
Journal of Mathematical Psychology 44, 62�91 (2000)

Akaike's Information Criterion and Recent
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In this paper we briefly study the basic idea of Akaike's (1973) information
criterion (AIC). Then, we present some recent developments on a new entropic
or information complexity (ICOMP) criterion of Bozdogan (1988a, 1988b,
1990, 1994d, 1996, 1998a, 1998b) for model selection. A rationale for ICOMP
as a model selection criterion is that it combines a badness-of-fit term (such
as minus twice the maximum log likelihood) with a measure of complexity of
a model differently than AIC, or its variants, by taking into account the
interdependencies of the parameter estimates as well as the dependencies
of the model residuals. We operationalize the general form of ICOMP based
on the quantification of the concept of overall model complexity in terms of
the estimated inverse-Fisher information matrix. This approach results in
an approximation to the sum of two Kullback�Leibler distances. Using the
correlational form of the complexity, we further provide yet another form of
ICOMP to take into account the interdependencies (i.e., correlations) among
the parameter estimates of the model. Later, we illustrate the practical utility
and the importance of this new model selection criterion by providing several
real as well as Monte Carlo simulation examples and compare its perfor-
mance against AIC, or its variants. � 2000 Academic Press

INTRODUCTION AND PURPOSE

In recent years, the statistical literature has placed more and more emphasis on
model evaluation criteria. The necessity of introducing the concept of model evalua-
tion has been recognized as one of the important technical areas, and the problem
is posed on the choice of the best approximating model among a class of competing
models by a suitable model evaluation criteria given a data set. Model evaluation
criteria are figures of merit, or performance measures, for competing models. In this
paper, we shall briefly study the basic underlying idea of Akaike's (1973) information
criterion AIC. Then, we introduce a new information-theoretic measure of complexity
criterion called ICOMP of Bozdogan (1987b, 1988a, 1988b, 1990, 1994d, 1996) as
a decision rule for model selection and evaluation.

Recently, based on Akaike's (1973) original AIC, many model-selection proce-
dures which take the form of a penalized likelihood (a negative log likelihood plus
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a penalty term) have been proposed (Sclove, 1987). For example, for AIC this form
is given by

AIC=&2 log L(%� )+2k, (1)

where L(%� ) is the maximized likelihood function, and k is the number of free
parameters in the model. The model with minimum AIC value is chosen as the best
model to fit the data.

In AIC, the compromise takes place between the maximized log likelihood, i.e.,
&2 log L(%� ) (the lack of fit component) and k, the number of free parameters
estimated within the model (the penalty component) which is a measure of com-
plexity or the compensation for the bias in the lack of fit when the maximum
likelihood estimators are used. In using AIC, according to Akaike (1987, p. 319),
the accuracy of parameter estimates is measured by a universal criterion, namely

AccuracyMeasure=E[log likelihood of the fitted ], (2)

where E denotes the expectation, since AIC is an unbiased estimator of minus twice
the expected log likelihood.

The development of ICOMP has been motivated in part by AIC, and in part by
information complexity concepts and indices. In contrast to AIC, we base the new
procedure ICOMP on the structural complexity of an element or set of random
vectors via a generalization of the information-based covariance complexity index of
van Emden (1971). For a general multivariate linear or nonlinear model defined by

Statistical Model=Signal+Noise (3)

ICOMP is designed to estimate a loss function

Loss=Lack of fit+Lack of parsimony+Pr ofusion of Complexity (4)

in several ways. This is achieved by using the additivity property of information
theory and the entropic developments in Rissanen (1976) in his final estimation
criterion (FEC) in estimation and model identification problems, as well as Akaike's
(1973) AIC and its analytical extensions in Bozdogan (1987a). In the loss function
(4), by the third term, profusion of complexity, we mean the interdependencies or the
correlations among the parameter estimates and the random error term of a model.

We propose a general approach to ICOMP. This approach, referred to as
ICOMP(IFIM), exploits the well-known asymptotic optimality properties of the
maximum likelihood estimators (MLEs), and use the information-based complexity
of the inverse-Fisher information matrix (IFIM) of a model. This is known as the
Crame� r�Rao lower bound (CRLB) matrix. This approach results in an approxima-
tion to the sum of two Kullback�Leibler distances. Using the correlational form of
the complexity, we further obtain another form of ICOMP, namely ICOMP(IFIM)R .
This form takes into account the interdependencies (i.e., correlations) among the
parameter estimates and the model residuals. Later we also give other versions of
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ICOMP based on the finite sampling distributions of the parameter estimates which
are useful in linear models that take account of complexity of both the parameter
structure and the random error structure of the model.

Each approach takes into account the accuracy of the estimated parameters of
the model and gives us the flexibility to investigate the influence of different error
covariance structures on the accuracy of the parameter estimates. Furthermore,
each formulation of ICOMP has the attractive feature of implicitly adjusting for the
number of parameters, the sample size, and controlling the risks of both insufficient
and overparameterized models.

Comparing with AIC, in ICOMP, complexity is viewed not as the number of
parameters in the model, but as the degree of interdependence among the com-
ponents of the model. In the literature, several authors (e.g., Rissanen, 1976) have
questioned whether the penalty term 2k in AIC is a sufficient penalty term in order
to prevent overspecialization and unnecessary complexity by the chosen model. In
ICOMP by defining complexity in terms of the degree of interdependence among the
components of the model, our objective is to provide a more judicious penalty term
than AIC and other AIC-type criteria, since counting and penalizing the number of
parameters in a model is necessary but by no means sufficient. Model complexity
in statistics depends intrinsically on many factors other than the model dimension,
such as the several forms of parameter redundancy, parameter stability, random
error structure of the model, and the linearity and nonlinearity of the parameters of
the model, to mention a few.

Therefore, in ICOMP, in addition to lack of fit, the lack of parsimony and the
profusion of complexity are data-adaptively adjusted by the entropic complexity of
the estimated IFIM across the competing alternative models as the parameter
spaces of these models are constrained in the model fitting process data-adaptively.

The basic approach is that a model with minimum ICOMP is chosen to be the
best model among all competing models. Other things equal, the best model is
the one which achieves the most satisfactory compromise between the accuracy of
the estimated model parameters and the interactions of the residuals. The general
principle is that, for a given level of accuracy, a simpler model (i.e., one with a small
covariance matrix of the parameter estimates and a small residual covariance matrix)
is preferable to a more complex one. Here small is used in the sense of minimum
variance.

Hence, the main purpose of this paper is to develop and present information-
theoretic ideas of a measure of overall model complexity in statistical estimation to
help provide new approaches relevant to statistical inference and inquiry.

Due to space limitations, the detailed proofs and derivations will not be shown
in this paper, except that we will only show why ICOMP(IFIM) is an approxima-
tion to the sum of two Kullback�Leibler distances and explain briefly the theory
behind this general approach. For more details, we will refer the reader to Bozdogan
(1987a, 1998a, 1998b), Bozdogan and Bearse (2000), and Bozdogan and Haughton
(1998).

We illustrate the practical utility and the importance of this new model selection
criterion by providing several real examples as well as a Monte Carlo simulation
example and compare its performance against AIC and AIC-type criteria.
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AKAIKE'S INFORMATION CRITERION (AIC)

In statistical model evaluation in choosing the best approximating model from
finite samples, we encounter two types of errors: (i) error caused by modeling, and
(ii) error done by estimation of the parameter vector %, where we also encounter
what is called the estimation error, namely the bias and variance. Let R denote the
overall risk, R(M) denote the risk of modeling, and R(E) denote the risk of estima-
tion. Then, we can define

Overall Risk=Risk of modeling+Risk of estimation.
(5)

R = R(M) + R(E)

Generally, when we are using model-selection criteria, we fit models under a
specified parametric probability distribution of the model. Often, during the course
of the analysis of data, we may discover that the particular form of the specified
parametric probability model may not be the appropriate distribution for the data
at hand. In such a case, we encounter a risk of modeling in terms of the correct
specification of the distribution of the model. As is well known, the correct specifi-
cation of the probability model is sufficient, but by no means a necessary condition.
Risk of estimation is encountered when we estimate the true parameter vector in the
restricted parameter space of the model. This risk is called the variance component
in estimation. When the true parameter vector is excluded from the restricted
parameter space of the model, then a bias is caused. Another way to interpret the
variance and bias in estimation is as follows. The variance can be interpreted as a
penalty for the size of the admitted parameter space of the model, and bias is a
penalty for the distance between the reduced or restricted parameter space and the
true parameter vector of the model. In model selection, our goal, then, is to minimize
the overall risk R. In this sense, model-selection criteria are the estimators of the
overall risk of a model under the maximum likelihood estimation and are called
figures of merit. Akaike, in a very important sequence of papers, including Akaike
(1973), (1974), and (1981), pioneered for us the field of statistical data modeling
and statistical model identification or evaluation. The school of such activity is now
called the Akaike school.

Kullback�Leibler Information as a Measure of Goodness of Fit

The rationale of Akaike's concept of choosing the best approximating model from
finite samples can be formulated as maximizing entropy, or equivalently minimizing
Kullback�Leibler (KL) (1951) information.

Consider a probability density function f (x | %*) of a continuous random variable
x of interest, and let f (x | %)#g(x | %) be the density function that specifies the
model or is an approximation to f (x | %*) with a given parameter vector %#%k=
(%1 , %2 , ..., %k) # Rk. We will measure the closeness, or the goodness-of-fit, of f (x | %*)
with respect to the model f (x | %)#g(x | %) by the generalized entropy (B) of
Boltzmann (1877) or Kullback�Leibler (1951) information (I ).
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We minimize the negentropy or the KL information,

I(%*; %)=&B(%*; %)

=Ex[log f (X | %*)&log g(x | %)]

=|
R

f (x | %*) log f (x | %*) dx&|
R

f (x | %*) log g(x | %) dx

=H(%*; %*)&H(%*; %), (6)

where H(%*; %*)#H(%*) is the usual negative entropy which is constant for a given
f (x | %*), and where H(%*; %) is the cross-entropy which determines the goodness of fit
of g(x | %) to f (x | %*). In (6), and throughout the paper log denotes the natural logarithm.

The quantity H(%*; %) plays a crucial role in the development of AIC and is of
basic importance in statistical information theory. The analytic properties of I(%*; %)
are extensively discussed by Kullback (1968). Here we list some of the important ones.

v I(%*; %)>0 whenever f (x | %*){ g(x | %),

v I(%*; %)=0, if and only if f (x | %*)= g(x | %) almost everywhere (a.e.) in the
possible range of x, when the model is essentially true,

v if X1 , X2 , ..., Xn are independent and identically distributed (i.i.d.) random
variables, then the KL information for the whole sample is In(%*; %)=nI(%*; %).

This last property says that if the random variables are independent, the KL infor-
mation is additive. We note that KL information quantity is perhaps the most
general of all information measures in the sense of being derivable from minimal
assumptions and it represents a relative measure of distance. But, we remark that
KL information is not a metric on the space of probability densities since it does
not satisfy the usual triangle inequality and it is not symmetric. Nevertheless, the
use of KL information as a loss function is justified since it is a measure of close-
ness, or the goodness-of-fit, and can be interpreted as the mean information for
discrimination in favor of f (x | %*) against g(x | %), and it will induce a Riemannian
metric on a parameter manifold under suitable conditions (Balasubramanian, 1996,
p. 8). As it stands, the KL information quantity in (6) is not directly observable or
estimable since it depends on the true distribution and consequently on the unknown
true and model parameters. Therefore, maximization of the mean log likelihood is
carried out, and asymptotically an unbiased estimator of the mean expected log
likelihood is searched by correcting the bias of the observed mean log likelihood.

AIC as a Bias Correcting Criterion

Since H(%*; %*)#H(%*) is a constant in (6), we only have to estimate the cross-
entropy in KL information. That is, we need only to estimate

H(%*; %)=Ex[log f (X | %)]=|
R

f (x | %*) log g(x | %) dx (7)

which is the expected log likelihood of the model 's pdf g(x | %) with respect to f (x | %*).

66 HAMPARSUM BOZDOGAN



Assuming that a sample of n observations x=(x1 , x2 , ..., xn) is used to provide an
estimate %� #%� (x) of %, maximizing the average or mean log likelihood is asymptotically
equivalent to minimizing the KL information I� (%*; %), where I� (%*; %) denotes an
estimator of I(%*; %) (e.g., ML estimator). Hence, asymptotically the maximum of

1
n

log L(x | %� )=|
R

f (x) log f (x) dx=H� (%*; %*) (8)

occurs when I� (%*; %)=0 almost everywhere. This happens if and only if f (x | %*)=
g(x | %) almost everywhere in the possible range of x, when the model is essentially
true, and that the estimated entropy H� (%*; %*) plays the role of an asymptote.
Hence, (8) is an important relationship between cross-entropy and the likelihood
which makes the use of the likelihood function clear. Since the average log
likelihood is an estimate of cross-entropy, when it is maximized, then the estimated
cross-entropy H� (%*; %� ) is minimized. The smaller H� (%*; %� ) is, the better the model
approximates the true model in terms of entropy. Hence, it is natural to compare
models by using the maximized average log likelihood. However, it is well known
that such a method produces estimation bias (or overestimation) when comparing
models with different sizes based on a finite number of observations, because the
same set of observations is used to estimate the parameters of the model which in
turn estimates H(%*; %� ).

Indeed in defining AIC, Akaike (1973, 1974) has exactly this consideration of
correction of the estimation bias by penalizing extra parameters when the MLEs
are used in estimating the expected log likelihood. Following Kitagawa and Gersch
(1996), Konishi and Kitagawa (1996), and Konishi (1998), we give the bias between
the average of the maximized log likelihood and the expected maximized log
likelihood as

b=Bias=EG _1
n

:
n

i=1

log f (xi | %� )&|
R

log f (x | %� ) dG(x)& , (9)

where the expectation is taken over the true distribution G=>n
i=1 dG(xi). Note

that this bias b is not equal to zero, since %� is a function of x, and the two instances
of %� are tied to different integration variables in (9). Therefore, the estimated bias
b� is generally obtained as an asymptotic bias and as an approximation to b. So,
if the bias b can be estimated by appropriate procedures, then we can define an
information criterion based on the bias corrected log likelihood. Hence, we have the
following.

Definition 1. A bias corrected information criterion (BCIC) is defined by

BCIC=&2n {1
n

:
n

i=1

log f (xi | %� )&b=
=&2 :

n

i=1

log f (xi | %� )+2nb

=&2 log L(%� )+2nb. (10)
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This definition is important since a large area of research in statistics deals with
the finite sample properties of linear and nonlinear (MLEs) in statistical modeling.
For example, in nonlinear models, say, in nonlinear regression, these estimators are
generally biased of the true model parameter values. In fact, the bias, in general,
is of order O(n&1), where n is the sample size. Therefore, it will be very useful in
different model specific settings to have exact formulas available for calculating the
bias, rather than ignoring the bias in practice with a weak justifcation that it is
negligible when compared to the standard errors of the parameter estimates. For
example, in the usual multiple regression case the exact bias b of the log likelihood
is calculated as

b=Bias=EG _1
n

:
n

i=1

log f (xi | %� )&|
R

log f (x | %� ) dG(x)&=
n(k+1)
n&k&2

. (11)

In general, the bias expression given in (9) needs to be derived under other model
specific settings. In some cases it is difficult, if not impossible, to derive the expres-
sion in (9) in closed form. In cases when we do not have exact formulas available
for calculating the bias, then one can utilize the bootstrap bias in BCIC in (10).
This idea at the outset is appealing, but it is not practical in the sense that such an
approach becomes too costly to compute. It becomes very computer intensive and
does not provide us a simple yet practical just-in-time model selection criterion.

Akaike (1973), in deriving his AIC, did not ignore this bias in estimation, but
went to asymptotics too quickly and under the assumptions that: (i) the parametric
model is estimated by the method of maximum likelihood, and (ii) the specified parametric
family of p.d.f.'s contains the true distribution (i.e., g(x)= f (x | %*) for some %* # 3,
the parameter space), he approximated this bias to be

b=Bias=
k
n

. (12)

Hence:

Definition 2. Akaike's (1973) information criterion (AIC) is defined by

AIC=&2 :
n

i=1

log f (xi | %� )+2k

=&2 log L(%� )+2k. (13)

Note that the bias in AIC is approximated by the number of parameters which
is constant and has no variability. If we use the result in (11) for the normal multiple
regression model then for small samples, we can define the finite sample corrected AIC,
namely, AICc , originally proposed by Sugiura (1978) and later used by Hurvich
and Tsai (1989) given by

AICc=n log(2?)+n log(_̂2)+n+2
n(k+1)
n&k&2

, (14)
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where _̂2 is the variance of the residuals, and k is the number of predictors in the
regression model. This implies that AICc in (14) in the normal regression model
achieves bias reduction exactly under the assumption that the true distribution
belongs to the specified parametric family (Konishi 1998, p. 24).

Following Takeuchi (1976) and Shibata (1989), in practice we are interested in
choosing a model among several different parametric models or non-nested models.
In such cases, we can relax the assumption of Akaike. That is, we assume that the
true distribution does not belong to the specified parametric family of p.d.f.'s. In other
words, if the parameter vector % of the distribution is unknown and is estimated by
the maximum likelihood method, then it is not any longer true that the average of
the maximized log likelihood converges to the expected value of the parameterized
log likelihood. That is,

1
n

log L(x | %� )=
1
n

:
n

i=1

log f (xi | %� )�% Ex[log f (X | %� )]. (15)

In this case, the bias, b, between the average of the maximized log likelihood and the
expected maximized log likelihood is given by

b=Bias=EG _1
n

:
n

i=1

log f (xi | %� )&|
R

log f (x | %� ) dG(x)&=
1
n

tr(F&1 R)+O(n&1),

(16)

where F is the inverse Fisher information matrix in inner product or Hessian form,
and R is the outer product form of the Fisher information matrix both with dimen-
sion (k_k). We note that tr(F&1R) is the well-known Lagrange-multiplier test
statistic. See, for example, Takeuchi (1976), Hosking (1980), and Shibata (1989).
Thus, we have:

Definition 3. Generalized Akaike's (1973) information criterion (GAIC) is
defined by

GAIC=&2 :
n

i=1

log f (xi | %� )+2tr(F� &1R� )

=&2 log L(%� )+2tr(F� &1R� ). (17)

In the literature of model selection, GAIC is also known as Takeuchi's (1976)
information criterion (TIC), or AICT .

When the probability model is correctly specified and certain regularity condi-
tions hold from White (1982, p. 6) we have:

Theorem 1 (Information Matrix Equivalence Test). If the fitted probability
model f (x)#f (x | %*) for %* # 3, then %*=%k* and F(%k*)=R(%k*), so that

Cov(%k*)=F&1(%k*) R(%k*) F&1(%k*)

=F&1(%k*)=R&1(%k*). (18)

69AKAIKE'S INFORMATION CRITERION



The basic idea underlying the Information Matrix Equivalence Test (IMET ) is
that it relies on the equality between the two forms of the Fisher information matrix
which are useful to check the misspecification of a model. So, if F(%k*)=R(%k*),
then the bias reduces to

b=Bias=
1
n

tr(F&1R)+O(n&2)=
1
n

tr(Ik)+O(n&2)

=
1
n

k+O(n&2), (19)

which gives AIC in (13) as a special case. For more details on these, we refer the
readers to Bozdogan (1998a, 1998b), Kitagawa and Gersch (1996), Konishi and
Kitagawa (1996), and Konishi (1998).

We interpret the above results as follows. For AIC in (13), the first term provides
us with a measure of bias or model inaccuaracy (badness of fit or lack of fit) when
the maximum likelihood estimators of the parameters of the model are used. The
second term serves a penalty for the increased unreliability or compensation for the
bias in the first term when additional free parameters are included in the model.
Thus, when there are several competing models, the parameters within the models
are estimated by the method of maximum likelihood and the values of AICs are
computed and compared to find a model with the minimum value of AIC. This
procedure is called the minimum AIC procedure and the model with the minimum
AIC is called the minimum AIC estimate (MAICE) and is chosen to be the best model.
As is well known, as the sample size gets large, the first term of AIC increases but
the penalty term 2k does not, since it is fixed. This means that the penalty term has
little effect if the sample size n is large. For this reason, objections have been raised
that minimizing AIC does not produce an asymptotically consistent estimate of
model order (Bhansali and Downham, 1977; Schwarz, 1978; Woodroofe, 1982; and
others). However, we should note that consistency is an asymptotic property, and
any real problem has a finite sample size n (Sclove, 1987). Therefore, this charge on
AIC should not be exaggerated (Hannan, 1986; Forster, 1999). In general, the
application of AIC emphasizes the comparison of goodness of fit of the competing
models while taking into account the principle of parsimony. Certainly AIC
provides an answer to the question of how much improvement in fit an additional
parameter should make before it is included in the model and on what scale that
improvement should be measured.

Of course, important fundamental work like this answers some questions and
raises many others. Without violating Akaike's main setup, using the device of
effective degrees of freedom (df ), i.e., correcting for the df (see, e.g., Cox, 1984),
Bozdogan (1987a) extended AIC in several ways to improve and modify AIC to
make it consistent. For more on the general theory, consistency, inferential error
rates, and many applications of AIC, consistent Akaike's information criterion
(CAIC ), and consistent AIC with Fisher Information (CAICF ), we refer the readers
to Bozdogan (1987a, 1994a�1994c).
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We interpret GAIC similar to AIC with the exception that the penalty term is
now 2tr(F� &1R� ). We use GAIC when we are in doubt of whether the class of
potential models are correctly specified or not by testing the relationship between
the two forms of the estimated information matrices. In other words, we use GAIC
to guard ourselves against misspecifying a model. Furthermore, one should use
GAIC to guard against high skewness and kurtosis in the data. In the case of high
skewness and kurtosis, the penalty in AIC is not adequate to compensate for the
bias in the maximum likelihood estimates of the parameters of a model. Also, in
equivalent models, that is, models with equivalent structures having the same
number of parameters, AIC will not be able to distinguish one model from the
other due to the fact that 2k is fixed and has no variability. Therefore, by taking
the higher order bias correction terms into account, we may obtain more refined
criteria. However, as we discussed above, in some cases it is difficult, if not impossible,
to obtain the bias of a log likelihood in closed form.

This brings us to another way to derive information theoretic model selection
criteria, namely, to ICOMP criterion of Bozdogan (1988a, 1988b, 1990, 1994d), to
provide a more judicious penalty term and to balance the overfitting and underfitting
risks of a model than that of AIC. Indeed, this new approach provides an entropic
general data-oriented or what we also call a data-adaptive penalty functional, which
is random and is an improvement over a fixed choice of penalty functional such as
in AIC, or its variants.

RECENT DEVELOPMENTS IN INFORMATION COMPLEXITY

In this part of the paper, we introduce a new model selection criterion:

v To measure the fit between multivariate structural models and observed
data as an example of the application of the covariance complexity measure.

v To allow the measurement of dependency between the random variables.

v To establish and provide a trade-off between the fit and the interaction of
the parameter estimates and the interaction of the residuals of a model via the
measure of complexity of their respective covariances.

v To remove from the researcher any need to consider the parameter dimen-
sion explicitly, since the bias in AIC is approximated by the number of parameters
which is constant and has no variability, and

v To provide a more judicious penalty term than AIC, or AIC-type criteria to
balance the overfitting and underfitting risks of a model.

The Concept of Complexity and Complexity of a System

Complexity is a general property of statistical models that is largely independent
of the specific content, structure, or probabilistic specification of the models. In the
literature, the concept of complexity has been used in many different contexts. In
general, there is not a unique definition of complexity in statistics, since the notion
is elusive according to van Emden (1971, p. 8). Complexity has many faces, and it
is defined under many different names such as those of Kolmogorov complexity (Cover,
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Gacs, and Gray, 1989), Shannon complexity (Rissanen, 1989), and Stochastic com-
plexity (Rissanen, 1987, 1989) in information theoretic coding theory, to mention
a few. For example, Rissanen (1986, 1987, 1989), similar to Kolmogorov (1983),
defines complexity in terms of the shortest code length for the data that can be
achieved by the class of models, and calls it Stochastic complexity (SC). The Monash
school (e.g., Wallace and Freeman, 1987, Wallace and Dowe, 1993, Baxter, 1996)
define complexity in terms of minimum message length (MML), which is based on
evaluating models according to their ability to compress a message containing the
data. In our case, complexity is defined in terms of the following simple system
theoretic definition which later motivates a statistically defined measure based on
entropy maximization.

Definition 4. Complexity of a system (of any type) is a measure of the degree
of interdependency between the whole system and a simple enumerative composi-
tion of its subsystems or parts.

We note that this definition of complexity is different from the way it is now
frequently used in the literature to mean the number of estimated parameters in a
model. For our purposes, the complexity of a model is most naturally described in
terms of interactions of the components of the model and the information required
to construct the model in a way it is actually defined. Therefore, the notion of com-
plexity can be best explained if we consider the statistical model arising within the
context of a real world system. For example, the system can be physical, biological,
social, behavioral, economic, etc., to the extent that the system responses are
considered to be random.

As we defined in Definition 4, the complexity of a system (of any type) is a measure
of the degree of interdependency between the whole system and a simple enumerative
composition of its subsystems or parts. Naturally, we are interested in the amount
by which the whole system, say, S, is different from the composition of its com-
ponents. If we let C denote any real-valued measure of complexity of a system S,
then C(S) will measure the amount of the difference between the whole system and
its decomposed components. Using the information theoretic interpretation, we
define this amount to be the discrimination information of the joint distribution of
the probability model at hand against the product of its marginal distributions.
Discrimination information is equal to zero if the distributions are identical and is
positive otherwise (van Emden 1971, p. 25).

Thus, to quantify the concept of complexity in terms of a scalar index, we only
have to express the interactions in a mathematical definition. We shall accomplish
this by appealing to information theory since it possesses several important analytical
advantages over the conventional procedures, such as those of additivity and con-
straining properties, and allowance to measure dependencies.

For more details on the system theoretic definition of complexity as background
material, we refer the reader to van Emden (1971, pp. 7 and 8), and Bozdogan (1990).

Initial Definition of Information Theoretic Covariance Complexity

For a random vector, we define the complexity as follows.
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Definition 5. The complexity of a random vector is a measure of the interaction
or the dependency between its components.

We consider a continuous p-variate distribution with joint density function f (x)
= f (x1 , x2 , ..., xp) and marginal density functions f j (xj), j=1, 2, ..., p. Following
Kullback (1968), Harris (1978), Theil and Fiebig (1984), and others, we define the
informational measure of dependence between random variables x1 , x2 , ..., xp by

I(x)#I(x1 , x2 , ..., xp)=Ef _log
f (x1 , x2 , ..., xp)

f1(x1) f2(x2) } } } fp(xp)&
=|

�

&�
} } } |

�

&�
f (x1 , x2 , ..., xp) log

f (x1 , x2 , ..., xp)
f1(x1) f2(x2) } } } fp(xp)

dx1 } } } dxp , (20)

where I is the Kullback�Leibler (1951) information divergence against independence.
I(x) in (20) is a measure of expected dependency among the component variables,
which is also known as the expected mutual information or the information proper.

v Property 1. I(x)#I(x1 , x2 , ..., xp)�0, i.e., the expected mutual information
is nonnegative.

v Property 2. f (x1 , x2 , ..., xp)= f1(x1) f2(x2) } } } fp(xp) for every p-tuple
(x1 , x2 , ..., xp), i.e., if and only if the random variables x1 , x2 , ..., xp are mutually
statistically independent, then the quotient in (20) is equal to unity, and its logarithm
is then zero. Hence, I(x)#I(x1 , x2 , ..., xp)=0. If it is not zero, this implies a
dependency.

We relate the KL divergence in (20) to Shannon's (1948) entropy by the important
identity

I(x)#I(x1 , x2 , ..., xp)= :
p

j=1

H(xj)&H(x1 , x2 , ..., xp), (21)

where H(xj) is the marginal entropy, and H(x1 , x2 , ..., xp) is the global or joint
entropy. Watanabe (1985) calls (21) the strength of structure and a measure of inter-
dependence. We note that (21) is the sum of the interactions in a system with
x1 , x2 , ..., xp as components, which we define to be the entropy complexity of that
system. This is also called the Shannon Complexity (see Rissanen, 1989). If there
exists more interdependency in the structure, we will see that the more markedly
the sum of the marginal entropies will be. Consequently, this will dominate the joint
entropy. If we wish to extract fewer and more important variables, it will be desirable
that they be statistically independent, because the presence of interdependence means
redundancy and mutual duplication of information contained in these variables
(Watanabe, 1985).

The relation in (21) can easily be generalized to finding the interaction between
any subset of variables also. Suppose we consider two sets of random variables
(x1 , x2 , ..., xp) and (xp+1 , ..., xp+q). For the interaction we have
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I((x1 , x2 , ..., xp), (xp+1 , ..., xp+q))

=H(x1 , x2 , ..., xp)+H(xp+1 , ..., xp+q)&H(x1 , x2 , ..., xp+q). (22)

Now, to define the information-theoretic measure of complexity of a multivariate
distribution, we let f (x)#f (x1 , x2 , ..., xp) be a multivariate normal density function
with a p-dimensional mean vector + and ( p_p) positive definite (pd) covariance
matrix 7. After some work, we then find for the total amount of interaction:

I(x)#I(x1 , x2 , ..., xp)= :
p

j=1

H(xj)&H(x1 , x2 , ..., xp)

= :
p

j=1
_1

2
log(2?)+

1
2

log(_2
j )+

1
2&&

p
2

log(2?)&
1
2

log |7|&
p
2

. (23)

This reduces to

C0(7)= 1
2 :

p

j=1

log(_2
j )& 1

2 log |7|, (24)

where _2
j is the j th diagonal element of 7 and p is the dimension of 7. Note that

C0(7)=0 when 7 is a diagonal matrix (i.e., if the variates are linearly independent).
C0(7) is infinite if any one of the variables may be expressed as a linear function
of the others ( |7|=0). If %=(%1 , %2 , ..., %k) is a normal random vector with covariance
matrix equal to 7(%), then C0(7(%)) is simply the KL distance between the multivariate
normal density of % and the product of the marginal densities of the components of %.
As pointed out by van Emden (1971), C0 is not an effective measure since it depends
upon marginal and joint distributions of the random variable and it is not invariant
under orthonormal transformations.

Definition of Maximal Covariance Complexity

Since we defined the complexity as a general property of statistical models, we
consider that the general definition of complexity of a covariance matrix 7 should
be independent of the coordinates of the original random variables x1 , x2 , ..., xp

associated with the variances _2
j , j=1, 2, ..., p. As it is, C0(7) in (24) is coordinate

dependent. However, to characterize the maximal amount of complexity of 7, we
can relate the general definition of complexity of 7 to the total amount of interac-
tion or C0(7) in (24). We do this by recognizing the fact that the maximum of (24)
under orthogonal transformation of the coordinate system may reasonably serve as
the measure of complexity of 7. This corresponds to observing the interaction
between the variables under the coordinate system that clearly represents it in terms
of the measure I(x1 , x2 , ..., xp)#C0(7).

So, to improve on (24), we have the following definition.
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Definition 6. A maximal information theoretic measure of complexity of a
covariance matrix 7 of a multivariate distribution is

C1(7)=max
T

C0(7)

=
p
2

log _tr(7)
p &&

1
2

log |7| , (25)

where the maximum is taken over orthonormal transformation T of the overall
coordinate systems x1 , x2 , ..., xp .

C1(7) in (25) is an upper bound to C0(7) in (24), and it measures both inequality
among the variances and the contribution of the covariances in 7 (van Emden, 1971,
p. 63). Such a measure is very important in constructing model selection criteria to
determine the strength of model structures, similarity, dissimilarity, and high-order
correlations within the model. C1(7) is independent of the coordinate system
associated with the variances _2

j , j=1, 2, ..., p. Furthermore, if, for example, one of
the _2

j 's is equal to zero, then C0(7) in (24) takes the value �&�, which is
indeterminate, whereas C1(7) in (25) has the value � (infinity) which has a mathe-
matical meaning. Also, C1(7) has rather attractive properties. Namely, C1(7) is
invariant with respect to scalar multiplication and orthonormal transformation.
Further, C1(7) is a monotonically increasing function of the dimension p of 7.

Following the results in van Emden (1971, p. 61) and Ljung and Rissanen (1978,
p. 1421), and filling the gap in Maklad and Nichols (1980, p. 82), the proof and the
properties of C1(7) in (25) are shown in detail by Bozdogan (1990, 1998a, 1998b).

The contribution of the complexity of the model covariance structure is that it
provides a numerical measure to assess parameter redundancy and stability uniquely
all in one measure. When the parameters are stable, this implies that the covariance
matrix should be approximately a diagonal matrix. This concept of a stable param-
eter is equivalent to the simplicity of a model covariance structure defined in Bozdogan
(1988a, 1988b). Indeed, C1(7) penalizes the scaling of the ellipsoidal dispersion,
and the importance of circular distribution has been taken into account. It is
because of these reasons that we use C1(7) without using any transformations of
7 and that we do not discard the use of C0(7).

Let *1 , *2 , ..., *p be the eigenvalues of 7, then tr(7)�p=*� a=1�p � p
j=1 *j is the

arithmetic mean of the eigenvalues of 7, and |7|1�p=*� g=(> p
j=1 *j)

1�p is the
geometric mean of the eigenvalues of 7. Then the complexity of 7 can be written
as

C1(7)=
p
2

log(*� a �*� g). (26)

Hence, we interpret the complexity as the log ratio between the arithmetic mean
and the geometric mean of the eigenvalues of 7. It measures how unequal the eigen-
values of 7 are, and it incorporates the two simplest scalar measures of multivariate
scatter, namely the trace and the determinant into one single function. Indeed,
Mustonen (1997) in a recent paper studies the fact that the trace (sum of variances)
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and the determinant of the covariance matrix 7 ( generalized variance) alone do not meet
certain essential requirements of variability in the multivariate normal distribution.

In general, large values of complexity indicate a high interaction between the
variables, and a low degree of complexity represents less interaction between the
variables. The minimum of C1(7) corresponds to the least complex structure. In
other words, C1(7) � 0 as 7 � I, the identity matrix. This establishes a plausible
relation between information-theoretic complexity and computational effort. Further-
more, what this means is that the identity matrix is the least complex matrix. To
put it in statistical terms, orthogonal designs, or linear models with no colinearity,
are the least complex, or most informative, and the identity matrix is the only
matrix for which the complexity vanishes. Otherwise, C1(7)>0, necessarily.

Geometrically, C1(7) preserves all inner products, angles, and lengths under
orthogonal transformations of 7. An orthogonal transformation T indeed exists
which corresponds to a sequence of plane rotations of the coordinate axes to
equalize the variances. This can be achieved using Jacobi 's iterative method or the
Gauss�Seidel method (see, Graham, 1987).

We note that the system correlation matrix can also be used to describe com-
plexity. If we wish to show the interdependencies (i.e., correlations) among the
parameter estimates, then we can transform the covariances to correlation matrices
and describe yet another useful measure of complexity. Let R be the correlation
matrix obtained from 7 by the relationship R=4_74_ , where 4_=diag(1�_1 , ..., 1�_p)
is a diagonal matrix whose diagonal elements equals 1�_j , j=1, 2, ..., p. From (25),
we have C1(R)=&1�2 log |R|#C0(R). The diagonal operation of a covariance
matrix 7 always reduces the complexity of 7, and C1(R)#C0(R) takes into
account the interdependencies (correlations) among the variables. For simplicity,
the C0 measure based on the correlation matrix R will be denoted by CR and C0(R)
is written as CR(7) for notational convenience, since R is obtained from 7. Obviously,
CR is invariant with respect to scaling and orthonormal transformations and subse-
quently can be used as a complexity measure to evaluate the interdependencies
among parameter estimates. Note that if |R|=1, then I(x1 , x2 , ..., xp)=0 which
implies the mutual independence of the variables x1 , x2 , ..., xp . If the variables are
not mutually independent, then 0<|R|<1 and I(x1 , x2 , ..., xp)>0. In this sense
I(x) in (20) or (21) can also be viewed as a measure of dimensionality of model
manifolds.

Next, we develop the information complexity ICOMP(IFIM) approach to model
evaluation based on the maximal covariance complexity C1( v), and CR( v).

ICOMP: A NEW INFORMATION MEASURE OF COMPLEXITY
FOR MODEL SELECTION

In this section, we introduce a new model-selection criterion called ICOMP(IFIM)
to measure the fit between multivariate normal linear and�or nonlinear structural
models and observed data as an example of the application of the covariance com-
plexity measure defined in the previous section. ICOMP(IFIM) resembles a penalized
likelihood method similar to AIC and AIC-type criteria, except that the penalty
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depends on the curvature of the log likelihood function via the scalar C1( v) complexity
value of the estimated IFIM.

ICOMP as an Approximation to the Sum of Two Kullback�Leibler Distances

Definition 7. For a multivariate normal linear or nonlinear structural model
we define the general form of ICOMP(IFIM) as

ICOMP(IFIM)=&2 log L(%� )+2C1(F� &1(%� )), (27)

where C1 denotes the maximal information complexity of F� &1, the estimated IFIM.

To show this, suppose we consider a general statistical model of the form given
by

y=m(%)+=, (28)

where y=( y1 , y2 , ..., yn) is an (n_1) random vector of response values in Rn ; % is
a parameter vector in Rk ; m(%) is a systematic component of the model in Rn,
which depends on the parameter vector %, and its deterministic structure depends
on the specific model considered, e.g., in the usual linear multiple regression model
m(%)=X%, where X is an (n_(k+1)) matrix of nonstochastic or constant design
or model matrix with k explanatory variables so that rank(X)=k+1=q; and = is
an (n_1) random error vector with

E(=)=0, and E(==$)=7= . (29)

We denote %* to be vector of parameters of the operating true model and % to be
any other value of the vector of parameters. Let f (y; %) denote the joint density
function of y given %. Let I(%*; %) denote the KL distance between the densities
f (y; %*) and f (y; %). Then, since yi are independent, i=1, 2, ..., n, we have

I(%*; %)=|
R n

f (y; %*) log _ f (y; %*)
f (y; %) & dy

= :
n

i=1
| fi ( yi ; %*) log[ f i ( yi ; %*)] dy i& :

n

i=1
| fi ( yi ; %*) log[ fi ( y i ; %)] dy i ,

(30)

where fi , i=1, 2, ..., n are the marginal densities of the yi .
Note that the first term in (30) is the usual negative entropy H(%*; %*)#H(%*)

which is constant for a given fi ( yi ; %*). The second term is equal to

& :
n

i=1

E[log fi ( yi ; %)], (31)
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which can be unbiasedly estimated by

& :
n

i=1

log fi ( y i ; %)=&log L(% | yi), (32)

where log L(% | yi) is the log likelihood function of the observations evaluated at %.
Given a model M where the parameter vector is restricted, a maximum likelihood
estimator %� M can be obtained for % and the quantity

&2 :
n

i=1

log fi ( y i ; %� M )=&2 log L(%� M)

evaluated. This will give us the estimation of the first KL distance which is reminiscent
to the derivation of AIC. On the other hand, a model M gives rise to an asymptotic
covariance matrix Cov(%� M )=7(%� M) for the MLE %� M . That is,

%� M tN(%*, 7(%� M)#F&1(%� M)). (33)

Now invoking the C1( v) complexity on 7(%� M) from the previous section can be
seen as the KL distance between the joint density and the product of marginal
densities for a normal random vector with covariance matrix 7(%� M) via (21), maxi-
mized over all orthonormal transformations of that normal random vector (see
Bozdogan, 1990). Hence, using the estimated covariance matrix, we define ICOMP
as the sum of two KL distances given by

ICOMP(IFIM)=&2 :
n

i=1

log fi ( y i ; %� M )+2C1(7� (%� M))

=&2 log L(%� M)+2C1(F� &1(%� M)). (34)

The first component of ICOMP(IFIM) in (34) measures the lack of fit of the
model, and the second component measures the complexity of the estimated IFIM,
which gives a scalar measure of the celebrated Crame� r�Rao lower bound matrix
which takes into account the accuracy of the estimated parameters and implicitly
adjusts for the number of free parameters included in the model.

This approach has several rather attractive features. If F&1
jj (%K) is the j th diagonal

element of the IFIM, from Chernoff (1956), we know that F&1
jj ( v) represents the

variance of the asymptotic distribution of - n (%� j&%j), for j=1, ..., K. Considering
a subset of the K parameters of size k, we have that

F&1
jj (%K)�F&1

jj (%k). (35)

Behboodian (1964) explains that the inequality (35) means that the variance of the
asymptotic distribution of - n (%� j&%j) can only increase as the number of unknown
parameters is increased. The use of the C1(F� &1(%� )) in the information-theoretic
model evaluation criteria takes into account the fact that as we increase the number
of free parameters in a model, the accuracy of the parameter estimates decreases. As
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preferred according to the principle of parsimony, ICOMP(IFIM) chooses simpler
models that provide more accurate and efficient parameter estimates over more
complex, overspecified models. Further, we note that in (34), the trace of IFIM in
the complexity measure involves only the diagonal elements analogous to variances
while the determinant involves also the off-diagonal elements analogous to covariances.
Therefore, ICOMP(IFIM) contrasts the trace and the determinant of IFIM, and this
amounts to a comparison of the geometric and arithmetic means of the eigenvalues of
IFIM as shown in (26). The greatest simplicity, that is zero complexity, is achieved
when IFIM is proportional to the identity matrix, implying that the parameters are
orthogonal and can be estimated with equal precision. In this sense, parameter
orthogonality, several forms of parameter redundancy, and parameter stability are all
taken into account.

We note that ICOMP(IFIM) in (34) penalizes the bad scaling of the parameters. It
is important to note that good conditioning of the information matrix needs a simple
structure, but the latter does not necessarily imply the former. For example, consider an
information matrix which is diagonal with some diagonal elements close to zero. In this
case, the corresponding correlation matrix is an identity matrix, which is the simplest.
But, the information matrix is poorly conditioned. Therefore, the analysis based on the
correlation matrix ignores an important characteristic, namely, the ratios of the
diagonal elements in the information matrix, or the scale of these components.

If scale invariance is an issue in model selection enterprise, then one can use the
correlational form of IFIM, that is, F&1

R (%� )=D&1�2
F&1 F&1D&1�2

F&1 , and get

ICOMP(IFIM)R=&2 log L(%� )+2C1(F� &1
R (%� )). (36)

Parameter transformation can reduce the complexity measure based on the correla-
tion structure, but it can increase the complexity measure based on the maximal
complexity. This occurs because the reduction in the correlation does not imply the
reduction of scaling effect. Indeed, the reduction in the correlation may even make
scaling worse as we described above. In this sense, ICOMP(IFIM) may be better
than ICOMP(IFIM)R , especially in nonlinear models, since it considers both of
these effects in one criterion. For more on the above, see, e.g., Chen (1996), Chen
and Bozdogan (1999), and Bozdogan(1998a, 1998b).

With ICOMP(IFIM), complexity is viewed not as the number of parameters in
the model, but as the degree of interdependence (i.e., the correlational structure among
the parameter estimates). By defining complexity in this way, ICOMP(IFIM) provides
a more judicious penalty term than AIC, Rissanen's (1978, 1986) MDL, Schwarz's
(1978) SBC (or BIC), and Bozdogan's (1987a) CAIC. The lack of parsimony is
automatically adjusted by C1(F� &1(%� )) across the competing alternative portfolio of
models as the parameter spaces of these models are constrained in the model selec-
tion process.

We give the relative reduction of complexity (RRC) in terms of the estimated
IFIM as

RRC=
C1(F� &1(%� ))&C1(F� &1

R (%� ))

C1(F� &1(%� ))
. (37)
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The percent relative reduction of complexity is then given by

PRRC=
C1(F� &1(%� ))&C1(F� &1

R (%� ))

C1(F� &1(%� ))
_1000. (38)

The RRC or the PRRC, gives us a yard stick of how to determine which models
are indeed the best fitting model(s) across a portfolio of alternative models. Indeed,
the interpretation of RRC or PRRC is that they both measure heteroscedastic com-
plexity plus a correlational complexity of the model.

As discussed in Morgera (1985, p. 612) all the complexity of a covariance matrix
is manifasted in the off-diagonal elements only; whereas, the matrices R which are
not in Toeplitz form are not variance equalized.

There are other formulations of ICOMP which are based on the covariance
matrix properties of the parameter estimates of a model starting from their finite
sampling distributions. These versions of ICOMP are useful in linear models. For
example, for a multivariate normal linear or nonlinear structural model, under the
assumption that the estimation of the parameters in the expectation is independent
of the estimation of the covariance structure of the errors, the model complexity is
defined as

C1(7� model)=C1(7� %)+C1(7� =). (39)

Then ICOMP is defined as

ICOMP=&2 log L(%� )+2[C1(7� %)+C1(7� e)]. (40)

The first component of ICOMP in (40) measures the lack of fit, the second compo-
nent measures the complexity of the covariance matrix of the parameter estimates
of a model, and the third component measures the complexity of the covariance
matrix of the model residuals. We note that if the random error = is assumed to be
normally distributed and spherical, i.e., if =tN(0, _2 I), then the third component
of ICOMP in (40) will be zero in the usual multiple regression models, since the
covariance matrix of the projection matrix in local coordinates is _2In&q , and we
also note that the complexity of _2In&q is zero. In other words C1(_2In&q)=0. This
state of affairs is due to the dubious assumption that the random errors have _2I
as their covariance matrix.

To take the scale invariancy into account and to show the interdependencies (i.e.,
correlations) among the parameter estimates, we can further define the correlational
form of ICOMP in (40) and get

ICOMPR=&2 log L(%� )+2[CR(R� %)+CR(R� e)]. (41)

For more details, we refer the readers to Bozdogan (1998a, 1998b).
Next, we give our numerical examples to illustrate some of the points discussed

in this paper and conclude with a discussion of the comparison of information
criteria.

80 HAMPARSUM BOZDOGAN



NUMERICAL EXAMPLES

In this section, we give several numerical examples to demonstrate the practical
utility of the proposed model selection criteria.

Example 1. Improving Parameter Stability. Parameter stability plays an
important role in statistical modeling. The concept of parameter stability was
proposed by Ross (1970). The basic idea is that the parameters characterizing a
model should be chosen so that they are affected little by changes in the remaining
parameters. As we discussed before, parameter stability implies that the covariance
matrix of the parameters or the parameter estimates should approximate a diagonal
matrix.

One important technique for improving parameter stability is parameter transforma-
tion. To illustrate the impact of parameter transformation on parameter stability, we
consider the example given in Chen (1996, p. 28) and Chen and Bozdogan (1998)
which was originally motivated by Ross (1970) and later was reconsidered by Seber
and Wild (1989) in a simulation study.

The proposed simple nonlinear regression model is

M1 : y=;(1&e#x)+= (42)

with the simulated data given in Table 1.
The model is fitted with estimated error variance _̂2=0.002146. The contour of

the 95 and 990 confidence regions of the parameter estimates of model M1 is
shown in Fig. 1. We note that this contour is highly curved, which implies a high
intercorrelation between the estimates of ; and #.

We consider two sets of parameter transformations of model M1 .

Transformation 1: %1=;#, %2=#. The corresponding model is

M2 : y=
%1

%2

(1&e%2x)+=. (43)

The corresponding contour of the 95 and 990 confidence regions of the parameter
estimates of model M2 is shown in Fig. 2.

The parameter transformation has turned a highly curved contour into one close
to an ellipsoid. But, the axes of this contour are not parallel to the coordinate axes,
so %1 and %2 are still highly correlated to each other.

TABLE 1

Simulated Data

y 0.0638 0.1870 0.2495 0.3207 0.3356 0.5040 0.5030 0.6421 0.6412 0.5678

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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FIG. 1. Exact confidence regions of model M1 .

Transformation 2. :1=;#, :2=;#&0.35#. The corresponding model becomes

M3 : y=
0.35:1

:1&:2 \1&exp \&
(:1&:2)x

0.35 +++=. (44)

The corresponding contour of the 95 and 990 confidence regions of the parameter
estimates of model M3 is shown in Fig. 3.

This set of parameter transformations has turned the curved contour into a
contour which is close to an ellipsoid with axes nearly parallel to the coordinate
axes of the new parameters.

We note that all three models fit data equally well in the sense that they have the
same estimated error variance _̂2=0.002146, or say, they reach the same likelihood
function value. But we further note that the qualities of these models are significantly
different due to the shape of the contours. To see the evaluation of parameter stabilities,
complexity measures for all three models are computed and summarized in Table 2.

FIG. 2. Exact confidence regions of model M2 .
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FIG. 3. Exact confidence regions of model M3 .

Examining the results in Table 2, we see that among the three models, model M3

has the simplest covariance structure. Moreover, since all three models have an
equal lack of fit, ICOMP criteria will simply select the simplest model, which is
model M3 .

This example demonstrates the importance of parameter transformation in reduc-
ing model complexity. Although the complexity can be seen visually through the
shape of the contours, such contours will not be available to the researcher when
the dimension of the parameter space is larger than two. In this case, the C1 and
CR measures provide useful tools to evaluate complexity. Further, in this example
we also note that the original parameters and the transformed parameters have the
same dimension. In general, the transformed parameters may not necessarily have
the same dimension as the original parameters. In this case, it makes sense to
consider the situation where the transformed parameters have a higher dimension
as compared to the original parameters, which significantly reduces the lack of fit
as the dimension of the parameters increases.

Example 2. Subset Selection of Variables in Multivariate Regression. In many
applications in behavioral and social sciences, econometric modeling, environmental
sciences, and many other fields, it is often the case that several dependent variables are
simultaneously considered as one target with a set of independent variables. Often

TABLE 2

Complexity of the Transformed Models

Model C1(7� %) CR(7� %)

M1 7.7528 2.1917
M2 7.2076 1.3702
M3 4.9268 0.00036
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predicting all the target dependent variables simultaneously from the set of inde-
pendent variables are desired to determine the best predictors.

For space considerations, here we consider a small multivariate regression data
set from Finn (1974, p. 67) to select the best predictors of creativity and achieve-
ments of n=15 freshmen class at a large midwestern university. The response (or
dependent) variables are: y1=grade average for required courses taken, y2=grade
average for elective courses taken; and the independent variables are: x1=high
school general knowledge test, x2=IQ score from previous year, and x3=educa-
tional motivation score from previous year. We carry out a subset selection of
variables using the multivariate regression model

Y(n_p)=X(n_q) B(q_p)+E(n_p) (45)

with a no-constant term. In (45), n=15, p=2, and q=k=3, for the no-constant
model. We derive and score information theoretic criteria under the multivariate
normal assumption for the model in (45) which are given as follows.

AIC(Multivar Re g)=np log(2?)+n log |7� |+np+2 _ pq+
p( p+1)

2 & ; (46)

ICOMP(IFIM)Multivar Re g=np log(2?)+n log |7� |+np+2C1(F� &1(3� )), (47)

where the estimated IFIM, following Magnus and Neudecker (1988), for the multi-
variate regression model is given by

F� &1(3� )=_
7� � (X$X)&1

0

0
2
n

D+
p (7� �7� ) D+

p $& . (48)

In (48), D+
p is the Moore�Penrose inverse of the duplication matrix Dp . Duplication

matrix Dp is a unique p2_1�2( p( p+1)) matrix which transforms v(7� )#vech(7� )
into vec(7� ).

The complexity measure C1(F� &1(3� )) then becomes:

C1(F� &1(3� ))=
p( p+q)

2
log _tr(7� ) tr(X$X)&1+

1
2n _tr(7� 2)+(tr 7� )2+2 :

j

_̂2
jj&

p( p+q) &
&

1
2

( p+q+1) log |7� |&
p
2

log |(X$X)&1|&
p
2

log(2). (49)

Also,

ICOMP(Multivar Re g)=np log(2?)+n log |7� |+np

+2[(n+q) C1(7� )+ pC1((X$X)&1)]. (50)
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In the above equations, 7� is the estimated error covariance matrix of the model
in (45). Note that the complexity measure C1 avoids the full numerical construction
of the estimated IFIM in (48) and in general. This we like, since for large complex
models the dimension of the estimated IFIM will be quite large. Complexity C1 (or
CR) helps reduce the cost of computing large matrices, since it produces the scalar
measure of the matrix. For the full construction of IFIM of any dimension, see
Bozdogan (1990, 1994d, 1998a, 1998b), and Magnus and Neudecker (1988). We
also compute ICOMP(IFIM)R from (36), and the percent relative reduction in complexity
given in (38).

Our results in carrying out the subset selection of variables to determine the best
predictors of performance of 15 college freshmen using a multivariate regression
model with a no-constant term are summarized in Table 3.

We observe that all the criteria choose the subset [x1 , x2] to be the best set of
predictors at 2-level. Note that AIC achieves its global minima at this subset level.
So, x1=high school general knowledge test and x2=IQ score from previous year
are the best predictors of performance at the 2-level subset. On the other hand,
ICOMP(IFIM)R and ICOMP choose the subset [x1] as the best singleton subset
at 1-level. It is important to note that the highest percent of relative reduction of
the complexity occurs also at the subset [x1], which gives us an added yardstick
for the best fitting model chosen.

Our last example, is a Monte Carlo simulation result to illustrate the perfor-
mance of AIC and ICOMP class criteria along with SBC�MDL.

Example 3. Choosing the Lag Order in Vector Autoregressive Models. Multi-
variate time series models known also as vector autoregressive (VAR) model
provide a convenient method for forecasting time series data. A vector autoregres-
sion of order k, denoted VAR(k), represents the unrestricted reduced form of a
dynamic structural model which is of the same form as the multivariate regression
model given in (41), with the exception that all the predictors are generated from
the left-hand side within the VAR model itself. In this example, our goal is to
illustrate the performance of the information-based criteria in choosing the correct

TABLE 3

k Subset of variables mc ICOMP(IFIM) ICOMP(IFIM)R ICOMP AIC PRRC

3 [x1 , x2 , x3] 9 71.0681 61.4503 76.6753 64.6608 39.410

2 [x1 , x2] 7 70.9728a 60.7443a 68.6383a 61.6862a, b 43.920

2 [x1 , x3] 7 70.5289a 65.3564 76.2266 66.1531 28.150

2 [x2 , x3] 7 76.2974 69.2399 80.8667 70.5329 35.710

1 [x1] 5 71.6129 56.5659a, b 62.5323a, b 64.2965a 85.890

1 [x2] 5 78.7327 62.0653 69.9769 68.9259 84.150

1 [x3] 5 68.0575a, b 59.9816 65.9816 66.6155 76.600

a Best subset variables at each level.
b Global minima of the criteria.
c Number of parameters.

85AKAIKE'S INFORMATION CRITERION



TABLE 4

Criteria�order 0 1 2* 3 4 5 6

AIC 0.000 0.006 0.870 0.084 0.032 0.006 0.002
SBC�MDL 0.000 0.274 0.724 0.002 0.000 0.000 0.000

ICOMP(IFIM) 0.000 0.002 0.908 0.046 0.016 0.004 0.006

order of the VAR(k) model. The true model is from Lutkepohl (1991, p. 119) which
is a stationary VAR(k*=2) with p=2 variables given by

yt=_0.500
0.400

0.100
0.500& yt&1+_0.000

0.250
0.000
0.000& yt&2+=, (51)

where

=tNp=2 \+=_0
0& , 7=_0.90

0.30
0.30
0.4 &+ . (52)

Note that the covariance matrix of the random error in (52) is not a diagonal
matrix indicating the existence of the correlations among the components of the
random error matrix. This will make it difficult for the model selection criteria to
choose the true VAR(k*=2) model almost surely.

We simulated a total of n=200 observations from the above true VAR(k*=2)
model and replicated the Monte Carlo experiment 500 times. Then, we fitted
VAR(k) models with varying order k=0, 1, 2*, ..., 6, to the generated data sets, and
scored the information criteria. Our results from this experiment are summarized
in Table 4, which gives the relative frequency of the estimated true stationary
VAR(k*=2) model chosen by each of the model selection criteria.

Looking at Table 4, we see that AIC picks the true order k=2*, 870 of the
time, and there is some overfitting which is not surprising for AIC, and almost no
underfitting. SBC�MDL criteria pick the true order 72.40 of the time, and there is
27.40 underfitting by these two criteria with almost no overfitting. On the other hand
ICOMP(IFIM) chooses the correct order of the VAR model 90.80 of the time with
almost no underfitting, and with very little overfitting. Indeed, ICOMP(IFIM)
performs better than AIC, and SBC�MDL type criteria in this experiment and
controls the overfitting and underfitting risks judiciously.

For more on VAR models, see Bearse and Bozdogan (1998) and Bozdogan and
Bearse (1998).

CONCLUSION: COMPARISON OF INFORMATION CRITERIA

In this paper, we introduced several information criteria, namely, AIC and its
variants, and a new set of criteria, ICOMP(IFIM), ICOMP(IFIM)R , ICOMP, and
ICOMPR , as alternative procedures. It is important to recognize the differences
among these criteria.
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Among these criteria, we briefly studied the underlying basic idea of the AIC
procedure and presented its derivation as a bias correcting criterion. As it is well
known, AIC simply defines the model complexity in terms of the number of free
parameters, so that it is the easiest to apply. Although AIC is invariant under
parameter transformations, it does not have the virtue of detecting the problem
caused by the curvature of a model, especially in univariate and multivariate non-
linear models. Also as pointed out by many researchers, AIC often overfits the
model which has been known to Akaike.

In the second part of this paper, we introduced a new entropic or information-
theoretic measure complexity ICOMP criterion in several forms. Among these,
ICOMP(IFIM) and ICOMP are based on the covariance matrices which have nice
features. Besides the shape of the contour of the parameter space of a model, both
ICOMPs based on the covariance matrices also penalize the scaling of the ellipsoidal
dispersion of a model. For example, when an ellipsoid is parallel to the coordinates and
has a long and narrow shape, it can indicate that we might have an ill-conditioned
Fisher information matrix. With ICOMP we are able to detect the occurrence of such
problems and find out the contour with a good shape among other candidate contours.
Also with ICOMP we are able to measure how far we might be from a circular contour
shape, which emphasizes the role of a good shape of a contour as we illustrated in
Example 1.

The difference between the general approach and the finite sampling approach in
developing ICOMP is worth noting. Besides penalizing the covariance complexity
in estimating the parameter vector %, the finite sampling approach penalizes the
covariance complexity of the residual covariance matrix of the model. So this
approach is useful to study cases where the random errors of the model might be
correlated, which gives us the provision of unifying the situations where the model
residuals might be both correlated and uncorrelated by including dependence. The
general approach, that is, ICOMP(IFIM), penalizes covariance complexity of the
estimated parameters of the entire model. It provides a trade-off between lack of fit
and a scalar measure of the accuracy of the parameter estimates.

To make ICOMP(IFIM) and its variants be scale invariant, we then introduced
their correlational forms, namely, ICOMP(IFIM)R and ICOMPR . These two
correlational forms penalize the shape of the contour of the parameter space of a
model by trading-off with the shape of the contour of the likelihood function of a
model. As discussed by Ross (1970), a good shape of the contour should be close
to an ellipsoid and the axes of the ellipsoid should be parallel to the coordinates
(see Example 1).

Similar to AIC, we do not claim that ICOMP-type criteria are consistent. This
is due to constant, or asymptotically constant, penalty functionals in model selec-
tion criteria. However, we emphasize the fact that the constancy in the complexity
of ICOMP is quite different from that of AIC, since the definition of C1( v) and
CR( v) explicitly takes into account the interdependencies (i.e., correlations) among
the variables and both linearity and nonlinearity of the parameters of the model.
Therefore, the constancy of ICOMP is not an integer; it varies. For example, in
equivalent models, 2k and klog(n) type penalty terms will be the same with no hope
of distinguishing among the equivalent models. With the definition of C1( v) and
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CR( v) it is now possible to distinguish among the equivalent models and control
the risk of underfitting and overfitting phenomena judiciously. This is the major
dilemma in model selection, not the issue of consistency. Nevertheless, consistency
properties of ICOMP has been studied by Bozdogan and Haughton (1998) in the
case of the usual multiple regression models, where the probabilities of underfitting
and overfitting as the sample size n tends to infinity have been established. Through
a large scale Monte Carlo misspecification environment, when the true model is not
in the model set, the performance of ICOMP has been studied under different
configurations of the experiment with varying sample sizes and the error variances.
The results obtained show that ICOMP class criteria overwhelmingly agree most
often with the KL decision which goes to the heart of the consistency arguments
about information criteria not studied before, since most of the studies are based on
the fact that the true model considered is in the model set.

Finally, we note that one of the advantages of ICOMP class criteria is that the
rationale for combining goodness of fit terms with complexity measures does not
rely on any regularity conditions. This means that, for example, ICOMP can help
decide between one or two components in a mixture model (Bozdogan 1994d), a
situation where regularity conditions fail notoriously. Furthermore, the difference
between ICOMP class criteria and AIC, SBC�MDL, and CAIC is that with
ICOMP we have the advantage of working with both biased as well as unbiased
estimates of the parameters and measure the complexities of their covariances to
study the robustness properties of different methods of parameter estimates. AIC and
AIC-type criteria are based on MLE's, which often are biased and they do not fully
take into account the concept of parameter redundancy, accuracy, and the
parameter interdependencies in model fitting and selection process. Also, ICOMP
class criteria legitimizes the role of the Fisher information matrix (FIM) as the
natural metric on the parameter manifold of the model which remained academic
for a long time. In the literature (see, e.g., Li, Lewandowsky, and DeBrunner, 1996,
and others), a measure of a model's total sensitivity to all of its parameters is often
defined in terms of the trace of FIM, and in some cases it is defined by the determinant
of IFIM, called a generalized variance. Using such measures alone as performance
measures has serious disadvantages to which one should pay attention (see Mustonen,
1997). On these and related problems, a joint work with Dr. In Jae Myung is currently
underway and the results of this work will be published upon completion.

In conclusion, we note that our numerical results clearly demonstrate the excellent
performance of ICOMP class criteria as compared to AIC and SBC�MDL to be used
in model selection, prediction, and perturbation studies. We believe the set of poten-
tially fruitful applications of information theoretic model selection criteria are vast in
experimental and mathematical psychology, in psychometrics, social, and behavioral
and economic sciences. We hope that future research will continue to explore these
avenues.
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