
http://www.elsevier.com/locate/jcss

Journal of Computer and System Sciences 66 (2003) 671–687

Database-friendly random projections:

Johnson-Lindenstrauss with binary coins

Dimitris Achlioptas

Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

Received 28 August 2001; revised 19 July 2002

Abstract

A classic result of Johnson and Lindenstrauss asserts that any set of n points in d-dimensional Euclidean
space can be embedded into k-dimensional Euclidean space—where k is logarithmic in n and independent
of d—so that all pairwise distances are maintained within an arbitrarily small factor. All known
constructions of such embeddings involve projecting the n points onto a spherically random k-dimensional
hyperplane through the origin. We give two constructions of such embeddings with the property that all
elements of the projection matrix belong in f�1; 0;þ1g: Such constructions are particularly well suited for
database environments, as the computation of the embedding reduces to evaluating a single aggregate over
k random partitions of the attributes.
r 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Consider projecting the points of your favorite sculpture first onto the plane and then onto a
single line. The result amply demonstrates the power of dimensionality.

In general, given a high-dimensional pointset it is natural to ask if it could be embedded into a
lower dimensional space without suffering great distortion. In this paper, we consider this
question for finite sets of points in Euclidean space. It will be convenient to think of n points in Rd

as an n � d matrix A; each point represented as a row (vector).
Given such a matrix representation, one of the most commonly used embeddings is the one

suggested by the singular value decomposition of A: That is, in order to embed the n points into
Rk we project them onto the k-dimensional space spanned by the singular vectors corresponding
to the k largest singular values of A: If one rewrites the result of this projection as a (rank k) n � d

matrix Ak; we are guaranteed that any other k-dimensional pointset (represented as an n � d
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matrix D) satisfies

jA � AkjFpjA � DjF ;

where, for any matrix Q; jQj2F ¼
P

Q2
i;j: To interpret this result observe that if moving a point by z

takes energy proportional to z2; Ak represents the k-dimensional configuration reachable from A
by expending least energy.

In fact, Ak is an optimal rank k approximation of A under many matrix norms. In particular, it
is well-known that for any rank k matrix D and for any rotationally invariant norm

jA � AkjpjA � Dj:

At the same time, this optimality implies no guarantees regarding local properties of the resulting
embedding. For example, it is not hard to devise examples where the new distance between a pair
of points is arbitrarily smaller than their original distance. For a number of problems where
dimensionality reduction is clearly desirable, the absence of such local guarantees can make it
hard to exploit embeddings algorithmically.

In a seminal paper, Linial et al. [12] were the first to consider algorithmic applications of
embeddings that respect local properties. By now, embeddings of this type have become an
important tool in algorithmic design. A real gem in this area has been the following result of
Johnson and Lindenstrauss [9].

Lemma 1.1 (Johnson and Lindenstrauss [9]). Given e40 and an integer n; let k be a positive integer

such that kXk0 ¼ Oðe�2 log nÞ: For every set P of n points in Rd there exists f : Rd-Rk such that
for all u; vAP

ð1 � eÞjju � vjj2pjj f ðuÞ � f ðvÞjj2pð1 þ eÞjju � vjj2:

We will refer to embeddings providing a guarantee akin to that of Lemma 1.1 as JL-
embeddings. In the last few years, such embeddings have been used in solving a variety of
problems. The idea is as follows. By providing a low-dimensional representation of the data,
JL-embeddings speed up certain algorithms dramatically, in particular algorithms whose run-time
depends exponentially in the dimension of the working space. (For a number of practical
problems the best-known algorithms indeed have such behavior.) At the same time, the provided
guarantee regarding pairwise distances often allows one to establish that the solution found by
working in the low-dimensional space is a good approximation to the solution in the original
space. We give a few examples below.

Papadimitriou et al. [13], proved that embedding the points of A in a low-dimensional space can
significantly speed up the computation of a low-rank approximation to A; without significantly
affecting its quality. In [8], Indyk and Motwani showed that JL-embeddings are useful in solving
the e-approximate nearest-neighbor problem, where (after some preprocessing of the pointset P)
one is to answer queries of the following type: ‘‘Given an arbitrary point x; find a point yAP;
such that for every point zAP; jjx � zjjXð1 � eÞjjx � yjj:’’ In a different vein, Schulman [14] used
JL-embeddings as part of an approximation algorithm for the version of clustering where we
seek to minimize the sum of the squares of intracluster distances. Recently, Indyk [7] showed that
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JL-embeddings can also be used in the context of ‘‘data-stream’’ computation, where one has
limited memory and is allowed only a single pass over the data (stream).

1.1. Our contribution

Over the years, the probabilistic method has allowed for the original proof of Johnson and
Lindenstrauss to be greatly simplified and sharpened, while at the same time giving conceptually
simple randomized algorithms for constructing the embedding [5,6,8]. Roughly speaking, all such
algorithms project the input points onto a spherically random hyperplane through the origin.
While this is conceptually simple, in practical terms it amounts to multiplying the input matrix A
with a dense matrix of real numbers. This can be a non-trivial task in many practical
computational environments. At the same time, investigating the role of spherical symmetry in the
choice of hyperplane is mathematically interesting in itself.

Our main result, below, asserts that one can replace projections onto spherically random
hyperplanes with much simpler and faster operations. In particular, these operations can be
implemented efficiently in a database environment using standard SQL primitives. Somewhat
surprisingly, we prove that this comes without any sacrifice in the quality of the embedding. In
fact, we will see that for every fixed value of d we get a slightly better bound than all current
methods. We state our result below as Theorem 1.1. Similarly to Lemma 1.1, the parameter e
controls the desired accuracy in distance preservation, while now b controls the projection’s
probability of success.

Theorem 1.1. Let P be an arbitrary set of n points in Rd ; represented as an n � d matrix A: Given
e; b40 let

k0 ¼
4 þ 2b

e2=2 � e3=3
log n:

For integer kXk0; let R be a d � k random matrix with Rði; jÞ ¼ rij; where frijg are independent

random variables from either one of the following two probability distributions:

rij ¼
þ1 with probability 1=2;

�1 with probability 1=2;

(
ð1Þ

rij ¼
ffiffiffi
3

p
�

þ1 with probability 1=6;

0 with probability 2=3;

�1 with probability 1=6:

8><
>: ð2Þ

Let

E ¼ 1ffiffiffi
k

p AR

and let f : Rd-Rk map the ith row of A to the ith row of E:
With probability at least 1 � n�b; for all u; vAP

ð1 � eÞjju � vjj2pjj f ðuÞ � f ðvÞjj2pð1 þ eÞjju � vjj2:
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We see that to construct a JL-embedding via Theorem 1.1 we only need very simple probability
distributions to generate the projection matrix, while the computation of the projection itself
reduces to aggregate evaluation, i.e., summations and subtractions (but no multiplications). While
it seems hard to imagine a probability distribution much simpler than (1), probability distribution
(2) gives an additional threefold speedup as we only need to process a third of all attributes for
each of the k coordinates. We note that the construction based on probability distribution (1) was,
independently, proposed by Arriaga and Vempala in [2], but without an analysis of its
performance.

1.1.1. Projecting onto random lines
Looking a bit more closely into the computation of the embedding we see that each row (vector)

of A is projected onto k random vectors whose coordinates frijg are independent random
variables with mean 0 and variance 1. If the frijg were independent normal random variables with
mean 0 and variance 1, it is well-known that each resulting vector would point to uniformly
random direction in space. Projections onto such vectors have been considered in a number of
settings, including the work of Kleinberg [10] and Kushilevitz et al. [11] on approximate nearest
neighbors and of Vempala on learning intersections of halfspaces [16]. More recently, such
projections have also been used in learning mixture of Gaussians models, starting with the work
of Dasgupta [4] and later with the work of Arora and Kannan [3].

Our proof implies that for any fixed vector a; the behavior of its projection onto a random
vector c is mandated by the even moments of the random variable jja � cjj: In fact, our result
follows by showing that for every vector a; under our distributions for frijg; these moments are
dominated by the corresponding moments for the case where c is spherically symmetric. As a
result, projecting onto vectors whose entries are distributed like the columns of matrix R is
computationally simpler and results in projections that are at least as nicely behaved.

1.1.2. Randomization
A naive, perhaps, attempt at constructing JL-embeddings would be to pick k of the original

coordinates in d-dimensional space as the new coordinates. Naturally, as two points can be very
far apart while only differing along a single dimension, this approach is doomed. Yet, if we knew
that for every pair of points all coordinates contributed ‘‘roughly equally’’ to the corresponding
pairwise, distance, this naive scheme would make perfect sense.

With this in mind, it is very natural to try and remove pathologies like those mentioned above
by first applying a random rotation to the original pointset in Rd : Observe now that picking, say,
the first k coordinates after applying a random rotation is exactly the same as projecting onto a
spherically random k-dimensional hyperplane! Thus, we see that randomization in JL-projections
only serves as insurance against axis-alignment, analogous to the application of a random
permutation before running Quicksort.

1.1.3. Derandomization
Theorem 1.1 allows one to use significantly fewer random bits than all previous methods for

constructing JL-embeddings. Indeed, since the appearance of an earlier version of this work [1],
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the construction based on probability distribution (1) has been used by Sivakumar [15] to give a
very simple derandomization of the Johnson–Lindenstrauss lemma.

2. Previous work

As we will see, in all methods for producing JL-embeddings, including ours, the heart of the
matter is showing that for any vector, the squared length of its projection is sharply concentrated
around its expected value. The original proof of Johnson and Lindenstrauss [9] uses quite heavy
geometric approximation machinery to yield such a concentration bound. That proof was greatly
simplified and sharpened by Frankl and Meahara [6] who explicitly considered a projection onto k
random orthonormal vectors (as opposed to viewing such vectors as the basis of a random
hyperplane), yielding the following result.

Theorem 2.1 (Frankl and Meahara [6]). For any eAð0; 1=2Þ; any sufficiently large set PARd ; and

kXk0 ¼ J9ðe2 � 2e3=3Þ�1 log jPjnþ 1; there exists a map f : P-Rk such that for all u; vAP;

ð1 � eÞjju � vjj2pjj f ðuÞ � f ðvÞjj2pð1 þ eÞjju � vjj2:

The next great simplification of the proof of Lemma 1.1 was given, independently, by Indyk
and Motwani [8] and Dasgupta and Gupta [5], the latter also giving a slight sharpening
of the bound for k0: By combining the analysis of [5] with the viewpoint of [8] it is in fact

not hard to show that Theorem 1.1 holds if for all i; j; rij ¼D Nð0; 1Þ (this was also observed in [2]).
Below we state our rendition of how each of these two latest simplifications [8,5] were achieved,

as they prepare the ground for our own work. Let us write X ¼D y to denote that X is distributed
as Y and recall that Nð0; 1Þ denotes the standard Normal distribution with mean 0 and
variance 1.

Indyk and Motwani [8]: Assume that we try to implement the scheme of Frankl and Maehara [6]
but we are lazy about enforcing either normality (unit length) or orthogonality among our k

vectors. Instead, we just pick k independent, spherically symmetric random vectors, by taking as
the coordinates of each vector ki:i:d: Nð0; 1=dÞ random variables (so that the expected length of
each vector is 1).

An immediate gain of this approach is that now, for any fixed vector a; the length of its
projection onto each of our vectors is also a normal random variable. This is due to a powerful
and deep fact, namely the 2-stability of the Gaussian distribution: for any real numbers
a1; a2;y; ad ; if fZigd

i¼1 is a family of independent normal random variables and X ¼
Pd

i¼1 aiZi;

then X ¼D cNð0; 1Þ; where c ¼ ða2
1 þ?þ a2

dÞ
1=2: As a result, if we take these k projection lengths to

be the coordinates of the embedded vector in Rk; then the squared length of the embedded vector
follows the chi-square distribution for which strong concentration bounds are readily
available.

Remarkably, very little is lost due to this laziness. Although, we did not explicitly enforce either
orthogonality, or normality, the resulting k vectors, with high probability, will come very close to
having both of these properties. In particular, the length of each of the k vectors is sharply
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concentrated (around 1) as the sum of d independent random variables. Moreover, since the k

vectors point in uniformly random directions in Rd ; as d grows they rapidly get closer to being
orthogonal.

Dasgupta and Gupta [5]: Here we will exploit spherical symmetry without appealing directly to
the 2-stability of the Gaussian distribution. Instead observe that, by symmetry, the projection of
any unit vector a on a random hyperplane through the origin is distributed exactly like the
projection of a random point from the surface of the d-dimensional sphere onto a fixed subspace
of dimension k: Such a projection can be studied readily since each coordinate is a scaled normal
random variable. With a somewhat tighter analysis than [8], this approach gave the best known
bound, namely kXk0 ¼ ð4 þ 2bÞðe2=2 � e3=3Þ�1 log n; which is exactly the same as the bound in
Theorem 1.1.

3. Some intuition

Our contribution begins with the realization that spherical symmetry, while making life
extremely comfortable, is not essential. What is essential is concentration. So, at least in principle,
we are free to consider other candidate distributions for the frijg; if perhaps at the expense of
comfort.

As we saw earlier, each column of our projection matrix R will yield one coordinate of the
projection in Rk: Thus, the squared length of the projection is merely the sum of the squares of
these coordinates. Therefore, the projection can be thought of as follows: each column of R acts as
an independent estimator of the original vector’s length (its estimate being the inner product with
it); to reach consensus we take the sum of the k estimators. Seen from this angle, requiring the k
vectors to be orthonormal has the pleasant statistical overtone of ‘‘maximizing mutual
information’’ (since all estimators have equal weight and are orthogonal). Nonetheless, even if
we only require that each column simply gives an unbiased, bounded variance estimator, the
Central Limit Theorem implies that if we take sufficiently many columns, we can get an arbitrarily
good estimate of the original length. Naturally, the number of columns needed depends on the
variance of the estimators.

From the above we see that the key issue is the concentration of the projection of an arbitrary
fixed vector a onto a single random vector. The main technical difficulty that results from giving
up spherical symmetry is that this concentration can depend on a: Our technical contribution lies
in determining probability distributions for the frijg under which, for all vectors, this
concentration is at least as good as in the spherically symmetric case. In fact, it will turn out
that for every fixed value of d; we can get a (minuscule) improvement in concentration. Thus, for
every fixed d; we can actually get a strictly better bound for k than by taking spherically random
vectors. The reader might be wondering ‘‘how can it be that perfect spherical symmetry does not
buy us anything (and is in fact slightly worse for each fixed d)?’’. The following intuitive argument
hints at why giving up spherical symmetry is (at least) not catastrophic.

Say, for example, that frijgAf�1;þ1g so that the projection length of certain vectors is more
variable than that of others, and assume that an adversary is trying to pick a worst-case such
vector w; i.e., one whose projection length is ‘‘most variable.’’ Our problem can be rephrased
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as ‘‘How much are we empowering an adversary by committing to picking our column vectors
among lattice points rather than arbitrary points in Rd?’’. As we will see, and this is the heart of
our proof, the worst-case vectors are 1ffiffi

d
p ð71;y;71Þ: So, in some sense, the worst-case vectors

are ‘‘typical’’, unlike, say, ð1; 0;y; 0Þ: From this it is a small leap to believe that the adversary
would not fare much worse by giving us a spherically random vector. But in that case, by
symmetry, our commitment to lattice points is irrelevant!

To get a more precise answer it seems like one has to delve into the proof. In particular, both
for the spherically random case and for our distributions, the bound on k is mandated by the
probability of overestimating the projected length. Thus, the ‘‘bad events’’ amount to the spanning
vectors being too ‘‘well-aligned’’ with a: Now, in the spherically symmetric setting it is possible to
have alignment that is arbitrarily close to perfect, albeit with correspondingly smaller probability.
In our case, if we do not have perfect alignment then we are guaranteed a certain, bounded
amount of misalignment. It is precisely this tradeoff between the probability and the extent of
alignment that drives the proof.

Consider, for example, the case when d ¼ 2 with rijAf�1;þ1g: As we said above, the worst-
case vector is w ¼ ð1=

ffiffiffi
2

p
Þð1; 1Þ: So, with probability 1=2 we have perfect alignment (when our

random vector is 7w) and with probability 1=2 we have orthogonality. On the other hand, for the
spherically symmetric case, we have to consider the integral over all points on the plane, weighted
by their probability under the two-dimensional Gaussian distribution. It is a rather instructive
exercise to visually explore this tradeoff by plotting the corresponding functions; moreover, it
might offer the interested reader some intuition for the general case.

4. Preliminaries and the spherically symmetric case

4.1. Preliminaries

Let x � y denote the inner product of vectors x; y: To simplify notation in the calculations we
will work with a matrix R scaled by 1=

ffiffiffi
d

p
: As a result, to get E we need to scale A � R by

ffiffiffiffiffiffiffiffi
d=k

p
rather than 1=

ffiffiffi
k

p
: So, R will be a random d � k matrix with Rði; jÞ ¼ rij=

ffiffiffi
d

p
; where the frijg are

distributed as in Theorem 1.1. Therefore, if cj denotes the jth column of R; then fcjgk
j¼1 is a

family of k i.i.d. random unit vectors in Rd and for all aARd ; f ðaÞ ¼
ffiffiffiffiffiffiffiffi
d=k

p
ða � c1;y; a � cdÞ:

Naturally, such scaling can be postponed until after the matrix multiplication (projection)
has been performed, so that we maintain the advantage of only having f�1; 0;þ1g in the
projection matrix.

Let us first compute Eðjj f ðaÞjj2Þ for an arbitrary vector aARd : For j ¼ 1;y; k let

QjðaÞ ¼ a � cj;

where sometimes we will omit the dependence of QjðaÞ on a and refer simply to Qj:
Then

EðQjÞ ¼ E
1ffiffiffi
d

p
Xd

i¼1

airij

 !
¼ 1ffiffiffi

d
p

Xd

i¼1

aiEðrijÞ ¼ 0 ð3Þ
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and

EðQ2
j Þ ¼E

1ffiffiffi
d

p
Xd

i¼1

airij

 !2
0
@

1
A

¼ 1

d
E
Xd

i¼1

ðairijÞ2 þ
Xd

l¼1

Xd

m¼1

2alamrljrmj

 !

¼ 1

d

Xd

i¼1

a2
i Eðr2

ijÞ þ
1

d

Xd

l¼1

Xd

m¼1

2alamEðrljÞEðrmjÞ

¼ 1

d
� jjajj2: ð4Þ

Note that to get (3) and (4) we only used that the frijg are independent with zero mean and unit
variance. From (4) we see that

Eðjj f ðaÞjj2Þ ¼ Eððjj
ffiffiffiffiffiffiffiffi
d=k

p
ða � c1;y; a � cdÞjjÞ2Þ ¼

d

k

Xk

j¼1

EðQ2
j Þ ¼ jjajj2:

That is for any independent family of frijg with EðrijÞ ¼ 0 and VarðrijÞ ¼ 1 we get an unbiased
estimator, i.e., Eðjj f ðaÞjj2Þ ¼ jjajj2:

In order to have a JL-embedding we need that for each of the ðn
2
Þ pairs u; vAP; the squared

norm of the vector u � v; is maintained within a factor of 17e: Therefore, if for some family frijg
as above we can prove that for some b40 and any fixed vector aARd ;

Pr½ð1 � eÞjjajj2pjj f ðaÞjj2pð1 þ eÞjjajj2X1 � 2

n2þb; ð5Þ

then the probability of not getting a JL-embedding is bounded by ðn
2Þ � 2=n2þbo1=nb:

From the above discussion we see that our entire task has been reduced to determining a zero
mean, unit variance distribution for the frijg such that (5) holds for any fixed vector a: In fact,
since for any fixed projection matrix, jj f ðaÞjj2 is proportional to jjajj2; it suffices to prove that (5)
holds for arbitrary unit vectors. Moreover, since Eðjj f ðaÞjj2Þ ¼ jjajj2; inequality (5) merely asserts
that the random variable jj f ðaÞjj2 is concentrated around its expectation.

4.2. The spherically symmetric case

As a warmup we first work out the spherically random case below. Our results follows from
exactly the same proof after replacing Lemma 4.1 below with a corresponding lemma for our
choices of frijg:

Getting a concentration inequality for jj f ðaÞjj2 when rij ¼D Nð0; 1Þ is straightforward. Due to the

2-stability of the normal distribution, for every unit vector a; we have jj f ðaÞjj2 ¼D w2ðkÞ=k; where
w2ðkÞ denotes the chi-square distribution with k degrees of freedom. The fact that we get the same
distribution for every vector a corresponds to the obvious intuition that ‘‘all vectors are the same’’
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with respect to projection onto a spherically random vector. Standard tail-bounds for the
chi-square distribution readily yield the following.

Lemma 4.1. Let rij ¼D Nð0; 1Þ for all i; j: Then, for any e40 and any unit-vector aARd ;

Pr½jj f ðaÞjj241 þ eoexp �k

2
ðe2=2 � e3=3Þ

� �
;

Pr½jj f ðaÞjj2o1 � eoexp �k

2
ðe2=2 � e3=3Þ

� �
:

Thus, to get a JL-embedding we need only require

2 � exp �k

2
ðe2=2 � e3=3Þ

� �
p

2

n2þb;

which holds for

kX
4 þ 2b

e2=2 � e3=3
log n:

Let us note that the bound on the upper tail of jj f ðaÞjj2 above is tight (up to lower order terms).
As a result, as long as the union bound is used, one cannot hope for a better bound on k while
using spherically random vectors.

To prove our result we will use the exact same approach, arguing that for every unit vector
aARd ; the random variable jj f ðaÞjj2 is sharply concentrated around its expectation. In the next
section we state a lemma analogous to Lemma 4.1 above and show how it follows from bounds on
certain moments of Q2

1: We then prove those bounds in Section 6.

5. Tail bounds

To simplify notation let us define for an arbitrary vector a;

S ¼ SðaÞ ¼
Xk

j¼1

ða � cjÞ2 ¼
Xk

j¼1

Q2
j ðaÞ;

where cj is the jth column of R; so that jj f ðaÞjj2 ¼ S � d=k:

Lemma 5.1. Let rij have any one of the two distributions in Theorem 1.1. Then, for any e40 and any
unit vector aARd ;

Pr½SðaÞ4ð1 þ eÞk=doexp �k

2
ðe2=2 � e3=3Þ

� �
;

Pr½SðaÞoð1 � eÞk=doexp �k

2
ðe2=2 � e3=3Þ

� �
:
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In proving Lemma 5.1 we will generally omit the dependence of probabilities on a; making it
explicit only when it affects our calculations. We will use the standard technique of applying
Markov’s inequality to the moment generating function of S; thus reducing the proof of the
lemma to bounding certain moments of Q1: In particular, we will need the following lemma which
will be proved in Section 6.

Lemma 5.2. For all hA½0; d=2Þ; all dX1 and all unit vectors a;

EðexpðhQ1ðaÞ2ÞÞp
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 2h=d
p ; ð6Þ

EðQ1ðaÞ4Þp
3

d2
: ð7Þ

Proof of Lemma 5.1. We start with the upper tail. For arbitrary h40 let us write

Pr S4ð1 þ eÞk
d

� �
¼Pr expðhSÞ4exp hð1 þ eÞk

d

� �� �

oEðexpðhSÞÞ exp �hð1 þ eÞk
d

� �
:

Since fQjgk
j¼1 are i.i.d. we have

EðexpðhSÞÞ ¼ E
Yk

j¼1

expðhQ2
j Þ

 !
ð8Þ

¼
Yk

j¼1

EðexpðhQ2
j ÞÞ ð9Þ

¼ ðEðexpðhQ2
1ÞÞÞ

k; ð10Þ
where passing from (8) to (9) uses that the fQjgk

j¼1 are independent, while passing from (9) to (10)
uses that they are identically distributed. Thus, for any e40

Pr S4ð1 þ eÞk
d

� �
oðEðexpðhQ2

1ÞÞÞ
k exp �hð1 þ eÞk

d

� �
: ð11Þ

Substituting (6) in (11) we get (12). To optimize the bound we set the derivative in (12) with
respect to h to 0. This gives h ¼ d

2
e

1þeo
d
2
: Substituting this value of h we get (13) and series

expansion yields (14).

Pr S4ð1 þ eÞk
d

� �
o

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2h=d

p
 !k

exp �hð1 þ eÞk
d

� �
ð12Þ

¼ ðð1 þ eÞ expð�eÞÞk=2 ð13Þ

oexp �k

2
ðe2=2 � e3=3Þ

� �
: ð14Þ
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Similarly, but now considering expð�hSÞ for arbitrary h40; we get that for any e40

Pr Soð1 � eÞk
d

� �
oðEðexpð�hQ2

1ÞÞÞ
k exp hð1 � eÞ k

d

� �
: ð15Þ

Rather than bounding Eðexpð�hQ2
1ÞÞ directly, let us expand expð�hQ2

1Þ to get

Pr Soð1 � eÞk
d

� �
o E 1 � hQ2

1 þ
ð�hQ2

1Þ
2

2!

 ! !k

exp hð1 � eÞ k

d

� �

¼ 1 � h

d
þ h2

2
EðQ4

1Þ
� �k

exp hð1 � eÞ k

d

� �
; ð16Þ

where EðQ2
1Þ was given by (4).

Now, substituting (7) in (16) we get (17). This time taking h ¼ d
2

e
1þe is not optimal but is still

‘‘good enough’’, giving (18). Again, series expansion yields (19).

Pr Soð1 � eÞk
d

� �
p 1 � h

d
þ 3

2

h

d

� �2
 !k

exp hð1 � eÞ k

d

� �
ð17Þ

¼ 1 � e
2ð1 þ eÞ þ

3e2

8ð1 þ eÞ2

 !k

exp
eð1 � eÞk
2ð1 þ eÞ

� �
ð18Þ

oexp �k

2
ðe2=2 � e3=3Þ

� �
: & ð19Þ

6. Moment bounds

To simplify notation in this section we will drop the subscript and refer to Q1 as Q: It should be
clear that the distribution of Q depends on a; i.e., Q ¼ QðaÞ: This is precisely what we give up by
not projecting onto spherically symmetric vectors. Our strategy for giving bounds on the moments
of Q will be to determine a ‘‘worst-case’’ unit vector w and bound the moments of QðwÞ: We claim
the following.

Lemma 6.1. Let

w ¼ 1ffiffiffi
d

p ð1;y; 1Þ:

For every unit vector aARd ; and for all k ¼ 0; 1;y

EðQðaÞ2kÞpEðQðwÞ2kÞ: ð20Þ

Moreover, we will prove that the even moments of QðwÞ are dominated by the corresponding
moments from the spherically symmetric case. That is,
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Lemma 6.2. Let T ¼D Nð0; 1=dÞ: For all dX1 and all k ¼ 0; 1;y

EðQðwÞ2kÞpEðT2kÞ: ð21Þ

Using Lemmata 6.1 and 6.2 we can prove Lemma 5.2 as follows.

Proof of Lemma 5.2. To prove (7) we observe that for any unit vector a; by (20) and (21),

EðQðaÞ4ÞpEðQðwÞ4ÞpEðT4Þ;

while

EðT4Þ ¼
Z þN

�N

1ffiffiffiffiffiffi
2p

p expð�l2=2Þ l4

d2

� �
dl ¼ 3

d2
:

To prove (6) we first observe that for any real-valued random variable U and for all h such that
EðexpðhU2ÞÞ is bounded, the Monotone Convergence Theorem (MCT) allows us to swap the
expectation with the sum and get

EðexpðhU2ÞÞ ¼ E
XN
k¼0

ðhU2Þk

k!

 !
¼
XN
k¼0

hk

k!
EðU2kÞ:

So, below, we proceed as follows. Taking hA½0; d=2Þ makes the integral in (22) converge, giving
us (23). Thus, for such h; we can apply the MCT to get (24). Now, applying (20) and (21)–(24)
gives (25). Applying the MCT once more gives (26).

EðexpðhT2ÞÞ ¼
Z þN

�N

1ffiffiffiffiffiffi
2p

p expð�l2=2Þ exp h
l2

d

� �
dl ð22Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2h=d

p ð23Þ

¼
XN
k¼0

hk

k!
EðT2kÞ ð24Þ

X

XN
k¼0

hk

k!
EðQðaÞ2kÞ ð25Þ

¼ EðexpðhQðaÞ2ÞÞ: ð26Þ

Thus, EðexpðhQ2ÞÞp1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2h=d

p
for hA½0; d=2Þ; as desired. &

Before proving Lemma 6.1 we will need to prove the following lemma.

ARTICLE IN PRESS

D. Achlioptas / Journal of Computer and System Sciences 66 (2003) 671–687682



Lemma 6.3. Let r1; r2 be i.i.d. random variables having one of the two probability distributions given

by Eqs. (1) and (2) in Theorem 1.1.
For any a; bAR let c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ b2Þ=2

p
: Then for any MAR and all k ¼ 0; 1;y

EððM þ ar1 þ br2Þ2kÞpEððM þ cr1 þ cr2Þ2kÞ:

Proof. We first consider the case where riAf�1;þ1g:
If a2 ¼ b2 then a ¼ c and the lemma holds with equality. Otherwise, observe that

EððM þ cr1 þ cr2Þ2kÞ � EððM þ ar1 þ br2Þ2kÞ ¼ Sk

4
;

where

Sk ¼ðM þ 2cÞ2k þ 2M2k þ ðM � 2cÞ2k � ðM þ a þ bÞ2k

� ðM þ a � bÞ2k � ðM � a þ bÞ2k � ðM � a � bÞ2k:

We will show that SkX0 for all kX0:
Since a2ab2 we can use the binomial theorem to expand every term other than 2M2k in Sk and

get

Sk ¼ 2M2k þ
X2k

i¼0

2k

i

 !
M2k�iDi;

where

Di ¼ ð2cÞi þ ð�2cÞi � ða þ bÞi � ða � bÞi � ð�a þ bÞi � ð�a � bÞi:

Observe now that for odd i; Di ¼ 0: Moreover, we claim that D2jX0 for all jX1: To see this claim
observe that ð2a2 þ 2b2Þ ¼ ða þ bÞ2 þ ða � bÞ2 and that for all jX1 and x; yX0; ðx þ yÞ j

Xx j þ
y j: Thus, ð2cÞ2j ¼ ð2a2 þ 2b2Þj ¼ ½ða þ bÞ2 þ ða � bÞ2jXða þ bÞ2j þ ða � bÞ2j implying

Sk ¼ 2M2k þ
Xk

j¼0

2k

2j

 !
M2ðk�jÞD2j ¼

Xk

j¼1

2k

2j

 !
M2ðk�jÞD2jX0:

The proof for the case where riAf�
ffiffiffi
3

p
; 0;þ

ffiffiffi
3

p
g is just a more cumbersome version of the proof

above, so we omit it. That proof, though, brings forward an interesting point. If one tries to take
ri ¼ 0 with probability greater than 2=3; while maintaining that ri has a range of size 3 and
variance 1, the lemma fails. In other words, 2=3 is tight in terms of how much probability mass we
can put to ri ¼ 0 and still have the current lemma hold. &

Proof of Lemma 6.1. Recall that for any vector a; QðaÞ ¼ Q1ðaÞ ¼ a � c1 where

c1 ¼
1ffiffiffi
d

p ðr11;y; rd1Þ:

If a ¼ ða1;y; adÞ is such that a2
i ¼ a2

j for all i; j; then by symmetry, QðaÞ and QðwÞ are identically
distributed and the lemma holds trivially. Otherwise, we can assume without loss of generality,
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that a2
1aa2

2 and consider the ‘‘more balanced’’ unit vector y ¼ ðc; c; a3;y; adÞ; where c ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2

1 þ a2
2Þ=2

q
: We will prove that

EðQðaÞ2kÞpEðQðyÞ2kÞ: ð27Þ

Applying this argument repeatedly yields the lemma, as y eventually becomes w:
To prove (27), below we first express EðQðaÞ2kÞ as a sum of averages over r11; r21 and then apply

Lemma 6.3 to get that each term (average) in the sum, is bounded by the corresponding average
for vector y: More precisely,

EðQðaÞ2kÞ ¼ 1

dk

X
M

EððM þ a1r11 þ a2r21Þ2kÞPr
Xd

i¼3

airi1 ¼
Mffiffiffi

d
p

" #

p
1

dk

X
M

EððM þ cr11 þ cr21Þ2kÞPr
Xd

i¼3

airi1 ¼
Mffiffiffi

d
p

" #

¼EðQðyÞ2kÞ: &

Proof of Lemma 6.2. Recall that T ¼D Nð0; 1=dÞ: We will first express T as the scaled sum of d
independent standard Normal random variables. This will allow for a direct comparison of the
terms in each of the two expectations.

Specifically, let fTigd
i¼1 be a family of i.i.d. standard Normal random variables. Then

Pd
i¼1 Ti is

a Normal random variable with variance d: Therefore,

T ¼D 1

d

Xd

i¼1

Ti:

Recall also that QðwÞ ¼ Q1ðwÞ ¼ w � c1 where

c1 ¼
1ffiffiffi
d

p ðr11;y; rd1Þ:

To simplify notation let us write ri1 ¼ Yi and let us also drop the dependence of Q on w: Thus,

Q ¼ 1

d

Xd

i¼1

Yi;

where fYigd
i¼1 are i.i.d. r.v. having one of the two distributions in Theorem 1.1.

We are now ready to compare EðQ2kÞ with EðT2kÞ: We first observe that for every k ¼ 0; 1;y

EðT2kÞ ¼ 1

d2k

Xd

i1¼1

?
Xd

i2k¼1

EðTi1?Ti2k
Þ
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and

EðQ2kÞ ¼ 1

d2k

Xd

i1¼1

?
Xd

i2k¼1

EðYi1?Yi2k
Þ:

To prove the lemma we will show that for every value assignment to the indices i1;y; i2k;

EðYi1?Yi2k
ÞpEðTi1?Ti2k

Þ: ð28Þ
Let V ¼ /v1; v2;y; v2kS be the value assignment considered. For iAf1;y; dg; let cV ðiÞ be the

number of times that i appears in V : Observe that if for some i; cV ðiÞ is odd then both
expectations appearing in (28) are 0, since both fYigd

i¼1 and fTigd
i¼1 are independent families and

EðYiÞ ¼ EðTiÞ ¼ 0 for all i: Thus, we can assume that there exists a set f j1; j2;y; jpg of indices
and corresponding values c1; c2;y; cp such that

EðYi1?Yi2k
Þ ¼ EðY 2c1

j1
Y 2c2

j2
?Y

2cp

jp
Þ

and

EðTi1?Ti2k
Þ ¼ EðT2c1

j1
T2c2

j2
?T

2cp

jp
Þ:

Note now that since the indices j1; j2;y; jp are distinct, fYjtg
p
t¼1 and fTjtg

p
t¼1 are families of i.i.d.

r.v. Therefore,

EðYi1?Yi2k
Þ ¼ EðY 2c1

j1
Þ �?� EðY 2cp

jp
Þ

and

EðTi1?Ti2k
Þ ¼ EðT2c1

j1
Þ �?� EðT2cp

jp
Þ:

So, without loss of generality, in order to prove (28) it suffices to prove that for every c ¼
0; 1;y

EðY 2c
1 ÞpEðT2c

1 Þ: ð29Þ
This, though, is completely trivial. First recall the well-known fact that the ð2cÞth moment of
Nð0; 1Þ is ð2c� 1Þ!! ¼ ð2cÞ!=ðc!2cÞX1: Now:

* If Y1Af�1;þ1g then EðY 2c
1 Þ ¼ 1; for all cX0:

* If Y1Af�
ffiffiffi
3

p
; 0;þ

ffiffiffi
3

p
g then EðY 2c

1 Þ ¼ 3c�1pð2cÞ!=ðc!2cÞ; where the last inequality follows by
an easy induction.

It is worth pointing out that, along with Lemma 6.3, these are the only two points were we used
any properties of the distributions for the rij (here called Yi) other than them having zero mean
and unit variance. &

Finally, we note that

* Since EðY 2c
1 ÞoEðT2c

1 Þ for certain l; we see that for each fixed d; both inequalities in Lemma 5.2
are actually strict, yielding slightly better tails bounds for S and a correspondingly better bound
for k0:
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* By using Jensen’s inequality one can get a direct bound for EðQ2kÞ when YiAf�1;þ1g; i.e.,
without comparing it to EðT2kÞ: That simplifies the proof for that case and shows that, in fact,
taking YiAf�1;þ1g is the minimizer of EðexpðhQ2ÞÞ for all h:

7. Discussion

7.1. Database-friendliness

As we mentioned earlier, all previously known constructions of JL-embeddings required the
multiplication of the input matrix with a dense, random matrix. Unfortunately, such general
matrix multiplication can be very inefficient (and cumbersome) to carry out in a relational
database.

Our constructions, on the other hand, replace the inner product operations of matrix
multiplication with view selection and aggregation (addition). Using, say, distribution (2) of
Theorem 1.1 the k new coordinates are generated by independently performing the following
random experiment k times: throw away 2=3 of the original attributes at random; partition the
remaining attributes randomly into two parts; for each part, produce a new attribute equal to the
sum of all its attributes; take the difference of the two sum attributes.

7.2. Further work

It is well-known that Oðe�2 log n=logð1=eÞÞ dimensions are necessary for embedding arbitrary
sets of n points with distortion 17e: At the same time, all currently known embeddings amount to
(random) projections requiring Oðe�2 log nÞ dimensions. As we saw, the current analysis of such
projections is tight, except for using the union bound to bound the total probability of the n

2

� �
potential bad events. Exploring the possibility of savings on this point appears interesting,
especially since in practice we often can make some assumptions about the input points. For
example, what happens if the points are guaranteed to already lie (approximately) in some low-
dimensional space?

Finally, we note that with effort (and using a different proof) one can increase the probability of
0 in distribution (2) slightly above 2=3: Yet, it seems hard to get a significant increase without
incurring a penalty in the dimensionality. Exploring the suggested tradeoff might also be
interesting, at least for practice purposes.
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