhat akin to the K -nearest
neighbor method in classification. A variety of similar-
ity measures have been used, including Pearson’s cor-
relation coefficient and its variants and cosine-based
similarity [3].

Some practical concerns for memory-based meth-
ods include: (1) the reliability of the similarity mea-
sure, which is based on only the known feature subset
(of size L � N ); (2) the choice of the threshold, which
controls the number of voters (and hence which can
afiect performance [1]). However, the most serious is-
sue is how complexity scales with increasing database
size—since the similarity is evaluated for each database
example, inference complexity grows linearly with T .
Thus, for millions of database records, complexity will
become a serious obstacle. Clustering the records is
one way to mitigate this problem.

2.2. Classification-Based Methods

One example of this approach is the application of
SVMs to CF [5] (although other classifiers can also
be used). Here, one builds N SVMs, with each one
dedicated to the prediction of a single feature Fi . Since
the SVM learning complexity grows with the data set
size T , the learning must be done off-line. Moreover,
since it is infeasible to learn and store one classifier for
each possible inference task (i.e. each combination of
target feature i∗ and known feature subset), each SVM
must be built for the full space of dimension N , i.e.
assuming an (N − 1)-dimensional input vector with
all values known. One difficulty this creates is that the
database will have many missing feature values. Thus,
a heuristic imputation strategy must be used to ‘fill in’
these values prior to SVM training. More serious is the
fact that the new (test) examples will also have many
missing features. Thus, heuristic imputations must also
be made for many attributes in the new (test) examples
before SVM-based inference can proceed. These im-
putations can seriously affect inference accuracy. An-
other issue is (even) the off-line learning complexity,
since this grows at least with the square of N .2 Di-
mensionality reduction methods such as the singular
value decomposition (SVD) can be used to mitigate
this problem [6].

2.3. Statistical Modelling Approaches

These methods are based on a joint probability model
over the feature space consisting of the known fea-
ture subset plus the feature to be predicted. First,
given a specified CF inference task, the joint probabil-
ity model P[Fi∗ , Fi1 , Fi2 , . . . , FiL ] is formed (in some
cases, learned). The predictions are then based on the a
posteriori probabilities P[Fi∗ = fi∗ | fi1 , fi2 , . . . , fiL ],
which are computed (via Bayes rule) consistent with
the joint probability model. This approach is grounded
in the well-known theoretical result that the optimal
(Bayes) classifier in the presence of missing features
uses the a posteriori probabilities that condition only
on the set of known features—i.e., it is suboptimal to
perform missing feature inference if one can instead
evaluate the proper a posteriori probabilities, which
condition only on the known features [15].

We believe that this class of CF methods is the
most promising one. Statistical modelling approaches
do not sufier from the missing feature difficulties of
the classification-based methods,3 and their inference
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complexity may have very limited dependence on
the database size T . Moreover, these methods pro-
duce probabilities as inferences, which are attractive in
some applications. We next briefly describe two such
methods.

The Naive Bayes Model. This model assumes all
known features are conditionally independent given
Fi∗ . The joint probability is thus

P
[
Fi1 = fi1 , Fi2 = fi2 , . . . , FiL = fiL , Fi∗ = fi∗

]
= P[Fi∗ = fi∗ ]

L∏
j=1

P
[
Fi j = fi j

∣∣ Fi∗ = fi∗
]

and the associated a posteriori probabilities are (via
Bayes rule)

P
[
Fi∗ = fi∗

∣∣ fi1 , fi2 , . . . , fiL

]
= P

[
Fi1 = fi1 , Fi2 = fi2 , . . . , FiL = fiL , Fi∗ = fi∗

]∑|Ai∗ |
k=1 P

[
Fi1 = fi1 , Fi2 = fi2 , . . . , FiL = fiL , Fi∗ = k

] .

(1)

The conditional probabilities involved in (1) are esti-
mated via frequency counts over the database, i.e.

P
[
Fi j = fi j

∣∣ Fi∗ = fi∗
] = N

(
Fi∗ = fi∗ , Fi j = fi j

)
N (Fi∗ = fi∗ )

,

where N (·) is the number of times an event occurred in
the database.

The Latent Variable (Cluster) Model. This is a more
powerful (mixture) model than naive Bayes, one that
assumes features are conditionally independent given
an unobserved (latent) ‘cluster’ variable, C . The joint
probability is given by

P
[
Fi1 = fi1 , Fi2 = fi2 , . . . , FiL = fiL , Fi∗ = fi∗

]
=

Nc∑
m=1

P[C = m]P[Fi∗ = fi∗ | C = m]

×
L∏

j=1

P
[
Fi j = fi j

∣∣ C = m
]
.

The associated a posteriori probabilities are again eas-
ily formed via Bayes rule, as given in (1). This model
can be learned for each new CF task via maximum like-
lihood estimation (MLE).4 Since the model is not very

large (L � N ), MLE can often be practically accom-
plished ‘on-line’. We have implemented the learning
via the Expectation/Maximization (EM) algorithm [4].
Note also that one must choose the number of (latent)
clusters, Nc. We have found that an improper choice
can lead either to overfitting or to underfitting the data.
Cluster models for CF were proposed in several previ-
ous works [3, 7].

3. A Maximum Entropy CF Approach

One disadvantage of the previous models, and of naive
Bayes in particular, is the assumption of feature inde-
pendence. It appears quite unlikely, for any arbitrarily
chosen CF task, that the set of known features will be
independent given the feature to be predicted. An al-
ternative to explicitly assuming a parametric form for
the joint pmf is to view model learning as a problem of
constraint encoding, with the goal to encode as many
accurately measured constraints as possible, while re-
maining maximally noncommittal with respect to any
other (unjustified) statistical assumptions. The princi-
ple of maximum entropy (ME) [8] embodies this idea,
suggesting to find the solution of maximum entropy
consistent with the specified constraints. The ME solu-
tion is unique and has been given theoretical justifica-
tion [8]. ME has found frequent use, especially in natu-
ral language modelling and speech-related applications
[2, 11, 12]. The use of ME for more general classifica-
tion and inference tasks has also recently been inves-
tigated [10, 13]. Since learning an ME model in these
settings generally requires optimization over a large set
of parameters via gradient-based or other iterative tech-
niques, model learning is almost always an off-line task,
requiring hours or even days of computation. However,
in the CF setting, a key observation is that, although the
feature space size (N ) and database size (T ) may both
be huge, the number of known features L is typically
quite small, and it is this parameter which may deter-
mine the complexity of ME learning. Thus, for CF, we
suggest that practical on-line ME model learning and
inference is often actually viable. We next develop such
a learning and inference approach.

3.1. ME Model

There are several approaches to ME learning, includ-
ing “iterative scaling” and its extensions [2, 12], as well
as the method developed in [10]. While the approach
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in [10] does have some potential advantages,5 itera-
tive scaling has lower computational complexity and
is thus most appropriate in the CF setting. In the ME
framework, one learns parameters of an ME a posteri-
ori model P[Fi∗ = fi∗ | fi1 , fi2 , . . . , fiL ] to maximize
entropy while ensuring that expected value (e.g. lower
order probability) constraints measured with respect
to the model distribution agree with those measured
based on a uniform (empirical) distribution over the
data set, i.e. based on frequency counts. Since the ac-
curacy of frequency count estimates of probabilities
decreases with the order of the probabilities, one typ-
ically must limit constraints to low order. Thus, in
this work we suggest to encode all the pairwise pmf
constraints involving the feature to be predicted, i.e.
{P[Fi∗ , Fi1 ], P[Fi∗ , Fi2 ], . . . , P[Fi∗ , FiL ]}. The para-
metric form for the ME a posteriori probabilities con-
sistent with these constraints is exponential:

PME
[
Fi∗ = fi∗

∣∣ fi1 , fi2 , . . . , fiL

]
= e

∑L
j=1 γ (Fi∗ = fi∗ ,Fi j = fi j )∑|Ai∗ |

m=1 e
∑L

j=1 γ (Fi∗ =m,Fi j = fi j )
, (2)

where γ (Fi∗ = fi∗ , Fi j = fi j ) is the Lagrange multi-
plier associated with the constraint on the probability
P[Fi∗ = fi∗ , Fi j = fi j ]. In generalized iterative scal-
ing [2], one assumes a uniform pmf over (training)
database examples. Thus, for each reduced-dimension
example f̃ (d)

t ≡ ( f (d)
ti1

, f (d)
ti2

, . . . , f (d)
tiL

), the model joint

pmf takes the form P[ f̃ (d)
t , Fi∗ = fi∗ ] = 1

T PME[Fi∗ =
fi∗ | f̃ (d)

t ]. Accordingly, the model’s conditional en-
tropy is

H =
∑
ft ∈Fd

1

T

|Ai∗ |∑
k=1

PME
[
Fi∗ = k

∣∣ f̃ (d)
t

]
× log PME

[
Fi∗ = k

∣∣ f̃ (d)
t

]
.

Likewise, a pairwise constraint on any probability
P[Fi∗ = fi∗ , Fi j = fi j ] can be expressed as:∑

ft
(d)∈Fd : f (d)

ti j
= fi j

1

T
PME

[
Fi∗ = fi∗

∣∣ f̃ (d)
t

]

= N
(
Fi∗ = fi∗ , Fi j = fi j

)
T

. (3)

In [2], it was shown that the Lagrangian objective func-
tion associated with the problem of maximizing H sub-
ject to all the specified constraints is equivalent to a

special likelihood function. Given our constraints (3),
the ME Lagrangian function takes the form

L = H +
Nc∑
j=1

|Ai∗ |∑
m=1

|Ai j |∑
fi j =1

γ(Fi∗ =m,Fi j = fi j )

×
(

N (Fi∗ = fi∗ , Fi j = fi j

)
T

−
∑

ft
(d)∈Fd : f (d)

ti j
= fi j

1

T
PME

[
Fi∗ = fi∗

∣∣ f̃ (d)
t

])
. (4)

After several simplifying steps, it is discovered that
this can be rewritten in the form of the conditional log-
likelihood

L = log
∏
ft ∈Fd

PME
[
Fi∗ = fi∗ | f̃ (d)

t

] 1
T . (5)

Taking the partial derivative with respect to any of the
Lagrange multipliers can be shown to give the follow-
ing (satisfying) result:

∂L
∂γ(Fi∗ = fi∗ ,Fi j = fi j )

= N
(
Fi j = fi j , Fi∗ = fi∗

)
T

−
∑

ft
(d)∈Fd : f (d)

ti j
= fi j

1

T
PME

[
Fi∗ = fi∗

∣∣ f̃ (d)
t

]
, (6)

i.e., setting the partial derivatives to zero, a necessary
optimality condition is simply the constraint condition
(3), which says that constraint probabilities measured
with respect to the model’s joint pmf must equal those
measured with respect to the empirical (uniform) distri-
bution over the database. Thus, ME learning amounts
to simply choosing the parameters of the exponential
model to satisfy the constraints. Moreover, since the
constraints are linear, the solution is unique [2]. Thus,
ME learning seeks the (unique) exponential model sat-
isfying the given constraints (3). There are several tech-
niques that can be used to perform this learning of the
γ (·, ·) parameters, including gradient descent and gen-
eralized iterative scaling [2]. Both of these methods
will require computing the sums∑

ft
(d)∈Fd : f (d)

ti j
= fi j

1

T
PME

[
Fi∗ = fi∗

∣∣ f̃ (d)
t

]
. (7)

The efficiency of this computation can in some cases be
greatly increased with the following observation: since
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L � N , it may also be true that |Ai1×Ai2×· · ·×AiL | �
T . When this is true, the number of terms in the sum
can be drastically reduced. In particular the sum can be
rewritten as

∑
f ∈Ai1 ×Ai2 ×···×AiL ×Ai∗ :Fi j = fi j

1

T
N ( f )PME[Fi∗ = fi∗ | f̃ ].

(8)

For the MSWEB database, this simplification leads to
substantial savings in learning time. For Each-Movie,
this approach does not help since |Ai1 × Ai2 × · · · ×
AiL | > T for the choices of L that we will consider.
Below we describe the iterative scaling approach we
have taken for ME learning.

3.2. Iterative Scaling

The generalized Iterative Scaling procedure was first
developed in [12] as a method of finding the Lagrange
Multipliers to maximize the log likelihood (5) when
PME[Fi∗ = fi∗ | f̃ (d)

t ] has an exponential form, as in (2).
It has been shown e.g. in [12, 16] that this log-likelihood
function is convex in the Lagrange multipliers and thus
has a unique maximum.

3.2.1. Algorithm. In the following, when we wish
to refer to the vector composed from the full set of
Lagrange multipliers or to a perturbation of this vector,
we will use the notation γ or �γ , respectively. The
generalized iterative scaling algorithm consists of the
following basic steps:

1. Initialize the Lagrange Multipliers, γ . This can be
done randomly; k ← 0.

2. Calculate an increment for the Lagrange Multipliers
�γ (k) that is guaranteed to increase the log likeli-
hood function.

3. Add the calculated increments to the Lagrange Mul-
tipliers, i.e.

γ (k+1) ← γ (k) + �γ (k); k ← k + 1 (9)

Steps 2 and 3 are repeated until a convergence criterion
is met.

Step 2 is implemented through the use of an auxiliary
function A(�γ , γ ). This function is chosen so that:

(1) For any �γ

L(γ + �γ ) − L(γ ) ≥ A(�γ , γ ); (10)

(2) A(�γ , γ ) is a convex function in �γ , i.e. it has a
unique maximum, also max�γ A(�γ , γ ) ≥ 0.

Let �γ (k) be the value that maximizes A(�γ , γ ).
This increment to the Lagrange multipliers will guar-
antee an increase in the log likelihood function. As the
algorithm iterates, L(γ (k)) will thus increase monoton-
ically. It is proved in [12] that, in fact, the likelihood
converges to maxL(γ (k)) and γ → arg maxγ L(γ ).

For our ME problem the auxiliary function is given
by

A(�γ , γ ) =
Nc∑
j=1

|Ai∗ |∑
m=1

|Ai j |∑
fi j =1

�γ(Fi∗ =m,Fi j = fi j )

× N
(
Fi∗ = fi∗ , Fi j = fi j

)
T

+ 1

−
Nc∑
j=1

|Ai∗ |∑
m=1

|Ai j |∑
fi j =1

1

LT

∑
ft

(d)∈Fd : f (d)
ti j

= fi j

× PME[Fi∗ = fi∗ | f̃ t
(d)

]e
L�γ(Fi∗ =m,Fi j

= fi j
)
,

(11)

where L is the number of known features. It can be
shown that A(�γ , γ ) satisfies (10), see [12]. The con-
vexity of this function can be shown by computing the
Hessian matrix and confirming that it is indeed negative
definite.

To maximize A(�γ , γ ), we take the partial deriva-
tive, set it to zero, and solve for �γ(Fi∗ =m,Fi j = fi j )

∀i j , J = 1, . . . , L∀m∀ f j . We then find that, for each
Lagrange multiplier the update is:

�γ
(k+1)
(Fi∗ =m,Fi j = fi j )

= 1

L
log

N (Fi∗ = fi∗ ,Fi j = fi j )

T

1
T

∑
ft

(d)∈Fd : f (d)
ti j

= fi j
PME

[
Fi∗ = fi∗ | f̃ t

(d)] .

(12)

This is the update used in step 2 of the algorithm.
Note that when a pairwise constraint is satisfied, the
expression inside the log( ) is one, and the associated
component of �γ is thus zero. The auxiliary function
A(�γ , γ ) has several important properties [12]:
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1. A(0, γ ) = 0, which implies that the maximum of
A(�γ , γ ) is at least 0. This condition is necessary
because if �γ = 0 there is no change in the log
likelihood.

2. The directional derivatives of L(γ + �γ ) and
A(�γ , γ ) are equal at �γ = 0, i.e.

d

dt
L(γ + t�γ )|t=0 = d

dt
A(t�γ , γ )|t=0. (13)

Since d
dt A(t�γ , γ )|t=0 = ∇ A(0, γ ) · �γ this im-

plies that at �γ = 0 the gradients of A(�γ , γ ) and
L(γ ) are equal. Specifically if ∇ A(0, γ ) = 0, i.e. if
the maximum of A(�γ , γ ) is found when �γ = 0,
then the maximum of L(γ ) has also been found.

3.2.2. Convergence. A convergence proof is given in
[12]. We provide a brief summary of the argument,
as follows. We can see from the algorithm described
above that every iteration step increases the log like-
lihood. Since the sequence steps are probability dis-
tributions which are members of a compact set, there
is a convergent subsequence and at least one cluster
point. It is shown in [12] that all cluster points of the
algorithm will be maxima of the log likelihood. Fur-
ther, since the log likelihood is convex it has only one
maximum and hence only one cluster point. Therefore
the algorithm converges to the unique point that satis-
fies ∇ A(0, γ ) = ∇L(γ ) = 0. This also satisfies the
constraints in (3).

3.3. Implicit Versus Explicit Databases and Missing
Votes

We have tested our ME inference method on two dif-
ferent CF databases, EachMovie and MSWEB. The
EachMovie database consists of movie ratings from
61,264 users. There are a total of 1622 rated movies.
Each user rates movies he or she has seen. The ratings
are ‘1’ to ‘6’ with a value of ‘0’ for all movies not seen.
The MSWEB database lists Microsoft web sites vis-
ited by 32,711 users. There are 285 web sites that have
been visited by at least one user. The database values
are ‘0’ and ‘1’ for ‘not visited’ and ‘visited’, respec-
tively. The CF objective is to predict whether a user will
visit a given web site or not. The first database, Each-
Movie, is an example of an explicit database while the
second one is an example of an implicit database. The
difference is that the records represent users’ prefer-
ences based on either their (1) explicit voting or rating

of objects or (2) their past behavior. Explicit voting
involves explicit rating of items. For example, rating
movies or newspaper articles. In this case there may
be many missing features, i.e. a person will not usually
see every single movie that Hollywood has released,
and so many movies are unrated in the database. On
the other hand, implicit votes are based on the interpre-
tation of a user’s behavior. If a person accesses an item,
for instance buying a product or visiting a web site, that
is counted as a ‘yes’ vote. All items not accessed are
counted as ‘no’ votes. Implicit voting is interpreted as
having no missing information, i.e. by definition any
items not accessed are assigned ‘no’ votes.6 For the case
of explicit voting, one needs to address the problem of
missing feature values in the database records when
building the model. We next consider this problem,
proposing several novel learning approaches amenable
to the ME statistical modelling approach to account for
these missing feature values.

We have the following strategies for handling miss-
ing votes:

1. One can learn a model where PME[Fi∗ =
“unrated” | f ], is a valid choice. In this case, for
EachMovie, the possible ratings would be the six
values ‘1’ to ‘6’ and another value representing
‘unrated’, making a total of seven possible rat-
ings. If the maximum a posteriori rule fi∗ =
arg maxl PME[Fi∗ = l | f ] is applied, this will result
in many ‘unrated’ predictions because the database
has many unrated instances. Since our objective
is to predict ratings for the movies, these unrated
predictions would be unacceptable. An alternative,
after model learning, is to apply a rule that disal-
lows unrated predictions, i.e. to use the rule fi∗ =
arg maxl PME[Fi∗ = l | f , l ∈ {ratings choices}],
where PME[Fi∗ = l | f , l ∈ {ratings choices}] =

PME[Fi∗ =l | f ]
(1−PME[Fi∗ =“unrated” | f ]) , l ∈ {ratings choices}. This
is a MAP rule that excludes ‘unrated’ as a valid
choice.

2. A second method is to learn a model that restricts
the values taken on by Fi∗ to be ratings values.
To achieve this, one must discard all database ex-
amples for which Fi∗ = ‘unrated’ when forming
frequency count estimates of the pairwise statis-
tics {P[Fi∗ , Fj ]}. This will result in the ratings-
restricted learned pmf PME[Fi∗ = l | f ], l ∈
{ratings choices}. This method, called the ‘throw
away data’ method, achieves better results than the
first method.
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3. A third method we propose for on-line ME is
a two stage learning method: First, learn an ME
model using method 2. Next, evaluate PME[Fi∗ =
l | f (n)], l ∈ {ratings choices} for all database ex-
amples for which Fi∗ = “unrated”. Effiectively,
this produces probabilistic ratings for all unrated
database examples. Thus, all database examples will
now have ratings, either deterministic or probabilis-
tic ones. We can thus form new constraint probabil-
ities via

P
[

Fi∗ = k, Fi j = fi j

]
=

N (Fi∗ = k, Fi j = fi j ) + ∑
t : f (d)

ti∗ =“unrated”
PME[Fi∗ = k | f̃ (d)]

T
,

(14)

k ∈ {ratings choices}. In this way, unlike method 2,
all the data is tapped for estimating the constraint
probabilities. Finally, we relearn the ME model
PME[Fi∗ = l | f (n)], l ∈ {ratings choices} and use
it in a MAP rule. This method, which we call ‘re-
learn model’, is the best missing feature method we
have found for on-line ME classification.

4. Results

Two databases, EachMovie and MSWEB were used for
evaluation. For the MSWEB database, the following
constitutes one trial for a CF algorithm. Either L = 2,
5 or 10 of the 285 visited web sites were randomly
chosen as known, with values for the remaining sites
to be inferred. Of the 5000 users in the test set, only
those with at least one of the selected sites visited were
included in the test set for this particular trial. That
means that the number of test vectors differ for each
trial. A model was learned for each inference task and
prediction was then done on all of the test vectors in
the trial. Because the results varied from one trial to
another, a total of fifteen trials were done. The reported
results were obtained by micro-averaging over all of
the trials. The methods we compare include Correla-
tion, SVMs, naive Bayes, the Cluster model (BC), a
brute-force frequency-count estimator (FC), and ME.
For Correlation, we used the Pearson coefficient as
the basis for the weights, as in [3]. The weights were
formed for all the training examples and then weighted
voting was performed. Weight amplification with a fac-
tor of 2 was also used. For the Cluster model, we chose

Nc = 7 since this gave the best (test set) results. The
FC method estimates a posteriori probabilities directly
via

N (Fi∗ = fi∗ ,F= f )
N (F= f ) . For SVMs, the SVM light program

of Thorsten Joachims [9] was used. We created 285 dif-
ferent linear SVMs. To do inference, the known values
were set to 1 or 0 and all unknown values were set to
0.5. The dot products for all sites to be inferred were
formed in the usual way and the values were compared
to a threshold for prediction. While the threshold is typ-
ically chosen to be zero, we found that a non-zero value
gave better performance. Results are reported using the
recall/precision metric. Recall (r ) is the percentage of
visited web sites that we predicted as visited. Preci-
sion (p) is the percentage of predicted visits that really
were visited. For MSWEB we report the F1 measure
which combines precision and recall. The definition of
F1 is:

F1 = 2pr

p + r
(15)

For each method the threshold was found that gave
the point where precision equals recall. As aforemen-
tioned, since results can vary considerably for different
groups of known features, we averaged the results over
15 (randomly selected) groups.

As seen in Table 1, the statistical modelling methods
clearly outperform SVMs and Correlation. The poor
performance of SVMs is apparently due to missing
features, since SVM performance was observed to im-
prove as we continued to increase L (beyond 10). The
FC method does surprisingly well. We attribute its suc-
cess to the fact that L is relatively small and the amount
of data, T , is large. We also report on execution times
on a Sunsparc10 workstation. For naive Bayes and FC,
it took less than one second to compile the necessary
statistics and less than 1 second to do one CF inference

Table 1. MSWEB prediction results for vari-
ous methods given 2, 5 and 10 known features.
The performance is based on the F1 measure.

Data sets Given 2 Given 5 Given 10

ME 0.331 0.329 0.332

BC 0.316 0.319 0.319

NBC 0.317 0.303 0.326

FC 0.329 0.325 0.331

CORR 0.198 0.195 0.278

SVM 0.197 0.204 0.273
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task with K = 237 (K is the number of test vectors
in 1 trial). For Correlation, it took about 6 seconds to
do 280 predictions on a single example (i.e., K = 1).
For ME, with L = 5, it takes <1 second to create the
model, after which it takes <1 second to do one CF in-
ference task (with K = 237). SVMs requires anywhere
from 15 minutes to 2 hours to build each model. Each
prediction takes on the order of milliseconds. Given
the modest learning time for ME for small L , it does
appear feasible to use this approach in an on-line, i.e.
real-time setting.

For the EachMovie Database, only records with 40
or more rated movies were used for testing. There are
20,322 such records. Of these, 600 were randomly se-
lected for the test set and 15,322 records were used
as the training set. For each of the users in the test
set, five sites were chosen at random for the known
sites and 35 of the other sites were randomly cho-
sen as sites to be predicted. A model was learned for
each inference problem and then prediction was per-
formed. Because EachMovie is an explicit database
with missing values, the MSWEB method of building
a model and using it to do predictions on the whole
test set cannot be used. Therefore a different model
had to be built for each of the 35 prediction tasks per-
formed for each test vector. For this database, the pos-
sible ratings are ‘1’, . . . ,‘6’. We choose the rating with
the highest probability as our prediction (an alterna-
tive is to use the expected value—these two methods
give comparable results). All the results in Table 2 are
for L = 5. We report the average absolute value of
the prediction error, over 21,000 predictions. The av-
erage absolute value of the prediction error is defined
as

errorav = 1

K

K∑
k=1

∣∣ f (n)
ki∗ − f̂ (n)

ki∗
∣∣ (16)

Table 2. EachMovie prediction results
for various methods given 5 known features.
The performance is based on the average
absolute value of the prediction error.

Method Result

Correlation 1.18

NBC 0.975

ME second best 0.923

ME throw away data 0.861

ME relearn model 0.851

where f̂ (n)
ki∗ ki∗ is the estimated value of f (n)

ki∗ . A higher
average absolute value of prediction error indicates
greater deviation from the correct answers and poorer
performance.

For the EachMovie data set, as for MSWEB, the
Maximum Entropy method is seen to give apprecia-
bly better performance than the correlation method.
By way of comparison, [3] gets an average absolute
prediction of 1.139 for correlation as compared to
our value of 1.18. A possible reason for this differ-
ence is that [3] uses a slightly different training/test
split for EachMovie than we did. Also, methods (2)
and (3) for handling missing features in ME mod-
els further improve the accuracy of the predictions.
The correlation method requires about 4 seconds to
do inference for one test vector consisting of 35
movies to be inferred. ME requires about 10 sec-
onds to do learning and inference for one inference
task.

5. Discussion

Our new (ME) method falls into the class of ‘statistical
modelling’ approaches to CF. As such, it has an in-
herent advantage over classification-based approaches
(e.g. SVMs) in handling missing features in the train-
ing set. Even more importantly, unlike SVMs the new
method does not require (heuristic) missing feature im-
putations when forming its predictions. Another ad-
vantage of the new method and other modelling ap-
proaches to CF lies in their scalability, both with in-
creasing size of the feature space, but especially with in-
creasing size of the database (T ). Classification-based
approaches will typically require a linear increase in
learning complexity with increasing database size. As
a more serious obstacle, memory-based methods will
experience a linear increase in the complexity of the
prediction phase. By contrast, the complexity of model-
based approaches may have very little dependence on
T . The complexity of estimating constraint probabil-
ities via frequency counts does grow with T , but this
takes very little time even for T on the order of mil-
lions. More importantly, the complexity of ME learn-
ing of the a posteriori model is independent of T if
the sums required in iterative scaling are computed
by summing over all elements of the known feature
space, as in (8), rather than by summing directly over
the training set, as in (7). ME model-building com-
plexity thus may only grow with the number of known
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feature values and/or the number of ME constraints that
are encoded. Thus, we expect that the new method will
be more practically viable than memory-based meth-
ods for domains with huge databases (e.g. millions
of data records) and limited known attribute informa-
tion (e.g. 5, 10, or 20 known feature values). More-
over, whereas the complexity of classification-based
methods typically grows (at least) quadratically with
the size of the feature space (N ), complexity for the
new method (and for other model-based approaches)
grows (for each inference task) only with the size of
the known feature subset (L). Even for spaces with
thousands of features (e.g. the EachMovie domain), the
size of the known feature subset may only be as large
as ten or twenty features. While dimensionality reduc-
tion techniques can be used with classification-based
methods, e.g. [6], one may need to sacrifice important
information to achieve a practical dimensionality for
learning and inference. Finally, compared with alter-
native statistical approaches, the advantage of the ME
method lies in its improved inference accuracy. The
new method was observed to achieve gains in the F1-
measure and in absolute deviations over naive Bayes
and cluster models, as well as over SVMs and the Pear-
son correlation method. The gains over the other sta-
tistical models are attributable to the ME method’s en-
coding of more constraints, as well as to its inherent
avoidance of unncessary statistical assumptions (e.g.
independence).

6. Future Work

Our ME solution could potentially be improved in some
cases by encoding more constraints (those involving
the feature to be predicted and groups of known fea-
tures) and in some cases by encoding fewer constraints
(i.e., only encoding some constraints involving pairs
of known features7). One approach to encoding fewer
constraints involving only known features is [10]. How-
ever, this method requires greater complexity than the
iterative scaling ME method used here. Another fu-
ture direction is to develop an extension for CF prob-
lems with mixed continuous/discrete feature spaces. A
starting point for such development can be found in
[13]. Finally, other applications could be investigated,
for example: (1) retrieval of relevant articles from a
database based on abstracts; (2) aggregation of rule
bases in data mining; and (3) applications in marketing
research.
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Notes

1. Classification-based methods, discussed in the sequel, do use off-
line learning to build N classifiers, with each dedicated to the pre-
diction of a single feature, given knowledge of all the remaining
feature values. However, this approach does not build a classifier
dedicated to each inference task, i.e. it does not account for the
(many) missing features that will occur in the new (test) examples.

2. There are N SVMs to build, with learning complexity for each
one growing at least linearly with N .

3. No missing feature imputations are required for test exam-
ples, since the model is based solely on the (known) features
Fi1 , Fi2 , . . . , FiL and the feature to be inferred, Fi∗ . For model-
building, low-order statistics (probabilities) must be estimated via
frequency counts over the database. Here, missing features are en-
countered. However, for calculating a particular statistic involving
e.g. a pair of attributes, data examples with missing values for one
attribute or for the pair can be discarded with small effect on the
accuracy of the statistics.

4. Alternatively, a single cluster model can be learned, off-line, for
the full N -dimensional space.

5. Iterative scaling assumes a uniform pmf over the training set,
whereas this pmf is optimized in the ME sense in [10]. Some
examples are provided in [14] where optimizing leads to improved
results. Moreover, in iterative scaling, based on the uniform pmf
assumption, one is implicitly encoding constraints on all (high
order) collections of features that do not include the target feature
Fi∗ . When the data set is not sufficiently large, this can lead to
overfitting. By contrast, the method in [10, 14] allows selective
encoding of constraints not including the target feature. This leads
to improved accuracy in some cases as well [14].

6. This representation will sometimes falsely interpret the user’s be-
havior, e.g. a user may have had very limited time to explore a
Web database. Thus, the sites indicated as visited may not accu-
rately reflect the sites the user would be inclined to visit in general.
However, there is no additional data available for gauging users’
intentions.

7. Note that the iterative scaling assumption that the joint pmf takes
the form

N ( fi1 , fi2 ,. . . , fiL )
T P[Fi∗ = fi∗ | fi1 , fi2 , . . . , fiL ] ensures

that the ME joint pmf will agree with all statistics (measured over
the database) involving groups of known features. This may be
imprudent, especially for small T. An alternative approach that
optimizes the joint pmf on the known feature subset so as to agree
with selective constraints involving known features is given in
[10, 14].

References

1. B. Arwar, G. Karypis, J. Konstan, and J. Riedl, “Analysis of
Recommendation Algorithms for E-commerce,” in Proc. of the
2nd ACM Conf. on Electronic Commerce, 2000.



A Maximum Entropy Approach for Collaborative Filtering 209

2. A. Berger, S. Della Pietra, and V. Della Pietra, “A Maximum
Entropy Approach to Natural Language Processing,” Computa-
tional Linguistics, vol. 22, 1996, pp. 39–68.

3. J. Breese, D. Heckerman, and C. Kadie, “Empirical Analysis of
Predictive Algorithms for Collaborative Filtering,” in Proc. of
the Fourteenth Conf. on Uncertainty in Art. Intell., 1998.

4. A.P. Dempster, N.M. Laird, and D.B. Rubin, “Maximum-
Likelihood from Incomplete Data via the EM Algorithm,” Jour-
nal of the Roy. Stat. Soc., Ser. B, vol. 39, 1977, pp. 1–38.

5. D. Fisher, K. Hildrum, J. Hong, M. Newman, M. Thomas, and
R. Vuduc, “Swami: A Framework for Collaborative Filtering
Algorithm Development and Evaluation,” in Proc. of the 23rd
Annual Int. ACM SIGIR Conf. on Research and Development in
Info. Retrieval, ACM Press, 2000, pp. 366–368.

6. T. Hoffman, “Probabilistic Latent Semantic Indexing,” in Proc.
of the 22nd Annual Int. ACM Conf. on Research and Develop-
ment in Info. Retrieval, 1999.

7. T. Hoffman and J. Puzicha, “Latent Class Models for Collabo-
rative Filtering,” in Proc. of the IJCAI ’99, 1999.

8. E.T. Jaynes. “Information Theory and Statistical Mechanics,” in
Papers on Probability, Statistics and Statistical Physics, R.D.
Rosenkrantz (Ed.), Dordrecht, The Netherlands: Kluwer Aca-
demic Publishers, 1989 (Reprint of the original 1957 papers in
Physical Review).

9. T. Joachims, Advances in Kernel Methods-Support Vector Learn-
ing, MIT Press, 1999.

10. D.J. Miller and L. Yan, “Approximate Maximum Entropy Joint
Feature Inference Consistent with Arbitrary Lower-Order Proba-
bility Constraints: Application to Statistical Classification,” Neu-
ral Computation, vol. 12, 2000, pp. 2175–2207.

11. K. Nigam, J. Lafferty, and A. McCallum, “Using Maximum En-
tropy for Text Classification,” in Proc. of the IJCAI ’99 Workshop
on Machine Learning for Info. Filtering, 1999.

12. S. Della Pietra, V. Della Pietra, and J. Lafferty, “Inducing Fea-
tures of Random Fields,” IEEE Trans. on Patt. Anal. and Mach.
Intell., vol. 19, 1996, pp. 380–393.

13. L. Yan and D.J. Miller, “General Statistical Inference for Dis-
crete and Mixed Spaces by an Approximate Application of the
Maximum Entropy Principle,” IEEE Trans. on Neural Networks,
vol. 11, 2000, pp. 558—573.

14. L. Yan and D.J. Miller, “Approximate Maximum Entropy Learn-
ing for Classification: Comparison with Other Methods,” in
Proc. of the 2001 IEEE Int. Workshop on Neural Networks for
Sig. Proc., 2001, pp. 243–252.

15. Q. Zhu, “On the Minimum Probability of Error of Classification
with Incomplete Patterns,” Pattern Recognition, vol. 23, 1990,
pp. 1281–1290,

16. S.C. Zhu, Y.N. Wu, and D. Mumford, “Minimax Entropy Prin-
ciple and its Application to Texture Modeling,” Neural Compu-
tation, vol. 9, 1997, pp. 1627–1660.

John Browning received the B.A. degree in math from Rutgers Uni-
versity, New Brunswick NJ, in 1982, and the M.S.E.E. degree in
electrical engineering from Drexel University, Philadelphia Pa., in
1996. From February 1982 to August 1997, he was with General
Atronics Corp., Wyndmoor, PA. He is currently pursuing the Ph.D.
degree and is a research assistant at The Pennsylvania State Univer-
sity. His research interests include statistical pattern recognition and
signal processing.
jdb263@psu.edu

David J. Miller received the B.S.E. degree from Princeton Univer-
sity, Princeton, NJ, in 1987, the M.S.E. degree from the University of
Pennsylvania, Philadelphia, PA, in 1990, and the Ph.D. degree from
the University of California, Santa Barbara, in 1995, all in electri-
cal engineering. From January 1988 through January 1990, he was
with General Atronics Corp., Wyndmoor, PA. From Sept. 1995–July
2001 he was Assistant Professor of electrical engineering at The
Pennsylvania State University. He is now tenured Associate Profes-
sor of electrical engineering at The Pennsylvania State University.
His research interests include statistical pattern recognition, machine
learning, source coding and coding over noisy channels, and image
and video coding. Dr. Miller received the National Science Founda-
tion CAREER Award in 1996. Since 1997, he has been a Member
of the Neural Networks for Signal Processing Technical Committee
within the IEEE Signal Processing Society. He was Co-general chair
for the 2001 IEEE Workshop on Neural Networks for Signal Pro-
cessing, held in Falmouth, Massachusetts.
millerdj@ee.psu.edu


